Unit 11. Randomized Algorithms

Quick Sort Revisited

• Algorithm Quick Sort (Algorithm 3.2.5) is shown to have average complexity of $\mathcal{O}(n \lg n)$ and is repeated below.

Algorithm 11.1.1. Quick Sort

```
// Sort A[low : high ] into nondecreasing order.
  // Input: A[low : high], int low, high ; Output: A[low : high] sorted.
1 Algorithm QuickSort(A, low, high)
2 {
3 if (low < high) then {
4 mid := partition(A, low, high + 1);5 QuickSort(A, low, mid − 1) ;
           QuickSort(A, mid + 1, high);7 }
8 }
```
- It is a divide-and-conquer algorithm.
- **•** The divide function Partition is repeated as well.
	- It is also known that $\textsf{Partition}$ has the worst-case complexity of $\mathcal{O}(n^2)$ and average complexity of $\mathcal{O}(n)$.
	- The latter contributes to Quick Sort's $\mathcal{O}(n \lg n)$ complexity.

Partition Algorithm

Algorithm 11.1.2. Partition

// Partition *A* into $A[low: mid-1] \le A[mid]$ and $A[mid+1: high] \ge A[mid]$. // Input: *A*, int *low*, *high*; Output: *j* that $A[low : j - 1] \leq A[j] \leq A[j + 1 : high]$. 1 Algorithm Partition(*A*, *low*, *high*) 2 { 3 $v := A[low]$; $i := low$; $j := high$; // Initialize 4 repeat { // Check for all elements. 5 repeat $i := i + 1$; until $(A[i] \ge v)$; // Find i such that $A[i] \ge v$.
6 repeat $i := i - 1$; until $(A[i] \le v)$; // Find i such that $A[i] \le v$. 6 repeat $j := j - 1$; until $(A[j] \le v)$; // Find *j* such that $A[j] \le v$.
7 if $(i < j)$ then Swap (A, i, j) : // Exchange $A[i]$ and $A[i]$. if $(i < j)$ then Swap (A, i, j) ; $//$ Exchange $A[i]$ and $A[j]$. 8 } until $(i \geq j)$;
9 $A[low] := A[i]$; $A[low] := A[j]$; $A[j] = v$; // Move *v* to the right position. 10 return *j* ; 11 } 12 Algorithm $\text{Swap}(A, i, j)$ 13 { 14 $t := A[i]$; $A[i] := A[i]$; $A[i] := t$; 15 }

Algorithms (EE3980) Unit 11. Randomized Algorithms June 10, 2019 3/24

Quick Sort CPU times

However, with pre-sorted data its complexity is shown to be $\mathcal{O}(n^2)$

Randomized Quick Sort

• Randomized quick sort (Algorithm 3.2.8), has been proposed to improve the worst-case complexity.

Algorithm 11.1.3. Randomized Quick Sort

Algorithms (EE3980) Unit 11. Randomized Algorithms June 10, 2019 5/24

Randomized Quick Sort CPU times

• RQuickSort is shown to be very effective in improving the time complexity to $\mathcal{O}(n \lg n)$.

Randomized Quick Sort CPU times

• For random data, RQuickSort and QuickSort have similar CPU times.

Algorithms (EE3980) **Unit 11. Randomized Algorithms** June 10, 2019 7/24

- Randomized Quick Sort maintains worst-case complexity to $\mathcal{O}(n \lg n)$.
- Randomized algorithms can be effective in some applications.

Randomized Selection Algorithm

- The Partition algorithm is also used in Select1, Algorithm (tcb3.3.1).
- Similar randomization technique, line 5 of Algorithm RQuickSort can be applied to improve performance.
- Overall average complexity does not change.
- But, CPU tends to get better with randomization.
	- Chance of getting worst-case performance is very small.
	- Smaller for larger *n*.
- Given a undirected graph, $G(V, E)$, $|V| = n$, and $|E| = e$, an edge cut, or cut, in *G* is a subset $C \subset E$ such that *C*'s removal disconnects *G* into two or more components.
- A minimum cut is a cut with minimum |*C*|.
- Given an edge $(u, v) \in E$, $u, v \in V$, (u, v) is contracted if vertices u and v are merged into one, all edges connecting *u* and *v* are deleted, and all other edges are retained.
- Note that contraction of an edge may result in multiple edges connecting two vertices, but no self-loops, so *G* may become a multigraph after contraction.

