
Unit 10. Approximation Algorithms

Algorithms

EE3980

June 3, 2019

Algorithms (EE3980) Unit 10. Approximation Algorithms June 3, 2019 1 / 31

0/1 Knapsack Problem

Given n objects, each with profit pi and weight wi, 1 ≤ i ≤ n, to be placed
into a sack that can hold maximum of m weight. However, there is an
additional constraint that each object must be placed as a whole into the
sack, or not at all. That is, find xi, 1 ≤ i ≤ n, such that

maximize
n∑

i=1

pixi,

subject to
n∑

i=1

wixi ≤ m,

and xi = 0 or 1, 1 ≤ i ≤ n.

(10.1.1)

We need
n∑

i=1

wi > m for nontrivial solutions.

It is assumed that the n objects are ordered by pi/wi in a nonincreasing order.
It is also assumed that the optimal profit is p∗.
The following greedy algorithm can find a feasible but not necessarily the
optimal solution.

Algorithms (EE3980) Unit 10. Approximation Algorithms June 3, 2019 2 / 31

0/1 Knapsack Problem – Greedy Algorithm

Algorithm 10.1.1. Greedy Knapsack
// Solving knapsack using greedy method.
// Input: n, p[], w[], m ; Output: solution x[].

1 Algorithm GKnap0(n, p,w, x,m)
2 { // The objects are assumed to be sorted by p[i]/w[i] in nonincreasing order.
3 for i := 1 to n do x[i] := 0 ;
4 i := 1 ; fp1 := 0 ;
5 while (m ≥ w[i]) do {
6 x[i] := 1 ; fp1 := fp1 + p[i] ; m := m − w[i] ; i := i + 1 ;
7 }
8 }

At the end of the algorithm GKnap0 object i is placed into the sack if
x[i] = 1, and fp1 is the final profit.
It is easy to see that fp1 ≤ p∗, and fp1 < p∗ most of the time.

Algorithms (EE3980) Unit 10. Approximation Algorithms June 3, 2019 3 / 31

0/1 Knapsack Problem – An example

An example of the knapsack problem:
Given n objects, pi = 1 and wi = 1 for i = 1, . . . ,n − 1, and pn = k · n − 1,
wn = m = k · n, k ≫ 1.
The optimal profit for this problem is p∗ = k · n − 1 with xn = 1 and xi = 0,
i = 1, . . . ,n − 1.
Note that pi/wi = 1 for i = 1, . . . ,n − 1 and
pn/wn = (k · n − 1)/(k · n) = 1− 1/(k · n) < 1. Thus, the objects are already
in a nonincreasing order.
The Greedy Knapsack algorithm finds a solution xi = 1, i = 1, . . . ,n − 1, and
xn = 0 with a profit fp1 = n − 1.
The ratio p∗/fp1 = (k · n − 1)/(n − 1) ≫ 1.
The greedy Knapsack algorithm can be modified as the following to fix this
problem.

Algorithms (EE3980) Unit 10. Approximation Algorithms June 3, 2019 4 / 31

0/1 Knapsack Problem – Revised Greedy Algorithm
Algorithm 10.1.2. Revised Greedy Knapsack

// Revised knapsack algorithm using greedy method.
// Input: n, p[], w[], m ; Output: solution x[].

1 Algorithm GKnap(n, p,w, x,m)
2 { // The objects are assumed to be sorted by p[i]/w[i] in nonincreasing order.
3 for i := 1 to n do x[i] := 0 ;
4 i := 1 ; fp2 := 0 ; m′ := m ;
5 while (m′ ≥ w[i]) do { // Greedy method.
6 x[i] := 1 ; fp2 := fp2 + p[i] ; m′ := m′ − w[i] ; i := i + 1 ;
7 }
8 Find j such that p[j] = max(p[1 : n]) ; // Object j has the max profit.
9 if (p[j] > fp2 and w[j] ≤ m) then { // Choose the object j.

10 for i := 1 to n do x[i] := 0 ;
11 x[j] := 1 ; fp2 := p[j] ;
12 }
13 }

This revised algorithm adds lines 8-12 for the possibility of choosing the
object with the largest profit.

Algorithms (EE3980) Unit 10. Approximation Algorithms June 3, 2019 5 / 31

0/1 Knapsack Problem – The Profit

In the preceding algorithm, let i = h when the while loop on line 8
terminates.
At this time, we have

fp1 =

h−1∑

i=1

pi < p∗ < fp1 + ph · m′

wh
< fp1 + ph.

