
Unit 11. Randomized Algorithms

Algorithms

EE3980

June 10, 2019

Algorithms (EE3980) Unit 11. Randomized Algorithms June 10, 2019 1 / 24

Quick Sort Revisited
Algorithm Quick Sort (Algorithm 3.2.5) is shown to have average complexity
of O(n lg n) and is repeated below.

Algorithm 11.1.1. Quick Sort
// Sort A[low : high] into nondecreasing order.
// Input: A[low : high], int low, high ; Output: A[low : high] sorted.

1 Algorithm QuickSort(A, low, high)
2 {
3 if (low < high) then {
4 mid := partition(A, low, high + 1) ;
5 QuickSort(A, low,mid − 1) ;
6 QuickSort(A,mid + 1, high) ;
7 }
8 }

It is a divide-and-conquer algorithm.
The divide function Partition is repeated as well.

It is also known that Partition has the worst-case complexity of O(n2) and
average complexity of O(n).
The latter contributes to Quick Sort’s O(n lg n) complexity.

Algorithms (EE3980) Unit 11. Randomized Algorithms June 10, 2019 2 / 24

Partition Algorithm

Algorithm 11.1.2. Partition
// Partition A into A[low : mid − 1] ≤ A[mid] and A[mid + 1 : high] ≥ A[mid].
// Input: A, int low, high ; Output: j that A[low : j − 1] ≤ A[j] ≤ A[j + 1 : high].

1 Algorithm Partition(A, low, high)
2 {
3 v := A[low] ; i := low ; j := high ; // Initialize
4 repeat { // Check for all elements.
5 repeat i := i + 1 ; until (A[i] ≥ v) ; // Find i such that A[i] ≥ v.
6 repeat j := j − 1 ; until (A[j] ≤ v) ; // Find j such that A[j] ≤ v.
7 if (i < j) then Swap(A, i, j) ; // Exchange A[i] and A[j].
8 } until (i ≥ j) ;
9 A[low] := A[j] ; A[j] = v ; // Move v to the right position.

10 return j ;
11 }
12 Algorithm Swap(A, i, j)
13 {
14 t := A[i] ; A[i] := A[j] ; A[j] := t ;
15 }

Algorithms (EE3980) Unit 11. Randomized Algorithms June 10, 2019 3 / 24

Quick Sort CPU times

102 103 104
100

101

102

103

104

105

n

CP
U

tim
e,

µ
s

Quick Sort CPU Time

random data, min
random data, ave
random data, max
sorted data, ave

QuickSort works well with random data
However, with pre-sorted data its complexity is shown to be O(n2)

Algorithms (EE3980) Unit 11. Randomized Algorithms June 10, 2019 4 / 24

Randomized Quick Sort

Randomized quick sort (Algorithm 3.2.8), has been proposed to improve the
worst-case complexity.

Algorithm 11.1.3. Randomized Quick Sort
// Sort A[low : high] into nondecreasing order.
// Input: A[low : high], int low, high ; Output: A[low : high] sorted.

1 Algorithm RQuickSort(A, low, high)
2 {
3 if (low < high) then {
4 if ((high − low) > 5) then
5 Swap(A, low + (Random() mod (high − low + 1)), low) ;
6 mid := Partition(A, low, high + 1) ;
7 QuickSort(A, low,mid − 1) ;
8 QuickSort(A,mid + 1, high) ;
9 }

10 }

Algorithms (EE3980) Unit 11. Randomized Algorithms June 10, 2019 5 / 24

Randomized Quick Sort CPU times

102 103 104
100

101

102

103

104

105

n

CP
U

tim
e,

µ
s

Quick Sort CPU Time

random data, min
random data, ave
random data, max
sorted data, ave

sorted data, RQuickSort

RQuickSort is shown to be very effective in improving the time complexity
to O(n lg n).

Algorithms (EE3980) Unit 11. Randomized Algorithms June 10, 2019 6 / 24

Randomized Quick Sort CPU times

102 103 104
100

101

102

103

104

105

n

CP
U

tim
e,

µ
s

Quick Sort vs. Randomized Quick Sort

random data, QuickSort
sorted data, QuickSort

random data, RQuickSort
sorted data, RQuickSort

For random data, RQuickSort and QuickSort have similar CPU times.
Randomized Quick Sort maintains worst-case complexity to O(n lg n).
Randomized algorithms can be effective in some applications.

