
Unit 9. NP-complete Problems

Algorithms

EE3980

May 27, 2019

Algorithms (EE3980) Unit 9. NP-complete Problems May 27, 2019 1 / 41

Algorithm Time Complexities

Time complexity of an algorithm depicts the execution time as a function of
the input size.

It is desirable to have the time complexity as a polynomial of the input size
with a small degree.

O(n), O(n lg n), O(n2)

For some problems the algorithms have been found are not polynomials.
For example, the traveling salesperson problem and 0/1 knapsack problem.
O(n22n), O(2n/2).
These problems can have extreme long execution time for a moderate size
problem.

The goal of the unit is to identify those problems that have no known
algorithms with polynomial time complexity.
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Nondeterministic Algorithms

The algorithms described so far can always be executed with exact results
– deterministic algorithms.
A different class of algorithms, nondeterministic algorithms, allow the
execution results to be not uniquely defined.

Three extra functions as following
1. Choice(S ): chooses one of the elements of set S arbitrarily.
2. Failure(): signals an unsuccessful completion.
3. Success(): signals an successful completion.

All three functions can be execute efficiently, i.e., O(1).
Example

x := Choice(1,n)
x is assigned with an integer in the range [1,n].
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Nondeterministic Algorithms — Example
Example: Nondeterministic search
Given an array A[1 : n] with n integers, the following algorithm will find the
index j such that A[j ] = x or j = 0 if x /∈ A.

Algorithm 9.1.1. Nondeterministic Search
// A nondeterministic search algorithm.
// Input: A with n elements, x ; Output: j, A[j ] = x, or 0 if x cannot be found.

1 Algorithm NDSearch(A,n, x)
2 {
3 j := Choice (1,n) ;
4 if (A[j ] = x) then { write (j ) ; Success () ; }
5 write (0) ; Failure () ;
6 }

It is assumed that the nondeterministic algorithm NDSearch(A,n, x) can find
the correct index j such that A[j ] = x or 0 if no such x in A[1 : n].
And it takes O(1) time to execute.
As compared to the deterministic algorithm that has time complexity of O(n).
It can be assumed there are n processors to make choices then one of them
will succeed.
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Nondeterministic Algorithms — Example, II
Nondeterministic sort algorithm:
Given an n-integer array A, the following algorithm sorts A into a
nondecreasing order.

Algorithm 9.1.2. Nondeterministic Sort
// Sort n positive integers.
// Input: Array A of n positive integers ; Output: A in nondecreasing order.

1 Algorithm NDSort(A,n)
2 {
3 for i := 1 to n do B[i ] := 0 ; // initialize B array.
4 for i := 1 to n do {
5 j := Choice (1,n) ;
6 if (B[j ] ̸= 0) Failure () ; // Repeated assignment.
7 B[j ] := A[i ] ;
8 }
9 for i := 1 to n − 1 do // Verify order.

10 if (B[i ] > B[i + 1]) then Failure () ;
11 write (B[1 : n]) ;
12 Success () ;
13 }
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Nondeterministic Algorithms — Example, III

Note that an auxiliary array B is used.
If the for loop on lines 4-8 is successfully executed, array B is a permutation
of array A.
Lines 9, 10 check if a nondecreasing order is achieved.
If so, the sorting is done.
The time complexity of NDSort algorithm is O(n).

As compared to O(n lg n) in the deterministic case.
There is no programming language or computer that can implement or
execute the nondeterministic algorithms.
The nondeterministic algorithms are tools for theoretical study in computer
science.
The primary objective of nondeterministic algorithm is whether an algorithm
can result in a success
– Verification Algorithms.
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Decision and Optimization Problems

Definition. 9.1.3.
1. Any problem for which the answer is either one or zero (true or false) is called

a decision problem.
2. An algorithm for a decision problem is termed a decision algorithm.
3. Any problem that involves the identification of an optimal (either minimum

or maximum) value of a given cost function is known as an optimization
problem.