Consider two cases
Case 1: ph < fp1 then

p∗ < fp1 + ph < 2 · fp1 ≤ 2 · fp2.

Case 2: ph > fp1, then

p∗ < fp1 + ph < 2 · ph ≤ 2 · max{pi} ≤ 2 · fp2.

Thus, we have the following lemma.

Algorithms (EE3980) Unit 10. Approximation Algorithms June 3, 2019 6 / 31

0/1 Knapsack Problem – Bound of The Profit

Lemma 10.1.3.
Given a 0/1 knapsack problem, let the optimal profit be p∗ and the profit found
by Algorithm (10.1.2) be fp2, then

p∗

fp2
≤ 2. (10.1.2)

The greedy algorithm to solve the knapsack problem always finds a profit fp2

such that p∗

2
< fp2 < p∗.

This algorithm finds an approximate solution given the bound above. Though
it is not an optimal solution, it has very low time complexity.

Algorithms (EE3980) Unit 10. Approximation Algorithms June 3, 2019 7 / 31

Approximation Algorithms

There are no known polynomial time algorithms to solve NP-complete
problems.
Solving these problems can take a long time if the problem size is not small.
But, there are many practical problems that are NP-complete.
Heuristics might be used with existing algorithms to reduce solution time.

Backtracking and branch and bound algorithms.
The solution quality can vary significantly from instance to instance.
Exponential time complexity can still take formidable time.

Instead of finding the optimal solution, a different approach is to find an
approximate solution, which is a feasible solution with value close the optimal
solution.
An approximation algorithm for a problem Q is an algorithm that generates
approximate solutions for Q.

Algorithms (EE3980) Unit 10. Approximation Algorithms June 3, 2019 8 / 31

Approximation Algorithms — Definitions

Let Q be a problem such as the knapsack (or the traveling salesperson)
problem.
Let I is an instance of problem Q and F ∗(I) be the value of an optimal
solution to I.
An approximation algorithm generally produces a feasible solution to I whose
value F̂ (I) is less than (greater than) F ∗(I) if Q is a maximization
(minimization) problem.

Definition. 10.1.4. Absolute approximation.
A is an absolute approximation algorithm for problem Q if and only if for every
instance I of Q, |F ∗(I)− F̂ (I)| ≤ k for some constant k.

Definition. 10.1.5.
A is an f(n)-approximate algorithm for problem Q if and only if for every instance
I of size n, |F ∗(I)− F̂ (I)|/F ∗(I) ≤ f(n) for F ∗(I) > 0.

Algorithms (EE3980) Unit 10. Approximation Algorithms June 3, 2019 9 / 31

Approximation Algorithms — Definitions, II

Definition. 10.1.6.
An ϵ-approximate algorithm is an f(n)-approximate algorithm for which f(n) ≤ ϵ
for some constant ϵ.

Note that for maximization problems, |F ∗ − F̂ (I)|/F ∗ ≤ 1 for every feasible
solution to I.

Thus, ϵ < 1 is usually required for ϵ-approximate algorithms.
In the following, we assume ϵ is an input to algorithm A.

Definition. 10.1.7.
A(ϵ) is an approximation scheme if and only if for every given ϵ > 0 and problem
instance I, A(ϵ) generates a feasible solution such that |F ∗(I)− F̂ (I)|/F ∗ ≤ ϵ.
(F ∗ > 0 is assumed.)

Algorithms (EE3980) Unit 10. Approximation Algorithms June 3, 2019 10 / 31

Approximation Algorithms — Definitions, III

Definition. 10.1.8.
An approximation scheme is a polynomial time approximation scheme if and only
of for every fixed ϵ > 0, it has computing time that is polynomial in the problem
size.

Definition. 10.1.9.
An approximation scheme whose computing time is a polynomial both in problem
size and in 1/ϵ is a fully polynomial time approximation scheme.

For most NP-complete problems, it can be shown the absolute
approximation algorithms exist only if P=NP-complete.

For certain NP-complete problems, the existence of f(n)-approximate
algorithm is also shown only when P=NP-complete.

Algorithms (EE3980) Unit 10. Approximation Algorithms June 3, 2019 11 / 31

Absolute Approximations

There are very few NP-hard optimization problems for which polynomial
time absolute approximation algorithms are known.
The problem of determining the minimum number of colors to color a planar
graph is an exception.