Algorithms (EE3980) Unit 11. Randomized Algorithms June 10, 2019 9/24

Edge Contraction and a Cut

Using edge contraction to find a cut set.

Though a cut set if found, it is not the minimum cut set.

Min-Cut Algorithm

- Using edge contraction, we can find a cut set.
- The following randomized algorithm tries to find a minimum cut set.

Algorithm 11.1.4. Min Cut

```
// Find min-cut given a graph.
   // Input: G(V,E); Output: min-cut set C ⊂ E.
 1 Algorithm MinCut(V,E, C)
 2 {
 3 \qquad C = E; // Initialize cut set to E.
 4 for i := 1 to r do \frac{1}{r} repeat r times.
 V' := V; \, E' := E; \, // \, Initialize \, V' and E' .6 while (|V'| > 2) do \{ \text{ // Contract until two vertices remaining.} \}7 choose (u, v) \in E' randomly ;
 8 \qquad \qquad \textsf{Contract}(V', E', (u, v))\,;\, // \textsf{ Perform contraction}.9 }
10 if (|E'| < |C|) then C := E'; // E' is a cut set.
11 \quad \}12 }
```
Algorithms (EE3980) Unit 11. Randomized Algorithms June 10, 2019 11/24

Min-Cut Algorithm Analysis

- When only two vertices remaining in $\,V'$ (line 6 of (Algorithm $11.1.4)$, E' is a cut set.
- We will analyze the probability of finding the minimum cut of the inner loop, lines 5-10, of the MinCut algorithm.
- Assuming $|C| = k$, that is, there are k edges in C, then
	- 1. The minimum vertex degree is *k*, otherwise removing a smaller number of edges would isolate the vertex which contradicts to the assumption.
	- 2. The minimum number of edges is then *kn*/2 for *G* is a undirected graph.
- Since *C* is the min-cut, the first edge selected cannot be in *C*, and the probability of not selecting min-cut edge is

$$
k = \frac{k}{kn/2} = 1 - \frac{2}{n}.
$$
 (11.1.1)

By the same reason, the probability of not selecting the a min-cut edge on the 2nd selection is

$$
1 - \frac{k}{k(n-1)/2} = 1 - \frac{2}{n-1}.
$$
 (11.1.2)

Min-Cut Algorithm Analysis, II

And, for the *i* -th selection the probability of not selecting a min-cut edge is

$$
1 - \frac{k}{k(n-i+1)/2} = 1 - \frac{2}{n-i+1}.
$$
 (11.1.3)

The loop terminates when there are two vertices left, with *i* = *n* − 2, and the probability of not selecting edges in *C* is

$$
1 = \frac{k}{k(n - (n - 2) + 1)/2} = 1 - \frac{2}{3}.
$$
 (11.1.4)

• All conditions, Eq. $(11.1.1 - 11.1.4)$, must be met and we have the probability of getting the min-cut set as

$$
P(C = \min\text{-cut}) = (1 - \frac{2}{n})(1 - \frac{2}{n-1})\cdots(1 - \frac{2}{3})
$$

= $\frac{n-2}{n} \cdot \frac{n-3}{n-1} \cdot \frac{n-4}{n-2} \cdots \frac{2}{4} \cdot \frac{1}{3}$
= $\frac{2}{n(n-1)}$
< $\frac{2}{n^2}$. (11.1.5)

$$
(\mathcal{O}_{\mathcal{A}}\otimes\mathcal{O}_{\mathcal{A}}\otimes\mathcal{O}_{\mathcal{A}}\otimes\mathcal{O}_{\mathcal{A}}\otimes\mathcal{O}_{\mathcal{A}}))
$$