4. An optimization algorithm is used to solve an optimization problem.

The nondeterministic algorithms are mostly for studying decision problems.
Though there might be many failures when a nondeterministic algorithm
executes, the concern is whether a success can be achieved.
If a decision problem can be solved in polynomial time, then the
corresponding optimization problem can solve in polynomial time, too.
On the other hand, if a optimization problem cannot be solved in polynomial
time, then the corresponding decision problem cannot be solved in polynomial
time, either.
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Decision and Optimization Problems — Example

Example: Maximum Clique Problem.
A maximal complete subgraph of a graph G(V,E) is a clique.
The size of a clique is the number of vertices in the clique.
The maximum clique problem is an optimization problem that is to determine
the largest clique in G.
The corresponding decision problem is to determine whether G has a clique of
size at least k for some given k.
Let DClique(G, k) be the deterministic algorithm for the decision problem.
If the number of vertices in G is n, then the optimization problem can be
solved by applying DClique repeatedly for different k, k = n,n − 1, · · · , until
the output of DClique is 1.
If the time complexity of DClique is f(n) then the optimization problem has
the complexity less than or equal to n · f(n).
On the other hand, if the optimization problem can be solved in g(n) time,
then the decision problem can be solved in time ≤ g(n).
If the decision problem can be solved in polynomial time, then the
optimization problem can also be solved in polynomial time.
If the optimization problem cannot be solved in polynomial time, then the
corresponding decision problem cannot be solved in polynomial time, either.
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Nondeterministic Algorithm Time Complexity

Definition 9.1.4.
The time required by a nondeterministic algorithm performing on any given input
is the minimum number of steps needed to reach a successful completion if there
exists a sequence of choices leading to such a completion. In case a successful
completion is not possible, then the time required is O(1). A nondeterministic
algorithm is of complexity O(f(n)) if for all inputs of size n, n ≥ n0, that result in
a successful completion, the time required is at most c · f(n) for some constants c
and n0.

Note the difference to the time complexity of a deterministic algorithm.
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Nondeterministic Algorithm Time Complexity Example
Given n objects with profits p[1 : n] and weights w[1 : n], and numbers m and
r, the following nondeterministic algorithm determined if there is an
assignment x[1 : n], x[i ] = 0 or 1, 1 ≤ i ≤ n, such that

n∑

i=1

x[i ] · p[i ] ≥ r and
n∑

i=1

x[i ] · w[i ] ≤ m.

Algorithm 9.1.5. 0/1 Knapsack Decision Algorithm.
// Nondeterministic algorithm to solve 0/1 knapsack problem.
// Input: p, w, n, m ; Output: true if solution x exist, false otherwise.

1 Algorithm NDKP(p,w,n,m, r, x)
2 {
3 W := 0 ; P := 0 ;
4 for i := 1 to n do {
5 x[i ] := Choice (0, 1) ; // assign x[i ]
6 W := W + x[i ]× w[i ] ; P := P + x[i ]× p[i ] ;
7 }
8 if ((W > m) or (P < r)) then Failure () ;
9 else Success () ;

10 }

The time complexity of a successful completion of this algorithm is O(n).
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Nondeterministic Algorithm Time Complexity Example, II
Given a graph G(V,E) with n vertices, the following algorithm determines if
there is a clique of size k in G.

Algorithm 9.1.6. Nondeterministic Graph Clique Decision
// To determine if G(V,E) contains a clique of size k.
// Input: G(V,E ), n, k ; Output: true if yes, false otherwise.