Algorithms (EE3980) Unit 11. Randomized Algorithms June 10, 2019 7 / 24

Randomized Selection Algorithm

The Partition algorithm is also used in Select1, Algorithm (tcb3.3.1).
Similar randomization technique, line 5 of Algorithm RQuickSort can be
applied to improve performance.
Overall average complexity does not change.
But, CPU tends to get better with randomization.

Chance of getting worst-case performance is very small.
Smaller for larger n.

Algorithms (EE3980) Unit 11. Randomized Algorithms June 10, 2019 8 / 24

Min-Cut Problem

Given a undirected graph, G(V,E), |V | = n, and |E | = e, an edge cut, or
cut, in G is a subset C ⊂ E such that C ’s removal disconnects G into two or
more components.
A minimum cut is a cut with minimum |C|.

Given an edge (u, v) ∈ E, u, v,∈ V, (u, v) is contracted if vertices u and v are
merged into one, all edges connecting u and v are deleted, and all other
edges are retained.
Note that contraction of an edge may result in multiple edges connecting two
vertices, but no self-loops, so G may become a multigraph after contraction.

Algorithms (EE3980) Unit 11. Randomized Algorithms June 10, 2019 9 / 24

Edge Contraction and a Cut

Using edge contraction to find a cut set.

u

v

w

x

y

z

Graph G(V,E).

u, v

w

x

y

z

(u, v) contracted.

u, v

w

x

y, z

(y, z) contracted.

u, v
x

w

y, z

(u, x) contracted.

u, v
x

w
y, z

(w, y) contracted.

u

v

w

x

y

z

A cut set found.

Though a cut set if found, it is not the minimum cut set.
Algorithms (EE3980) Unit 11. Randomized Algorithms June 10, 2019 10 / 24

Min-Cut Algorithm

Using edge contraction, we can find a cut set.
The following randomized algorithm tries to find a minimum cut set.

Algorithm 11.1.4. Min Cut
// Find min-cut given a graph.
// Input: G(V,E) ; Output: min-cut set C ⊂ E.

1 Algorithm MinCut(V,E,C)
2 {
3 C = E ; // Initialize cut set to E.
4 for i := 1 to r do { // repeat r times.
5 V ′ := V ; E ′ := E ; // Initialize V ′ and E ′.
6 while (|V ′| > 2) do { // Contract until two vertices remaining.
7 choose (u, v) ∈ E ′ randomly ;
8 Contract(V ′,E ′, (u, v)) ; // Perform contraction.
9 }

10 if (|E ′| < |C |) then C := E ′ ; // E ′ is a cut set.
11 }
12 }

Algorithms (EE3980) Unit 11. Randomized Algorithms June 10, 2019 11 / 24

Min-Cut Algorithm Analysis

When only two vertices remaining in V ′ (line 6 of (Algorithm 11.1.4), E ′ is a
cut set.
We will analyze the probability of finding the minimum cut of the inner loop,
lines 5-10, of the MinCut algorithm.

Assuming |C | = k, that is, there are k edges in C, then
1. The minimum vertex degree is k, otherwise removing a smaller number of

edges would isolate the vertex which contradicts to the assumption.
2. The minimum number of edges is then kn/2 for G is a undirected graph.

Since C is the min-cut, the first edge selected cannot be in C, and the
probability of not selecting min-cut edge is

1− k
kn/2 = 1− 2

n . (11.1.1)

By the same reason, the probability of not selecting the a min-cut edge on
the 2nd selection is

1− k
k(n − 1)/2

= 1− 2

n − 1
. (11.1.2)

Algorithms (EE3980) Unit 11. Randomized Algorithms June 10, 2019 12 / 24

Min-Cut Algorithm Analysis, II
And, for the i -th selection the probability of not selecting a min-cut edge is

1− k
k(n − i + 1)/2

= 1− 2

n − i + 1
. (11.1.3)

The loop terminates when there are two vertices left, with i = n − 2, and the
probability of not selecting edges in C is

1− k
k(n − (n − 2) + 1)/2

= 1− 2

3
. (11.1.4)

All conditions, Eq. (11.1.1 – 11.1.4), must be met and we have the
probability of getting the min-cut set as

