Unit 11. Randomized Algorithms

Algorithms
EE3980

June 10, 2019

Algorithms (EE3980) Unit 11. Randomized Algorithms June 10, 2019 1/24

Quick Sort Reuvisited

@ Algorithm Quick Sort (Algorithm 3.2.5) is shown to have average complexity
of O(nlgn) and is repeated below.

Algorithm 11.1.1. Quick Sort

// Sort A[low : high] into nondecreasing order.
// Input: Allow: high], int low, high; Output: A[low : high] sorted.
1 Algorithm QuickSort(A, low, high)
2 {
3 if (low < high) then {
4 mid := partition(A, low, high + 1) ;
5 QuickSort(A4, low, mid — 1) ;
6 QuickSort(A, mid+ 1, high) ;
7 }
8

@ It is a divide-and-conquer algorithm.
@ The divide function Partition is repeated as well.
o It is also known that Partition has the worst-case complexity of O(n?) and
average complexity of O(n).
o The latter contributes to Quick Sort's O(nlgn) complexity.

Algorithms (EE3980) Unit 11. Randomized Algorithms June 10, 2019 2/24

Partition Algorithm

Algorithm 11.1.2. Partition
// Partition A into A[low: mid — 1] < A[mid] and A[mid+ 1 : high] > A[mid].
// Input: A, int low, high; Output: jthat Allow: j— 1] < A[j] < A[j+ 1 : high].
1 Algorithm Partition(A, low, high)
2 {
3 v:= Allow|; ¢ := low; j:= high; // Initialize
4 repeat { // Check for all elements.
5 repeat ¢:= 14 1; until (A[é] > v); // Find i such that A[i] > v
6 repeat j:=j— 1; until (A[j] < v); // Find j such that A[j] < v.
7 if (7 < j) then Swap(4,,j); // Exchange Ali] and A[j].
8 }until (4> j);
9 Allow] := A[j]; A[j] = v; // Move v to the right position.
10 return j;
11}
12 Algorithm Swap(A, i, j)
13 {
14 ti= A AlS] = Al Al =t
15 }

Algorithms (EE3980) Unit 11. Randomized Algorithms June 10, 2019

Quick Sort CPU times

Quick Sort CPU Time

105 | == random data, min
—e— random data, ave

random data, max
10* | =@= sorted data, ave

wn I
3 B

5 1 3L =
g
T 102)

& 10 ? E

10! g =

100 E | [L L L [=

102 103 10*
n

@ QuickSort works well with random data

e However, with pre-sorted data its complexity is shown to be O(n?)

Algorithms (EE3980) Unit 11. Randomized Algorithms June 10, 2019 4/24

Randomized Quick Sort

e Randomized quick sort (Algorithm 3.2.8), has been proposed to improve the
worst-case complexity.

Algorithm 11.1.3. Randomized Quick Sort

// Sort A[low : high] into nondecreasing order.
// Input: Allow: high], int low, high; Output: A[low : high] sorted.
1 Algorithm RQuickSort(A, low, high)
2 {
3 if (low < high) then {
4 if ((high — low) > 5) then
5 Swap(A, low+ (Random() mod (high — low + 1)), low) ;
6 mid := Partition(A, low, high+ 1) ;
7 QuickSort(A, low, mid —1);
8 QuickSort(A, mid + 1, high) ;
9
0

Algorithms (EE3980) Unit 11. Randomized Algorithms June 10, 2019 5/24

Randomized Quick Sort CPU times

Quick Sort CPU Time

]
- random data, min

=C= random data, ave
=@= random data, max
10% | —@= sorted data, ave
== sorted data, RQuickSort

10°

n)

3

= 3j i

£ *

& 102}

) 10 g -
101§ =
1005\\\\ [[=

103 104
n

—_
[a)
[\]

v

@ RQuickSort is shown to be very effective in improving the time complexity
to O(nlgn).

Algorithms (EE3980) Unit 11. Randomized Algorithms June 10, 2019 6/24

Randomized Quick Sort CPU times

10°
104
(V)]
3
= 3
ﬂé 10
5 5
Q10
10!
100

Quick Sort vs. Randomized Quick Sort

—o=

=@= random data, QuickSort
sorted data, QuickSort
=@= random data, RQuickSort
-@= sorted data, RQuickSort

102

103
n

104

v

Algorithms (EE3980)

@ For random data, RQuickSort and QuickSort have similar CPU times.
@ Randomized Quick Sort maintains worst-case complexity to O(nlgn).
@ Randomized algorithms can be effective in some applications.