1 Algorithm NDCK(V,E,n, k)
2 {
3 S := ∅ ; // initialize S to be empty set.
4 for i := 1 to k do { // find k distinct vertices
5 t := Choice (1,n) ;
6 if (t ∈ S ) then Failure () ;
7 S := S ∪ {t} ; // Add t to set S.
8 }
9 for all (i, j ) such that i, j ∈ S and i ̸= j do

10 if (i, j ) /∈ E then Failure () ;
11 Success () ;
12 }

Time complexity is dominated by the for loop on lines 9,10, O(k 2) ≤ O(n2).
There is no known polynomial time algorithm for the deterministic graph
clique decision problem.
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P and NP
An algorithm A is of polynomial complexity if there exists a polynomial p
such that the computing time of A is O(p(n)) for every input of size n.

Definition 9.1.7. P and NP
P is the set of all decision problems solvable by deterministic algorithms in
polynomial time. NP is the set of all decision problems solvable by
nondeterministic algorithms in polynomial time.

Since deterministic algorithms are special cases of nondeterministic
algorithms, we have P ⊆ NP.
It is not known which of the following is true: P = NP or P ̸= NP.
The common belief of their relationship is shown below

P NP
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Polynomial Time Transformation (Reducibility)

Given two problems Q1 and Q2, if there is a polynomial time transformation
such that Q1 can be transformed into Q2 we say that Q1 transforms to Q2

and denotes Q1 ∝ Q2.
It is also commonly referred as Q1 reduces to Q2.

Given the polynomial transformation Q1 ∝ Q2, if Q2 can be solved in
polynomial time, then Q1 can be solved in polynomial time as well.

Lemma 9.1.8.
If Q1 ∝ Q2, then if Q2 ∈ P then Q1 ∈ P (and, equivalently, Q1 /∈ P then Q2 /∈
P).

Lemma 9.1.9.
If Q1 ∝ Q2 and Q2 ∝ Q3, then Q1 ∝ Q3.
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NP-complete

A problem Q is said to be NP-complete if Q ∈ NP and for all other Q ′ ∈
NP, Q ′ ∝ Q.

Thus, the NP-complete problems are the hardest problems in NP.
If any one can be solved in polynomial time, then all problems in NP can be
solved in polynomial time.

Lemma 9.1.10.
If Q1 and Q2 belong to NP, if Q1 is NP-complete and Q1 ∝ Q2 then Q2 is
NP-complete.

Definition 9.1.11. Polynomial equivalency.
Two problems Q1 and Q2 are said to be polynomial equivalent if and only if Q1 ∝ Q2

and Q2 ∝ Q1.

To show a problem Q2 is NP-complete, it is adequate to show Q1 ∝ Q2,
where Q1 is a problem already known to be NP-complete.

Algorithms (EE3980) Unit 9. NP-complete Problems May 27, 2019 14 / 41



Satisfiability Problem

Let x1, x2, · · · , xn be boolean variables such that xi can be either true or
false.
Let xi denote the negation of xi.
A literal is either a boolean variable or its negation.
A formula in the propositional calculus is an expression that can be
constructed using literals and the operators and and or.
Examples of formulas

(x1 ∧ x2) ∨ (x3 ∧ x4), (x3 ∨ x4) ∧ (x1 ∨ x2)

The symbol ∨ denotes or and ∧ denotes and.
A formula is in conjunctive normal form (CNF) if and only if it is represented
as

∧k
i=1 ci, where ci are clauses each represented as

∨
lij. The lij are literals.

Example of CNF: (x3 ∨ x4) ∧ (x1 ∨ x2).
A formula is in disjunctive normal form if and only if it is represented as∨k

i=1 ci and each clause ci is represented as
∧

li,j.
Example of DNF: (x1 ∧ x2) ∨ (x3 ∧ x4).
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Satisfiability Problem, II
The satisfiability problem is to determine whether a formula is true for some
assignment of truth values to the variables.
The CNF-satisfiability is the satisfiability problem for CNF formula.
Given an expression E and n boolean variables represented by the array
x[1 : n] = (x1, x2, · · · , xn), the following nondeterministic algorithm find a set
of truth value assignments that satisfies E, that is, E(x1, x2, · · · , xn) = true.