P(C = min-cut) = (1− 2

n)(1− 2

n − 1
) · · · (1− 2

3
)

=
n − 2

n · n − 3

n − 1
· n − 4

n − 2
· · · 2

4
· 1
3

=
2

n(n − 1)

<
2

n2
. (11.1.5)

Algorithms (EE3980) Unit 11. Randomized Algorithms June 10, 2019 13 / 24

Min-Cut Algorithm Analysis, III
Thus, the probability of not getting the min-cut in one iteration is

1− 2

n(n − 1)
≥ 1− 2

n2
. (11.1.6)

The equality holds for n ≫ 1.
The inner loop is repeated r times, and the probability of not getting the
min-cut is then

(1− 2

n(n − 1)
)r ≥ (1− 2

n2
)r. (11.1.7)

Conversely, the probability of gettting min-cut is

1− (1− 2

n(n − 1)
)r ≤ 1− (1− 2

n2
)r. (11.1.8)

Setting r =
n2

2
, assuming large n we have the probability of getting the

min-cut be
1− (1− 2

n2)
)n2/2 = 1− 1

e . (11.1.9)

The last equation comes from Eq. (1.4.21).
The overall time complexity is

Each Contract takes O(n) operations.
n − 2 Contact performed for one iteration, O(n2).
Repeating n2/2 times result in O(n4) complexity.

Algorithms (EE3980) Unit 11. Randomized Algorithms June 10, 2019 14 / 24

Las Vegas vs. Monte Carlo algorithms

In this MinCut randomized algorithm, Algorithm (11.1.4), to find a minimum
cutting set, Eq. (11.1.8) shows as the number of iterations increases, the
probability of getting the right answer increases as well.
At the end of each iteration, we have a cut set. But, it is not necessarily the
minimum cut set.
The algorithm can stop for any integer number of iterations, but not
guaranteeing the optimal answer.
This is called the Monte Carlo type of randomized algorithm.

In contrast, the Randomized Quick Sort, Algorithm (11.1.1) always produces
the right answer.
The latter is called the Las Vegas type of randomized algorithm.

Algorithms (EE3980) Unit 11. Randomized Algorithms June 10, 2019 15 / 24

Monte Carlo Integration

Closed form solution for integration can be difficult to carry out.
Numerical integration is usually preferred.
An alternative approach is the Monte Carlo method.

(1,0)

(0,1)

(1,0)

(0,1)

Algorithms (EE3980) Unit 11. Randomized Algorithms June 10, 2019 16 / 24

Monte Carlo Integration – Algorithm
Given a function f(x), the definite integral is to be solved for.

∫ b

x=a
f(x) dx (11.1.10)

It is assumed that 0 ≤ f(x) ≤ h, a ≤ x ≤ b.

Algorithm 11.1.5. Monte Carlo Integration
// To find

∫ b
x=a f(x) d, 0 ≤ f(x) ≤ h.

// Input: a, b, h ; Output: integral.
1 Algorithm Integrate(a, b, h)
2 {
3 I := 0 ;
4 for i := 1 to N do {
5 x := rand(a, b) ;
6 y := rand(0, h) ;
7 if y ≤ f(x) then I := I + 1 ;
8 }
9 return I/N×(b − a)×h ;

10 }

Algorithms (EE3980) Unit 11. Randomized Algorithms June 10, 2019 17 / 24

Monte Carlo Integration – Analysis

It is also assumed rand(a, b) function generates a random number uniformly
in the range [a, b].
The loop, lines 4-8, executes N times, thus the time complexity is Θ(N).
As N increases, the function should return value approaches the real integral.

104 105 106 107 108 109

3.12

3.13

3.14

3.15

3.16

N

4
∫

fd
x

4
∫ 1

x=0

√
1− x2 dx

104 105 106 107 108 109

10−6

10−5

10−4

10−3

10−2

N

|er
ro

r|

∣∣∣π − 4
∫ 1

x=0

√
1− x2 dx

∣∣∣

Algorithms (EE3980) Unit 11. Randomized Algorithms June 10, 2019 18 / 24

Multi-dimensional Integration

Multi-dimensional integration can also be implemented easily using Monte
Carlo approach.
For example,

I1 = 4

∫ 1

x=0

√
1− x2 dx, I2 = 6

∫ 1

x=0

∫ 1

y=0

√
1− x2 − y2 dx dy

104 105 106 107 108 109

3.14

3.16

3.18

N

In
ge

gr
al

Multi-dimensional integration

I1
I2

104 105 106 107 108 109

10−5

10−4

10−3

10−2

10−1

N

|er
ro

r|

Multi-dimensional integration error

I1
I2

Algorithms (EE3980) Unit 11. Randomized Algorithms June 10, 2019 19 / 24

Monte Carlo Integration and Random Function

Monte carlo integration algorithms are very easy to implement.
Solution accuracy appears to increase with number of samples (N).