Unit 11. Randomized Algorithms

Randomized Selection Algorithm

June 10, 2019 7/24

Algorithms (EE3980)

@ The Partition algorithm is also used in Select1, Algorithm (tcb3.3.1).

Similar randomization technique, line 5 of Algorithm RQuickSort can be
applied to improve performance.
@ Overall average complexity does not change.

@ But, CPU tends to get better with randomization.

e Chance of getting worst-case performance is very small.
e Smaller for larger n.

Unit 11. Randomized Algorithms

June 10, 2019 8/24

Min-Cut Problem

Algorithms (EE3980)

e Given a undirected graph, G(V, E), |V| = n, and |E| = ¢, an edge cut, or
cut, in G is a subset C' C E such that C's removal disconnects G into two or
more components.

@ A minimum cut is a cut with minimum |C].

e Given an edge (u,v) € E, u,v,€ V, (u,v) is contracted if vertices u and v are
merged into one, all edges connecting uw and v are deleted, and all other
edges are retained.

@ Note that contraction of an edge may result in multiple edges connecting two
vertices, but no self-loops, so G may become a multigraph after contraction.

Unit 11. Randomized Algorithms

Edge Contraction and a Cut

June 10, 2019 9/24

Graph G(V,E).

@ Using edge contraction to find a cut set.

(u, v) contracted.

(y, 2) contracted.

(u, x) contracted.

v

U,U\ / w
i \ Y 2

(w, y) contracted.

()

A cut set found.

Algorithms (EE3980)

@ Though a cut set if found, it is not the minimum cut set.

Unit 11. Randomized Algorithms

June 10, 2019 10 /24

Min-Cut Algorithm

@ Using edge contraction, we can find a cut set.

@ The following randomized algorithm tries to find a minimum cut set.

Algorithm 11.1.4. Min Cut

// Find min-cut given a graph.
// Input: G(V,E); Output: min-cut set C'C E.
1 Algorithm MinCut(V, E, C)

2 {

w

C = FE; // Initialize cut set to F.

4 for i:=1 to rdo { // repeat r times.

5 V' .= V; E':= F; // Initialize V' and E’.

6 while (|V'| > 2) do { // Contract until two vertices remaining.
7 choose (u,v) € E’ randomly ;

8 Contract(V', E’, (u,v)); // Perform contraction.

£

t
10 if (|E'| < |C|) then C:= E’; // E' is a cut set.
11 }
12 }

Unit 11. Randomized Algorithms June 10, 2019 11/24

@ When only two vertices remaining in V' (line 6 of (Algorithm 11.1.4), E’ is a
cut set.

@ We will analyze the probability of finding the minimum cut of the inner loop,
lines 5-10, of the MinCut algorithm.

@ Assuming |C| = k, that is, there are k edges in C, then

1. The minimum vertex degree is k, otherwise removing a smaller number of
edges would isolate the vertex which contradicts to the assumption.
2. The minimum number of edges is then kn/2 for G is a undirected graph.

@ Since (C'is the min-cut, the first edge selected cannot be in C, and the
probability of not selecting min-cut edge is

| DS (11.1.1)

@ By the same reason, the probability of not selecting the a min-cut edge on
the 2nd selection is

k 2
- =1- . (11.1.2)
K(n—1)/2 n— 1
Algorithms (EE3980) Unit 11. Randomized Algorithms

Min-Cut Algorithm Analysis, I

@ And, for the i-th selection the probability of not selecting a min-cut edge is

k 2
1— =1- —)—7. 11.1.
Hn—i+1)/2 n—it1 (11.1.3)
@ The loop terminates when there are two vertices left, with i = n — 2, and the
probability of not selecting edges in C'is

k 2
L e 91 55 (11.1.4)

e All conditions, Eq. (11.1.1 — 11.1.4), must be met and we have the
probability of getting the min-cut set as

W, 2

P(C:min—cut):(l—ﬁ)(l—n_l)---(l—g)
- n—=2 n—-3 n—-4 2 1
"~ n n—-1 n—-2 4 3
B 2
 n(n—1)
2
< (11.1.5)