Algorithm 9.1.12. Nondeterministic Satisfiability.
// Nondeterministic algorithm for satisfiability problem.
// Inputt: expression E, n ; Output: true if E(x) = 1, false otherwise.

1 Algorithm NSat(E,n, x)
2 {
3 for i := 1 to n do // Choose a truth value assignment.
4 x[i ] := Choice ( false , true ) ;
5 if E(x) then Success () ;
6 else Failure () ;
7 }

The time complexity is O(n) (for loop on lines 4-5) plus the time to
evaluation expression E.
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Cook’s Theorem

It is known from Algorithm (9.1.12) that the satisfiability decision problem is
in NP, and we have the following theorem by Cook.

Theorem 9.1.13. Cook’s Theorem.
Satisfiability is in P if and only if P = NP.

Proof please see textbook [Horowitz], pp. 527-535,
or [Cormen] pp. 1074-1077.
S.A. Cook, ”The complexity of theorem proving procedures.” In Proceedings
of the Third Annual ACM Symposium on Theory of Computing, pp. 151-158,
1971.

In other words, satisfiability problem is NP-complete.
This is the first known NP-complete problem.

Then others can be reduced from it.
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NP-Hard and NP-Complete
Definition. 9.1.14. NP-hard and NP-complete.
A problem Q is NP-hard if and only if satisfiability reduces to Q (satisfiability
∝ Q). A problem Q is NP-complete if and only if Q is NP-hard and Q ∈ NP.

There are NP-hard problems that are not NP-complete.
Only a decision problem can be NP-complete.
If Q1 is a decision problem and Q2 is the corresponding optimization
problem, then it is quite possible that Q1 ∝ Q2.
An NP-complete decision problem may have its corresponding optimization
problem be NP-hard.
There are also decision problems that are NP-hard.

P

NP

NP-hard

NP-complete
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3-Satisfiability Problem (3-SAT)
3-satisfiability problem is a special case of the CNF-satisfiability problem,
where each clause has exactly three literals.
A clause, Ck, of k literals can be converted into a CNF of 3 literals, C ′

k, as
the following. (yi’s are auxiliary variables.)

k = 1, C1 = x1,
C ′

1 = (x1 ∨ y1 ∨ y2) ∧ (x1 ∨ y1 ∨ y2) ∧ (x1 ∨ y1 ∨ y2) ∧ (x1 ∨ y1 ∨ y2),

k = 2, C2 = x1 ∨ x2,
C ′

2 = (x1 ∨ x2 ∨ y1) ∧ (x1 ∨ x2 ∨ y1),

k = 3, C3 = x1 ∨ x2 ∨ x3,
C ′

3 = x1 ∨ x2 ∨ x3,
k > 3, Ck = x1 ∨ x2 ∨ · · · ∨ xk,

C ′
k = (x1 ∨ x2 ∨ y1) ∧ (y1 ∨ x3 ∨ y2) ∧ · · · ∧ (yk−3 ∨ xk−1 ∨ xk).

Theorem 9.1.15. 3-SAT
CNF-satisfiability problem ∝ 3-satisfiability problem.

Thus, 3-satisfiability problem is NP-complete.
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Finding Other NP-Complete Problems
From the Satisfiability problem, more NP-complete problems were identified.

SAT

3-CNF-SAT

Clique

Node Cover

HAM-CYCLE

TSP

Subset-Sum
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Clique Decision Problem (CDP)

A graph clique decision problem (CDP) is given a graph G(V,E) to decide if
there are cliques of size k in G.
CDP is NP-complete.

Theorem 9.1.16. CDF
CNF-satisfiability ∝ clique decision problem.

Let F =
∧k

i=1 Ci be a propositional formula in CNF.
Let xi, 1 ≤ i ≤ n be a variable in F.

Define G = (V,E) as follows:
V = {⟨σ, i⟩|σ is a literal in clause Ci}.
E = {(⟨σ, i⟩, ⟨δ, j⟩)|i ̸= j and σ ̸= δ}.