Algorithms (EE3980) **Disk Communist Commun**

Min-Cut Algorithm Analysis, III

• Thus, the probability of not getting the min-cut in one iteration is

$$
1 - \frac{2}{n(n-1)} \ge 1 - \frac{2}{n^2}.
$$
 (11.1.6)

The equality holds for $n \gg 1$. NWWM

The inner loop is repeated *r* times, and the probability of not getting the min-cut is then

$$
\left(1 - \frac{2}{n(n-1)}\right)^r \ge \left(1 - \frac{2}{n^2}\right)^r. \tag{11.1.7}
$$

Conversely, the probability of gettting min-cut is

$$
1 - (1 - \frac{2}{n(n-1)})^r \le 1 - (1 - \frac{2}{n^2})^r. \tag{11.1.8}
$$

Setting *r* = *n* 2 2 , assuming large *n* we have the probability of getting the min-cut be

$$
1 - (1 - \frac{2}{n^2})^{n^2/2} = 1 - \frac{1}{e}.
$$
 (11.1.9)

The last equation comes from Eq. (1.4.21).

- The overall time complexity is
	- Each Contract takes $\mathcal{O}(n)$ operations.
	- $n-2$ Contact performed for one iteration, $\mathcal{O}(n^2)$.
	- Repeating $n^2/2$ times result in $\mathcal{O}(n^4)$ complexity.

Las Vegas vs. Monte Carlo algorithms

- In this $MinCut$ randomized algorithm, Algorithm $(11.1.4)$, to find a minimum cutting set, Eq. $(11.1.8)$ shows as the number of iterations increases, the probability of getting the right answer increases as well.
- At the end of each iteration, we have a cut set. But, it is not necessarily the minimum cut set.
- The algorithm can stop for any integer number of iterations, but not guaranteeing the optimal answer.
- This is called the Monte Carlo type of randomized algorithm.
- \bullet In contrast, the Randomized Quick Sort, Algorithm $(11.1.1)$ always produces the right answer.

Algorithms (EE3980) **Download Communist Co**

The latter is called the Las Vegas type of randomized algorithm.

Monte Carlo Integration

- Closed form solution for integration can be difficult to carry out.
- Numerical integration is usually preferred.
- An alternative approach is the Monte Carlo method.

Monte Carlo Integration – Algorithm

• Given a function $f(x)$, the definite integral is to be solved for.

$$
\int_{x=a}^{b} f(x) dx
$$
\n
$$
a \leq x \leq b.
$$
\n(11.1.10)

$$
(11.1.10)
$$

It is assumed that $0 \leq f(x) \leq h$

Algorithm 11.1.5. Monte Carlo Integration

Algorithms (EE3980) Unit 11. Randomized Algorithms June 10, 2019 17/24

Monte Carlo Integration – Analysis

- \bullet It is also assumed $\text{rand}(a, b)$ function generates a random number uniformly in the range $[a, b]$.
- **•** The loop, lines 4-8, executes *N* times, thus the time complexity is $\Theta(N)$.
- As *N* increases, the function should return value approaches the real integral.

Multi-dimensional Integration

Multi-dimensional integration can also be implemented easily using Monte Carlo approach.

 $I_2 = 6$

x=0

 \mathcal{L}^1

y=0

• For example,

$$
I_1 = 4 \int_{x=0}^1 \sqrt{1 - x^2} \, dx,
$$

 $\sqrt{1-x^2-y^2} \, dx \, dy$

Algorithms (EE3980) Unit 11. Randomized Algorithms June 10, 2019 19/24

Monte Carlo Integration and Random Function

- Monte carlo integration algorithms are very easy to implement.
- Solution accuracy appears to increase with number of samples (N) . Error decreases linearly with *N*, but not monotonically.
- Uniformity of random number distribution affects the accuracy.
	- Choosing a good random number generator is very important.
- Multi-dimensional integration is easily generalized from 1-dimensional integration.
- Monte carlo integration is more effective in multi-dimensional integration problems.
- Lower dimension integrations can use more effective deterministic formulas, such as Newton-Cotes formulas.