Algorithms (EE3980) Unit 11. Randomized Algorithms June 10, 2019 13 /24

Min-Cut Algorithm Analysis, Il

@ Thus, the probability of not getting the min-cut in one iteration is

2 2
- 2>1—- —. 1.
- 2w (11.1.6)
The equality holds for n > 1.
@ The inner loop is repeated r times, and the probability of not getting the

min-cut is then

2 2
G SO YN AL 1.
T n(n—l)) > (1 n2) (11.1.7)
Conversely, the probability of gettting min-cut is
2 2
(1= <l = (1 - =)". 11.1.
 SUE eI Ny K) (11.18)
@ Setting r= 5 assuming large n we have the probability of getting the
min-cut be 2 |
1 S0 n2/2 O
1—(1 n2)) 1 = (11.1.9)

The last equation comes from Eq. (1.4.21).
@ The overall time complexity is
o Each Contract takes O(n) operations.
e n— 2 Contact performed for one iteration, O(n?).
o Repeating n*/2 times result in O(n*) complexity.

Algorithms (EE3980) Unit 11. Randomized Algorithms

June 10, 2019 14/24

Las Vegas vs. Monte Carlo algorithms

@ In this MinCut randomized algorithm, Algorithm (11.1.4), to find a minimum
cutting set, Eq. (11.1.8) shows as the number of iterations increases, the
probability of getting the right answer increases as well.

@ At the end of each iteration, we have a cut set. But, it is not necessarily the
minimum cut set.

@ The algorithm can stop for any integer number of iterations, but not
guaranteeing the optimal answer.

@ This is called the Monte Carlo type of randomized algorithm.

@ In contrast, the Randomized Quick Sort, Algorithm (11.1.1) always produces
the right answer.

@ The latter is called the Las Vegas type of randomized algorithm.

Algorithms (EE3980) Unit 11. Randomized Algorithms June 10, 2019 15 /24

Monte Carlo Integration

@ Closed form solution for integration can be difficult to carry out.
@ Numerical integration is usually preferred.

@ An alternative approach is the Monte Carlo method.

A A

(0.1) (0.1)

Y

(1,0)

Algorithms (EE3980) Unit 11. Randomized Algorithms June 10, 2019 16 / 24

Monte Carlo Integration — Algorithm

@ Given a function f(z), the definite integral is to be solved for.

b

fz)dx

Ir=a

(11.1.10)

It is assumed that 0 < f(z) < h, a <z < b.

Algorithm 11.1.5. Monte Carlo Integration

// Tofind [* f(z)d, 0 < f(z) < h.
// Input: a, b, h; Output: integral.
1 Algorithm Integrate(a, b, h)
2 {
3 1:=0;
Z for ¢:=1 to Ndo {
5 x:= rand(a, b);
6 y:= rand(0, h) ;
7 if y < flz) then [:= 14 1;
8 }
9 return I/Nx(b— a)xh;
10 }

Algorithms (EE3980) Unit 11. Randomized Algorithms June 10, 2019 17 /24

Monte Carlo Integration — Analysis

@ It is also assumed rand(a, b) function generates a random number uniformly
in the range [a, b].

@ The loop, lines 4-8, executes N times, thus the time complexity is ©(N).

@ As N increases, the function should return value approaches the real integral.

4[11:0 Vi—2dz |7r - 4]:10 V1— 22 da:|
T T T oo TTTT T T T T T T TTTTIIT T T T T
L] . L[]
3.16 y 102 % ° .
E 0% ©
e o [o o0
3.15 . 1073 F oo’ .
R F L]
_g 0% — = L °
= 314 0 oy JCvme cecms ccomm | £ ol R RUIPO
» . R © 107%F . 6 °
°] F ° [4
L L]
3.13 n 10-5 1 .
E °
512 °) 100} .
P R S T E R A W AT R A N B R AT B A I R T T R T A T A R
10* 10° 108 107 10% 10° 10* 10° 106 107 108 10°
N N
y y
Algorithms (EE3980) Unit 11. Randomized Algorithms June 10, 2019 18 /24

Multi-dimensional Integration

@ Multi-dimensional integration can also be implemented easily using Monte
Carlo approach.