It has been proven that every planar graph is four colorable.
One can also determine a planar graph is zero, one or two colorable.

Algorithm. 10.1.10. Planar Graph Coloring.
// Approximate algorithm to determine minimum color for planar graph G(V,E).
// Input: graph G ; Output: minimum number of colors.

1 Algorithm AColor(G)
2 {
3 if (V = ∅) then return 0 ;
4 else if (E = ∅) then return 1 ;
5 else if (G is bipartite) then return 2 ;
6 else return 4 ;
7 }

Algorithms (EE3980) Unit 10. Approximation Algorithms June 3, 2019 12 / 31

Planar Graph Coloring

The time complexity of Algorithm (10.1.10) is dominated by line 6 which
checks if the graph is bipartite.
Checking the bipartite property of a graph can be done in O(|V |+ |E |) time.
Thus, Algorithm (10.1.10) is a polynomial time algorithm.
Note that the planar graph coloring problem is NP-hard since three color
decision problem is NP-complete.
Algorithm (10.1.10) does not check for three color solution, thus avoiding the
long execution time by returning an approximate solution.
Algorithm (10.1.10) is an absolute approximation algorithm because
|F ∗(I)− F̂ (I)| ≤ 1.

Algorithms (EE3980) Unit 10. Approximation Algorithms June 3, 2019 13 / 31

Bipartite Graph

Definition. 10.1.11. Bipartite Graph.
An undirected graph G(V,E) is bipartite if V can be partitioned into two disjoint
sets V1 and V2 = V − V1 such that no two vertices in V1 are adjacent, and no
two vertices in V2 are adjacent.

Example: The graph below is bipartite with V1 = {1, 4, 5, 6, 7} and
V2 = {2, 3, 8}.

1

2 3

4 5 6 7

8

Determine if a graph is bipartite can be done in O(|V |+ |E |) time.
Algorithms (EE3980) Unit 10. Approximation Algorithms June 3, 2019 14 / 31

Maximum Programs Stored Problem

Given n programs and two storage devices. The ith program is of length ℓi
and each storage device has capacity of L. The maximum programs stored
problem is to determine the maximum number of programs that can be
stored on these two storage devices without splitting any program.
This maximum programs stored problem is NP-hard because of the following
theorem.
Example: Four programs with the lengths as (ℓ1, ℓ2, ℓ3, ℓ4) = (2, 4, 5, 6) and
storage device capacity L = 10.

The optimal solution is 4, which can be achieved by storing programs 1 and 4
on one device, and programs 2 and 3 on the other device.

Theorem. 10.1.12.
Partition problem ∝ maximum programs stored problem.

Proof please see textbook [Horowitz] p. 581.

Algorithms (EE3980) Unit 10. Approximation Algorithms June 3, 2019 15 / 31

Maximum Programs Stored Problem, II

Assume the lengths of the n program is stored in array ℓ[1 : n].
Sort array ℓ[1 : n] in nondecreasing order, ℓ[i] ≤ ℓ[i + 1], 1 ≤ i ≤ n.

Algorithm. 10.1.13. Approximate algorithm to store programs.
// Store n programs with ℓ[1 : n] lengths to 2 devices.
// Input: ℓ[], n ; Output: storage assignment.

1 Algorithm PStore(ℓ,n,L)
2 {
3 i := 1 ;
4 for j := 1 to 2 do { // store to device 1 then 2
5 sum := 0 ; // Amount of device used.
6 while (sum + ℓ[i] ≤ L) do {
7 write (” store program ”, i, ” on device ”, j) ;
8 sum := sum + ℓ[i] ; i := i + 1 ;
9 if i > n then return ;

10 }
11 }
12 }

Algorithms (EE3980) Unit 10. Approximation Algorithms June 3, 2019 16 / 31

Maximum Programs Stored Problem, III

Theorem 10.1.14.
Let I be any instance of the maximum programs stored problem. Let F ∗(I) be
the maximum number of programs that can be stored on two devices each with
length L. Let F̂ (I) be the number of programs stored using the function PStore.
Then |F ∗(I)− F̂ (I)| ≤ 1.

Proof. Consider the case that only one device with length 2L is used to store
the programs, and p programs are stored. Then p > F ∗(I) and

∑p
i=1 ℓi ≤ 2L.