The F is satisfiable if and only if G has a clique of size k.
If the length of F is m, the sum variables of each clause, then G is obtainable
from F in O(m2) time.
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Clique Decision Problem (CDP), II

Q1: 3-Satisfiability.
I = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3).
Q2: Clique Decision problem.
G(VI ,EI) has a clique of size 3?

x11 x21 x31

x12

x22

x32

x13

x23

x33
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Node Cover Decision Problem (NCDP)

A set S ⊆ V is a node cover for a graph G(V,E ) if and only if all edges in E
are incident to at least one vertex in S. The size |S | of the cover is the
number of vertices in S.
The node cover decision problem is given a graph G(V,E ) and an integer k
to determine if there is a node cover of size at most k.
Example: Given a graph shown below.

S1 = {2, 4} is a node cover of size 2.
S2 = {1, 3, 5} is a node cover of size 3.

1 2

3

45

Graph G.

1 2

3

45

Graph G ′.
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Node Cover Decision Problem (NCDP), II

Theorem 9.1.17. NCDP
The clique decision problem ∝ the node cover decision problem.

Given a G(V,E ) and an integer k, and instance of clique decision problem is
defined. Assume that |V | = n.
Construct a graph G ′(V,E ′), where E ′ = {(u, v)|u ∈ V, v ∈ V and
(u, v) /∈ E}.
This graph G ′ is known as the complement of G.
If K is a clique in G, since there are no edges in E ′ connecting vertices in K,
the remaining n − |K| vertices in G ′ must cover all edges in E ′.
Thus if G has a clique of size at least k if and only if G ′ has a node cover of
size at most n − k.
Note that G ′ can be constructed from G in O(n2) time, thus theorem is
proved.
Note also that since CNF-satisfiability ∝ CDP, and CDP ∝ NCDP, therefore
NCDP is NP-hard.
NCDP is also NP, so NCDP is NP-complete.
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Chromatic Number Decision Problem (CNDP)

A coloring of a graph G(V,E ) is a function f : V → {1, 2, . . . , k} defined for
all i ∈ V. If (u, v) ∈ E, then f(u) ̸= f(v).
The chromatic number decision problem is to determine whether G has a
coloring for a given k.
Example: a two-coloring graph.

1 2

3

45

Theorem 9.1.18. CNDP
3-satisfiability problem ∝ chromatic number decision problem.

Proof see textbook [Horowitz], pp. 540-541.
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Directed Hamiltonian Cycle (DHC) Problem
A directed Hamiltonian cycle in a directed graph G(V,E) is a directed cycle
of length n = |V |.
The directed Hamiltonian cycle goes through every vertex exactly once and
returns to the starting vertex.
The DHC problem is to determine whether G has a directed Hamiltonian
cycle.
Example: (1, 2, 3, 4, 5, 1) is a Hamiltonian cycle.

1 2

3

45

Theorem 9.1.19. DHC
CNF-satisfiability ∝ directed Hamiltonian cycle.

Directed Hamiltonian cycle problem is NP-complete.
Proof please see textbook [Horowitz], pp. 542-545,
or [Cormen], pp. 1091-1096 (for undirected graph).
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Traveling Salesperson Decision Problem (TSP)
The traveling salesperson decision problem (TSP) is to determine whether a
complete directed graph G(V,E ) with edge cost c(u, v), u, v ∈ V, has a tour
of cost at most M.

Theorem 9.1.20. TSP
Directed Hamiltonian cycle (DHC) ∝ the traveling salesperson decision problem
(TSP).