@ For example,

1 1 1
11:4/ V1 —22dz, 12:6/ / vV1—12%2 —12dxdy
=0 =0 =0

Multi-dimensional integration Multi-dimensional integration error
Hml B AL 1w e e e e B RN Hmm.]l 10—1?uul P R P Hmm.h
318/ °] i ol
102 e s J
- .:.‘ %%
I o .. o 0..~. o
_ -3 (0O il
T 3.16| | = 10 N
&0 1<
g’D 5 .. .a
o .
= ° H 1074 U A ° P
e °® o® .5 . g e © 00 ..
- PO 0,%% occems oocermm | i o o 0
® o0 o _5 °
es © ®e 10-° 5 o o o o E
.
. .
(AN Lol Lol Lol Lol Lol Ll Ll Lol Lol Lol Lol Lol Ll
10* 10° 106 107 10% 10° 104 10° 108 107 10% 10°
N N
4 4

Algorithms (EE3980) Unit 11. Randomized Algorithms June 10, 2019

Monte Carlo Integration and Random Function

@ Monte carlo integration algorithms are very easy to implement.

@ Solution accuracy appears to increase with number of samples (V).
e Error decreases linearly with N, but not monotonically.

@ Uniformity of random number distribution affects the accuracy.

e Choosing a good random number generator is very important.

@ Multi-dimensional integration is easily generalized from 1-dimensional
integration.

@ Monte carlo integration is more effective in multi-dimensional integration
problems.

@ Lower dimension integrations can use more effective deterministic formulas,
such as Newton-Cotes formulas.

Algorithms (EE3980) Unit 11. Randomized Algorithms

June 10, 2019 20/24

Matrix Verification Problem

@ Given three N x N matrices, A, B and C, where C approximates A x B, and
we need to find if C= A x B.
@ Brute force approach

1. Find D= A x B,
2. Check if C[i,j] = DJi,j], 1 < 4,5 < N.

N
o Step 1is O(N®) since D[i,j] = > Ali, k] x B[k, j]
k=1
and there are N? elements in D.

Step 2 is ©(N?) time due to N2 elements.
@ Thus, brute force approach is ©(N?).
e For large N it can be very time consuming.

Algorithms (EE3980) Unit 11. Randomized Algorithms June 10, 2019 21/24

Matrix Verification — Monte Carlo Approach

@ Matrix verification problem can be solved using Freivald's technique.

Algorithm 11.1.6. Matrix Verification

// Given N x N matrices A, B and C, check if C = A x B.
// Input: A, B, C, N; Output: 1: if C= A x B, 0: otherwise.

1 Algorithm MatVerify(A, B, C, N)

2 {

3 for i:=1 to N do // Generate random vector r, r[i] = 0 or 1.

4 if RAND(0,1) < 0.5 then 7{¢] = 0;

5 else i) = 1;

6 z:= AX(BXxr); // Two matrix-vector multiplications.

7 y:= Cxr; // Matrix vector multiplication.

8 for i:=1 to Ndo // Check if z=y.

9 if z[¢] # y[¢{] then return 0;

10 return 1;

11 }

@ ris an N-vector with 7i] =0or 1, 1 <i{< N,
@ RAND(0, 1) generates a random number uniformly in the range [0, 1].

June 10, 2019 22 /24

Algorithms (EE3980) Unit 11. Randomized Algorithms

Matrix Verification — Analysis

@ In the preceding algorithm, loops on lines 3-5 and 8-9 both execute O(N)
times.
@ Lines 6 and 7 consist of 3 matrix-vector multiplications, ©(N?).
@ Thus, overall complexity is ©(N?).
e This is much faster than the brute force approach.

Theorem 11.1.7.

Given three N X N matrices A, B and C, A x B# C and a randomly generated N-vector
r, 7i] =0 or 1, 1 < ¢ < N, then the probability that Algorithm MatVerify returns 1 is
less than or equal to 1/2.

Proof. Assume that C and A x B differs only at C[7,j], then r[j] needs to be 1 such
that MatVerify would return 0. The chance that r{j] = 1 is 1/2, thus proves the
theorem.]

@ One call to Algorithm MatVerify has the failure rate of 1/2.
o Repeat the algorithm k times one gets the failure rate (1/2)".
o The complexity is still ©(N?) for fixed k.

@ Thus, this approach can very effective in verifying matrix equality problem.

Algorithms (EE3980) Unit 11. Randomized Algorithms June 10, 2019 23/24

Summary

@ Quick sort revisited
e Average-case complexity vs. worst-case

@ Randomized quick sort

e Avoiding worst-case complexity
e Las Vegas type of randomized algorithm

Graph min-cut problem
Randomized integration algorithms

Matrix verification problem
Monte Carlo type of randomized algorithms
e Have been used in solving physics problems

Algorithms (EE3980) Unit 11. Randomized Algorithms June 10, 2019 24 /24