Let j be the largest index such that
∑j

i=1 ℓi ≤ L. We must have j ≤ p and that
PStore assign the first j programs to device 1. Also,

p−1∑

i=j+1

ℓi ≤
p∑

i=j+2

ℓi ≤ L.

Hence, PStore assigns at least j + 1, j + 2, · · · , p − 1 to device 2. So,
F̂ (I) ≥ p − 1 and |F ∗(I)− F̂ (I)| ≤ 1. □

Algorithm PStore can be extended to be a k − 1 absolute approximation
algorithm for the case of k devices.

Algorithms (EE3980) Unit 10. Approximation Algorithms June 3, 2019 17 / 31

NP-hard Absolute Approximations
For a majority of the NP-hard problems, however, the polynomial absolute
approximation algorithm exists if and only if the original program has a
polynomial time algorithm.
For example, we have the following theorem.

Theorem. 10.1.15.
The absolute knapsack problem is NP-hard.

Proof. Suppose that we have a polynomial time algorithm to find
|F ∗(I)− F̂ (I)| ≤ k for every instance I and a fixed k. Let (pi,wi), 1 ≤ i ≤ n and
m be the instance. Furthermore, we assume pi are integers. Form a new instance
I ′ by ((k + 1)pi,wi), 1 ≤ i ≤ n, and m. Note that any feasible solution for I is
also a feasible solution for I ′, and F ∗(I ′) = (k + 1)F ∗(I) and I and I ′ have the
same optimal solutions. Since pi are integers, the feasible solutions of I ′ must
have difference ≥ (k + 1) due to the way I ′ is constructed. Now, suppose the
absolute algorithm A finds the optimal solution such that |F ∗(I ′)− F̂ (I ′)| ≤ k,
then F̂ (I ′) must be F ∗(I ′). Thus, the polynomial algorithm can be used to find
the optimal solution, which is not possible. □

Algorithms (EE3980) Unit 10. Approximation Algorithms June 3, 2019 18 / 31

NP-hard Absolute Approximations, II
Another example of absolute approximation algorithm is NP-hard.

Theorem. 10.1.16.
Max clique ∝ absolute approximation max clique.

Proof. Suppose there is an absolute approximation algorithm that finds a
solution such that |F ∗(I)− F̂ (I)| ≤ k. For a given graph G(V,E) construct a
new graph G ′

(V ′
,E ′

) so that G ′ consists of (k + 1) copies of G connected
together such that there is an edge between every two vertices in distinct copies of
G. That is, if V = {v1, v2, · · · , n}, then

V
′
=

k+1∪

i=1

{vi
1, vi

2, · · · , vi
n},

and E
′
=

(k+1∪

i=1

{(vi
p, vi

r)|(vp, vr) ∈ E}
)∪

{(vi
p, vj

r)|i ≠ j}

Then the maximum clique size is q if and only if the maximum clique size if G ′ is
(k + 1)q. Furthermore, any clique in G ′ that is within k of the maximum clique in
G ′ must contain a subclique of size q in G. Thus, we can use this absolute
approximation algorithm to find the maximum clique of the original problem in
polynomial time since constructing G ′ is of polynomial time. □

Algorithms (EE3980) Unit 10. Approximation Algorithms June 3, 2019 19 / 31

ϵ-Approximations
Given a set of n tasks with processing time ti each and m identical
processors, the minimum finish time schedule assign the tasks to the
processors to achieve the minimum finish time.
This minimum finish time scheduling problem has been shown to be
NP-hard.
In this section we study a polynomial time scheduling algorithm.

Definition. 10.1.17. LPT Schedule.
An LPT schedule is one that is the result of an algorithm that, whenever a
processor becomes free, assigns to that processor a task whose processing time is
the longest of those tasks not yet assigned. Ties are broken in an arbitrary manner.

Example: m = 3, n = 6 and (t1, t2, t3, t4, t5, t6) = (8, 7, 6, 5, 4, 3). The
following is the result of a LPT schedule, which is also an optimal solution.

t1
t2

t3 t4
t5

t6P1

P2

P3

Algorithms (EE3980) Unit 10. Approximation Algorithms June 3, 2019 20 / 31

LPT Scheduling

Example 2: m = 3, n = 7 and (t1, t2, t3, t4, t5, t6, t7) = (5, 5, 4, 4, 3, 3, 3). The
LPT schedule and the optimal schedule are shown below.

t1
t2

t3 t4

t5
t6

t7P1

P2

P3

LPT schedule.

t1
t2

t3
t4

t5 t6 t7

P1

P2

P3

Optimal schedule.