Given a directed graph G(V,E ) for the DHC problem, construct a complete
directed graph G ′(V,E ′), E ′ = {⟨i, j ⟩|i ̸= j} and c(i, j) = 1 if ⟨i, j ⟩ ∈ E;
c(i, j) = 2 if i ̸= j and ⟨i, j ⟩ /∈ E. In this case, G ′ has a tour of cost at most
n if and only if G has a directed Hamiltonian cycle.
TSP is an NP-completeproblem.
Both Hamiltonian Cycle and Travelling Salesperson Problem can be defined
for undirected graph as well.
Both undirected Hamiltonian Cycle and Travelling salesperson Problem are
also NP-complete.
Proof please see textbook [Cormen], pp. 1091-1097.
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Partition Problem

Given a set A = {a1, a2, · · · , an} of n integers. The partition problem is to
determine whether there is a partition P such that

∑

i∈P
ai =

∑

i/∈P

ai.

Theorem 9.1.21. Partition Problem.
3-satisfiability problem ∝ partition problem.

Proof see Garey and Johnson, Computers and Intractability, Freeman, 1979,
p. 60.
Thus, partition problem is a NP-complete problem.
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Sum of Subsets Problem
Given a set A = {a1, a2, · · · , an} of n integers and an integer M. The sum of
subsets problem is to determine whether there is a subset S ⊆ A such that

∑

ai∈S

ai = M.

Given the n-integer set A, an n + 2 set B can be constructed as
bi = ai, 1 ≤ i ≤ n,

bn+1 = M + 1,

bn+2 =

( n∑

i=1

ai

)
− M + 1,

Then bn+2 +
∑

bi∈S

bi = bn+1 +
∑

bi /∈S

bi.

The partition problem in B is equivalent to the sum of subsets problem in A.

Theorem 9.1.22. Sum of subsets.
Sum of subsets problem ∝ partition problem.

The sum of subsets problem is NP-complete.
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Scheduling Identical Processors Problems
Let Pi, 1 ≤ i ≤ m, be m identical processors.
Let Ji, 1 ≤ i ≤ n, be n jobs. Each job Ji requires ti processing time.
A schedule S is an assignment of jobs to processors. For each job Ji, S
specifies the time interval and the processor that processes Ji.

A job cannot be processed by more than one processor at any given time.
Let fi be the time at which job Ji complete processing. The mean finish time
(MFT) of schedule S is

MFT(S) = 1

n

n∑

i=1

fi. (9.1.1)

Let wi be a weight associated with each job Ji. The weighted mean finish
time (WMFT) of schedule S is

WMFT(S) = 1

n

n∑

i=1

wi · fi. (9.1.2)

Let Ti be the time at which Pi finishes processing all jobs assigned to it. The
finish time (FT) of schedule S is

FT(S) = mmax
i=1

Ti. (9.1.3)

Schedule S is a nonpreemptive schedule if and only if each job Ji is processed
continuously from start to finish on the same processor. Otherwise, it is
preemptive.
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Scheduling Problems – Complexities

Theorem 9.1.23. MFT
Partition problem ∝ minimum finish time nonpreemptive schedule problem.

For m = 2 case, given the set {a1, a2, · · · , an} as an instance of the partition
problem. Define n jobs with processing time ti = ai, 1 ≤ i ≤ n. There is a
nonpreemptive schedule for this set of jobs on two processors with finish time
at most

∑
ti/2 if and only if there is a partition of the set {ai|1 ≤ i ≤ n}. It

can also be proved for m > 2 cases.

Theorem 9.1.24. WMFT
Partition problem ∝ minimum WMFT nonpreemptive schedule problem.

For m = 2 case, given the set {a1, a2, · · · , an} define a two-processor
scheduling problem with wi = ti = ai. Then there is a nonpreemptive
schedule S with weighted mean finish time at most 1/2

∑
a2

i + 1/4(
∑

ai)
2 if

and only if the set {ai|1 ≤ i ≤ n} has a partition.
The rest of the proof please see textbook [Horowitz], pp. 554-555.
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Scheduling Problems – Complexities, II

Theorem 9.1.25. Flow Shop Scheduling
Partition problem ∝ the minimum finish time preemptive flow shop schedule with
m > 2. (m is the number of processors.)