Matrix Verification Problem

- Given three $N \times N$ matrices, A, B and C, where C approximates $A \times B$, and we need to find if $C = A \times B$.
- **•** Brute force approach
	- 1. Find $D = A \times B$,
		- 2. Check if $C[i, j] = D[i, j], 1 \le i, j \le N$.
- $\mathsf{Step\ 1\ is}\ \Theta(N^3)\ \mathsf{since}\ D[i,j] = \sum_{\alpha} \mathsf{Set}[\alpha]$ *N k*=1 $A[i, k] \times B[k, j]$

and there are N^2 elements in $D.$

- $\mathsf{Step}\ 2$ is $\Theta(N^2)$ time due to N^2 elements.
- Thus, brute force approach is $\Theta(N^3).$
	- \bullet For large N it can be very time consuming.

Matrix Verification – Monte Carlo Approach

• Matrix verification problem can be solved using Freivald's technique.

Algorithms (EE3980) Unit 11. Randomized Algorithms June 10, 2019 21/24

Algorithm 11.1.6. Matrix Verification

```
// Given N \times N matrices A, B and C, check if C = A \times B.
    // Input: A, B, C, N; Output: 1: if C = A \times B, 0: otherwise.
 1 Algorithm MatVerify(A, B, C, N)
 2 {
 3 for i := 1 to N do \frac{1}{3} Generate random vector r, r[i] = 0 or 1.
 4 if \text{RAND}(0, 1) < 0.5 then r[i] = 0;
 5 else r[i] = 1;
 6 x := A \times (B \times r); // Two matrix-vector multiplications.<br>
7 y := C \times r: // Matrix vector multiplication.
 7 y := C \times r; // Matrix vector multiplication.<br>8 for i := 1 to N do // Check if x = u.
          for i := 1 to N do // Check if x = y.
9 if x[i] \neq y[i] then return 0;<br>10 return 1;
          return 1;
11 }
```
- *r* is an *N*-vector with $r[i] = 0$ or 1, $1 \le i \le N$.
- RAND $(0, 1)$ generates a random number uniformly in the range $[0, 1]$.

Matrix Verification – Analysis

- In the preceding algorithm, loops on lines 3-5 and 8-9 both execute $\mathcal{O}(N)$ times.
- Lines 6 and 7 consist of 3 matrix-vector multiplications, $\Theta(N^2).$
- Thus, overall complexity is $\Theta(N^2).$
	- This is much faster than the brute force approach.

Theorem 11.1.7.

Given three $N \times N$ matrices A, B and C, $A \times B \neq C$ and a randomly generated N-vector *r*, $r[i] = 0$ or 1, $1 \le i \le N$, then the probability that Algorithm MatVerify returns 1 is less than or equal to $1/2$.

Proof. Assume that *C* and $A \times B$ differs only at $C[i, j]$, then $r[j]$ needs to be 1 such that MatVerify would return 0. The chance that $r[j] = 1$ is $1/2$, thus proves the theorem. \Box

- \bullet One call to Algorithm MatVerify has the failure rate of $1/2$.
- Repeat the algorithm k times one gets the failure rate $(1/2)^k.$
	- The complexity is still $\Theta(N^2)$ for fixed $k.$
- Thus, this approach can very effective in verifying matrix equality problem.

Algorithms (EE3980) **Unit 11. Randomized Algorithms** June 10, 2019 23/24

Summary

- **Quick sort revisited**
	- Average-case complexity vs. worst-case
- **•** Randomized quick sort
	- Avoiding worst-case complexity
	- Las Vegas type of randomized algorithm
- **•** Graph min-cut problem
- Randomized integration algorithms
- Matrix verification problem
- Monte Carlo type of randomized algorithms
	- Have been used in solving physics problems