Error decreases linearly with N, but not monotonically.
Uniformity of random number distribution affects the accuracy.

Choosing a good random number generator is very important.

Multi-dimensional integration is easily generalized from 1-dimensional
integration.
Monte carlo integration is more effective in multi-dimensional integration
problems.
Lower dimension integrations can use more effective deterministic formulas,
such as Newton-Cotes formulas.

Algorithms (EE3980) Unit 11. Randomized Algorithms June 10, 2019 20 / 24

Matrix Verification Problem

Given three N × N matrices, A, B and C, where C approximates A × B, and
we need to find if C = A × B.
Brute force approach

1. Find D = A × B,
2. Check if C [i, j] = D [i, j], 1 ≤ i, j ≤ N.

Step 1 is Θ(N 3) since D [i, j] =
N∑

k=1

A[i, k]× B[k, j]

and there are N 2 elements in D.
Step 2 is Θ(N 2) time due to N 2 elements.
Thus, brute force approach is Θ(N 3).

For large N it can be very time consuming.

Algorithms (EE3980) Unit 11. Randomized Algorithms June 10, 2019 21 / 24

Matrix Verification – Monte Carlo Approach
Matrix verification problem can be solved using Freivald’s technique.

Algorithm 11.1.6. Matrix Verification
// Given N × N matrices A, B and C, check if C = A × B.
// Input: A, B, C, N ; Output: 1: if C = A × B, 0: otherwise.

1 Algorithm MatVerify(A,B,C,N)
2 {
3 for i := 1 to N do // Generate random vector r, r[i] = 0 or 1.
4 if RAND(0, 1) < 0.5 then r[i] = 0 ;
5 else r[i] = 1 ;
6 x := A×(B×r) ; // Two matrix-vector multiplications.
7 y := C×r ; // Matrix vector multiplication.
8 for i := 1 to N do // Check if x = y.
9 if x [i] ̸= y [i] then return 0 ;

10 return 1 ;
11 }

r is an N-vector with r[i] = 0 or 1, 1 ≤ i ≤ N.
RAND(0, 1) generates a random number uniformly in the range [0, 1].

Algorithms (EE3980) Unit 11. Randomized Algorithms June 10, 2019 22 / 24

Matrix Verification – Analysis
In the preceding algorithm, loops on lines 3-5 and 8-9 both execute O(N)
times.
Lines 6 and 7 consist of 3 matrix-vector multiplications, Θ(N 2).
Thus, overall complexity is Θ(N 2).

This is much faster than the brute force approach.

Theorem 11.1.7.
Given three N × N matrices A, B and C, A × B ̸= C and a randomly generated N-vector
r, r[i] = 0 or 1, 1 ≤ i ≤ N, then the probability that Algorithm MatVerify returns 1 is
less than or equal to 1/2.

Proof. Assume that C and A × B differs only at C [i, j], then r[j] needs to be 1 such
that MatVerify would return 0. The chance that r[j] = 1 is 1/2, thus proves the
theorem. □

One call to Algorithm MatVerify has the failure rate of 1/2.
Repeat the algorithm k times one gets the failure rate (1/2)k.

The complexity is still Θ(N 2) for fixed k.
Thus, this approach can very effective in verifying matrix equality problem.

Algorithms (EE3980) Unit 11. Randomized Algorithms June 10, 2019 23 / 24

Summary

Quick sort revisited
Average-case complexity vs. worst-case

Randomized quick sort
Avoiding worst-case complexity
Las Vegas type of randomized algorithm

Graph min-cut problem
Randomized integration algorithms
Matrix verification problem
Monte Carlo type of randomized algorithms

Have been used in solving physics problems

Algorithms (EE3980) Unit 11. Randomized Algorithms June 10, 2019 24 / 24