Proof please see textbook [Horowitz], pp. 555-556.

Theorem 9.1.26. 2-processor Flow Shop Scheduling
2-processor flow shop schedule ∈ P.

Dynamic programming approach can solve this problem in polynomial time.
Please see textbook [Horowitz], pp. 321-325.

Theorem 9.1.27. Job Shop Scheduling
Partition problem ∝ the minimum finish time preemptive job shop schedule with
m > 1. (m is the number of processors.)

Proof please see textbook [Horowitz], pp. 557-558.
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Other NP-complete Problems

Since 1971, many NP-complete problems
have been found.
A good source book is

M.R. Garey and D.S. Johnson,
Computers and Intractability
– A Guide to the Theory of
NP-Completeness,
W.H. Freeman, 1979.

More than 320 NP-complete problems
listed in its reference, pp. 190-288.
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2-SAT Problem

It has been shown that Satisfiability (SAT) and 3-SAT problems are
NP-complete.
In the following we study 2-SAT problem.
2-SAT problem is also a special case of SAT problem. In this problem, each
clause has exactly two literals.
Example

F(x1, x2, x3, x4) = (x1 ∨ x2) ∧ (x2 ∨ x3) ∧ (x2 ∨ x4) ∧ (x2 ∨ x4) ∧ (x4 ∨ x1).

Given formula shown above, is it satisfiable? That is, can one set xi =true or
xi =false for each xi such that the formula is evaluated to be true.
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2-SAT Problem, II

Example

F(x1, x2, x3, x4) = (x1 ∨ x2) ∧ (x2 ∨ x3) ∧ (x2 ∨ x4) ∧ (x2 ∨ x4) ∧ (x4 ∨ x1).

In evaluating F(x1, x2, x3, x4), one can set x2 = 1 (true), then x2 = 0
(false) and the formula becomes

F(x1, x2 = 1, x3, x4) = (x4) ∧ (x4 ∨ x1).

Three clauses, (x1 ∨ x2), (x2 ∨ x3), and (x2 ∨ x4), become true, and thus can
be eliminated from the formula.
The clause (x2 ∨ x4) reduces to (x4) since x2 = 0.
In order F(x1, x2, x3, x4) = 1, one must have x4 = 0 and x1 = 1.
The value of x3 does not impact F and can be either 0 or 1 (don’t care).
This shows that F(x1, x2, x3, x4) is satisfiable with
(x1, x2, x3, x4) = (1, 1,×, 0).
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2-SAT Problem, III

F(x1, x2, x3, x4) = (x1 ∨ x2) ∧ (x2 ∨ x3) ∧ (x2 ∨ x4) ∧ (x2 ∨ x4) ∧ (x4 ∨ x1).

The complete state space for the formula
Backtracking or branch-and-bound can be used to find the answer.
O(2n), n is the number of boolean variables.

E =0 E =1 E =0 E =1 E =0 E =0 E =1 E =0 E =0 E =0 E =0 E =0 E =0 E =0 E =0 E =0

E =X E =X E =0 E =X E =X E =X E =0 E =0

E =X E =X E =X E =0

E =X E =X

E =X
x1 = 1 x1 = 0

x2 = 1 x2 = 0 x2 = 1 x2 = 0

x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0

x4 = 1x4 = 0
x4 = 1x4 = 0

x4 = 1x4 = 0
x4 = 1x4 = 0

x4 = 1x4 = 0
x4 = 1x4 = 0

x4 = 1x4 = 0
x4 = 1x4 = 0
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2-SAT Problem – Implicative Form
In propositional calculus, the following two simple formulas are equivalent.