Theorem. 10.1.18.
Let F ∗(I) be the finish time of an optimal m-processor schedule for instance I of
the task scheduling problem. Let F̂ (I) be the finish time of an LPT schedule for
the same instance. Then

|F ∗(I)− F̂ (I)|
|F ∗(I)| ≤ 1

3
− 1

3m . (10.1.3)

Proof please see textbook [Horowitz] pp. 586-587.

Algorithms (EE3980) Unit 10. Approximation Algorithms June 3, 2019 21 / 31

Bin Packing Problem

Given n objects of li units each to be placed in bins with equal capacity L.
The bin packing problem is to determine the minimum number of bins to
accommodate all objects.
Example: n = 6, (l1, l2, l3, l4, l5, l6) = (4, 5, 1, 6, 3, 2) and L = 7. An optimal
solution is:

l1
l2

l3 l4

l5
l6

Bin1

Bin2

Bin3

This bin packing problem has many applications. The followings are
examples.

n tasks with ti processing time and all tasks must be completed before
deadline L. Find the minimum number of processors, m.
n programs with li lengths each to be stored on devices with capacity L. Find
the minimum number of storage devices, m.

Algorithms (EE3980) Unit 10. Approximation Algorithms June 3, 2019 22 / 31

Bin Packing Problem, II

Theorem 10.1.19.
The bin packing problem is NP-hard.

Proof. Let {a1, a2, · · · , a3} be an instance of partition problem. A bin packing

problem can be constructed by assigning li = ai, 1 ≤ i ≤ n, and L =

n∑

i=1

ai. The

minimum number of bins is 2 and the solution can be found if there is a partition
for {a1, a2 · · · , an}. Since the partition problem is NP-hard, the bin packing
problem is also NP-hard. □

Thus, finding the optimal solution for the bin packing problem can take long
time if the number of input, n, is large.
Heuristics can be used to find good feasible solutions.

These solutions are usually not optimal.

Algorithms (EE3980) Unit 10. Approximation Algorithms June 3, 2019 23 / 31

Bin Packing Problem, III
Four heuristics are possible:

1. First Fit (FF): Pack objects sequentially from 1 to n. All bins are initially filled
to level zero. To pack object i, find the least index j such that bin j is filled to
a level r, r ≤ L − li. Pack object i into bin j. Bin j is now filled to the level
r + li.

2. Best Fit (BF): The initial conditions on the bins and objects are the same as
above. To pack object i, find the least j such that bin j is filled to a level r,
r ≤ L − li and is as large as possible. Pack object i into bin j. Bin j is now
filled to the level r + li.

3. First Fit Decreasing (FFD): Reorder the objects is a nonincreasing order, then
use First Fit to pack the objects.

4. Best Fit Decreasing (BFD): Reorder the objects is a nonincreasing order, then
use Best Fit to pack the objects.

Example: n = 6, (l1, l2, l3, l4, l5, l6) = (4, 5, 1, 6, 3, 2), and L = 7.

l1
l2

l3

l4
l5

l6Bin1

Bin2

Bin3

Bin4

FF.

l1
l2 l3

l4

l5

l6

Bin1

Bin2

Bin3

Bin4

BF.

l1
l2

l3l4

l5
l6

Bin1

Bin2

Bin3

FFD and BFD.

Algorithms (EE3980) Unit 10. Approximation Algorithms June 3, 2019 24 / 31

Bin Packing Problem, IV
Theorem. 10.1.20.
Let I be an instance of the bin packing problem and F ∗(I) be the minimum
number of bins needed for this instance. The packing generated by either FF or
BF uses no more than

17

10
F ∗(I) + 2 (10.1.4)

bins. The packing generated by either FFD or BFD used no more than
11

9
F ∗(I) + 4 (10.1.5)

bins. These bounds are the best possible for the respective algorithms.

Proof. See the paper: D. Johnson, A. Demers, J. Ullman, M. Garey, and R.
Graham, ”Worst-case Performance Bounds for Simple One-Dimensional Packing
Algorithms,” SIAM Journal on Computing 3, No. 4, 1974, pp. 299-325. □

Note these are worst-case bounds.
For some instances, these heuristics are capable of generating the optimal
solutions.

For large n, the FFD and BFD heuristics have the smaller bounds.
Algorithms (EE3980) Unit 10. Approximation Algorithms June 3, 2019 25 / 31

NP-hard ϵ-approximation Problems

Many NP-hard optimization problems their corresponding ϵ-approximation
problems are also NP-hard.
Few examples are given here.

Theorem. 10.1.21.
Hamiltonian cycle problem ∝ ϵ-approximation traveling problem.

Proof please see textbook [Horowitz] p. 591.

Theorem. 10.1.22.
Partition problem ∝ ϵ-approximation integer programming problem.

Proof please see textbook [Horowitz] p. 592.

Theorem. 10.1.23.
Hamiltonian cycle problem ∝ ϵ-approximation quadratic assignment problem.

Proof please see textbook [Horowitz] p. 593.

Algorithms (EE3980) Unit 10. Approximation Algorithms June 3, 2019 26 / 31

Polynomial Time Approximation Schemes
A different approximation scheme of the independent task scheduling
problem.

Algorithm 10.1.24. Scheduling by Graham
// Schedule n tasks with processing time t[1 : n] on m processors.
// Input: n, m, k, t[] ; Output: task schedule.

1 Algorithm Graham(n,m, k, t)
2 {
3 Find the optimal schedule for the k longest tasks ;
4 Perform LPT scheduling for the rest of the tasks ;
5 }

Example: n = 6, m = 2, (t1, t2, t3, t4, t5, t6) = (8, 6, 5, 4, 4, 1).
t1

t2 t3
t4P1

P2
Optimal for 4 tasks.

t1
t2 t3

t4
t5

t6P1

P2
Complete schedule.

t1 t2
t3 t4 t5 t6

P1

P2
Optimal schedule.

Algorithms (EE3980) Unit 10. Approximation Algorithms June 3, 2019 27 / 31

Polynomial Time Approximation Schemes, II

Theorem. 10.1.25. Graham Scheduling.
Let I be an m-processor instance of the scheduling problem. Let F ∗(I) be the
finish time of an optimal schedule for I and let F̂ (I) be the finish time of the
schedule generated by the algorithm Graham. Then,

|F ∗(I)− F̂ (I)|
F ∗(I) ≤ 1− 1/m

1 + ⌊k/m⌋ . (10.1.6)

Proof please see textbook [Horowitz] pp. 598-599.
Given any ϵ, one can find

k ≥ m − 1

ϵ
− m (10.1.7)

then the schedule generated is ϵ · F ∗(I).

Algorithms (EE3980) Unit 10. Approximation Algorithms June 3, 2019 28 / 31

Polynomial Time Approximation Schemes, III

2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

k

ϵ

Graham’s Schedule

m = 2
m = 3
m = 4
m = 5

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

0

20

40

60

80

ϵ

k

Graham’s Schedule

m = 2
m = 3
m = 4
m = 5

In the Graham’s algorithm ϵ can be made small, but then k can be large.
The first part of the Graham’s algorithm, line 4, can take O(mk) time.
Before applying Graham’s algorithm, the input needs to be sorted, time
complexity O(n lg n).
Thus, the total time complexity is O(n lg n + mk).

This is not exactly a polynomial time algorithm for large k.

Algorithms (EE3980) Unit 10. Approximation Algorithms June 3, 2019 29 / 31

Solving NP-complete Problems

Finding solutions for NP-complete or NP-hard problems can take
formidable amount of time.
Approximation algorithms do not attempt to find the optimal solution but to
find a feasible solution close to the optimal one.

The bound, if can be derived, is of great value.
Basic methods for approximate algorithms are the ones we have studied

Divide-and-conquer
Greedy method
Dynamic programming
Local search instead of all space search
The key is the bounding function.

Other heuristic approaches have been developed
Construction heuristics
Local search heuristics
Simulated annealing
Genetic algorithms
Tabu search

Algorithms (EE3980) Unit 10. Approximation Algorithms June 3, 2019 30 / 31

Summary

Approximation algorithms.
Absolution approximations.

Planar graph coloring problem.
Maximum programs stored problem.
NP-hardness.

ϵ-approximations.
Scheduling problem.
Bin packing problem.
NP-hardness.

Polynomial time approximation scheme.
Graham’s algorithm.

Algorithms (EE3980) Unit 10. Approximation Algorithms June 3, 2019 31 / 31