F1 = x1 ∨ x2
F2 = x1 → x2 (9.1.4)

Since x1 ∨ x2 = x2 ∨ x1, the following three are equivalent
F1 = x1 ∨ x2
F2 = x1 → x2 (9.1.5)
F3 = x2 → x1

It is easy to see the followings.
F4 = x1 → x1 ≡ x1 ∨ x1 = true, (9.1.6)
F5 = x1 → x1 ≡ x1 ∨ x1 = true. (9.1.7)

Yet,
F6 = x1 → x1 ≡ x1 ∨ x1 (9.1.8)
F7 = x1 → x1 ≡ x1 ∨ x1 (9.1.9)

F6 can be true if x1 =false, and F7 can be true if x1 =true.
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2-SAT Problem – Implicative Form, II
But,

F8 = (x1 → x1) ∧ (x1 → x1)
≡ (x1 ∨ x1) ∧ (x1 ∨ x1)
= x1 ∧ x1 = false. (9.1.10)

Using this equivalent relationship, the formulas in conjunctive normal form
can be easily translated to the implicative form.
F(x1, x2, x3, x4) =(x1 ∨ x2) ∧ (x2 ∨ x3) ∧ (x2 ∨ x4) ∧ (x2 ∨ x4) ∧ (x4 ∨ x1)

≡(x1 → x2) ∧ (x2 → x3) ∧ (x2 → x4) ∧ (x2 → x4) ∧ (x4 → x1)∧
(x2 → x1) ∧ (x3 → x2) ∧ (x4 → x2) ∧ (x4 → x2) ∧ (x1 → x4).

And, a directed graph G(V,E) can be constructed from the conjunctive
normal form (F(x1, x2, . . . , xn) =

∧m
j=1(xi ∨ xj)).

V = {yi | yi = xi or yi = xi, i = 1, . . . ,n},
E = {(yi, yj)(yj, yi) | (yi ∨ yj) is one clause in F}.

Note that |V | = 2n and |E | = 2m, where n is the number of variables and m
is the number of clauses in F.
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Implicative Graph
Given the formula, the following graph is constructed.

Two strongly connected components, {x2, x4} and {x2, x4} can be observed.
F(x1, x2, x3, x4) = (x1 ∨ x2) ∧ (x2 ∨ x3) ∧ (x2 ∨ x4) ∧ (x2 ∨ x4) ∧ (x4 ∨ x1)

x1x2x3 x4

x1 x2 x3x4

Lemma 9.1.28. 2SAT
Given a formula F(x1, x2, . . . , xn) and its implicative graph G(V,E) then F is
NOT satisfiable if and only if there is a strongly connected component in G that
contains a boolean variable xi and its complement xi.

By the preceding lemma, the formula given above is satisfiable since those
two strongly connected components contain no boolean variable together
with its complement.
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Solving 2-SAT Problems

From the lemma, one can solve the 2-SAT problem by
1. Construct the implicative graph, G(V,E ), of the formula F(x1, x2, . . . , xn).
2. Find all the strongly connected components, Si, of G(V,E ).
3. Check all the strongly connected components to see if any Si contains both xj

and xj.
4. If no such Si and xj exist, then F(x1, x2, . . . , xn) is satisfiable; Otherwise,

F(x1, x2, . . . , xn) is not satisfiable.
Note that

1. G(V,E) can be constructed in O(n + m) time, since |V| = 2n and |E| = 2m.
(n is the number of boolean variables and m is the number of clauses in F).

2. The strongly connected graph can be find in O(|V|+ |E|) time.
3. Check for if both xj and xj are in Si can be done in O(|Si|) time.
4. Thus, determine if F(x1, x2, . . . , xn) is satisfiable can be done in O(n + m)

time.

Lemma 9.1.29.
2-SAT ∈ P.
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Summary
Nondeterministic algorithms

Examples
Complexity

Decision and optimization problems
Polynomial time transformation
P, NP and NP-complete
Satisfiability problem
NP-complete problems

3-SAT
Graph clique problem
Node cover problem
Chromatic number problem
Hamiltonian cycle problem
Traveling salesperson problem
Partition problem
Sum of subsets problem
Scheduling identical processors problem

2-SAT problem
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