NP-complete Problems

Algorithms
EE3980

May 27, 2019

Algorithms (EE3980) Unit 9. N P-complete Problems May 27, 2019 1/

Algorithm Time Complexities

@ Time complexity of an algorithm depicts the execution time as a function of

the input size.
e It is desirable to have the time complexity as a polynomial of the input size
with a small degree.

o O(n), O(nlgn), O(n?)

e For some problems the algorithms have been found are not polynomials.
@ For example, the traveling salesperson problem and 0/1 knapsack problem.
o O(n?2m), O(2™?2).
@ These problems can have extreme long execution time for a moderate size

problem.

@ The goal of the unit is to identify those problems that have no known
algorithms with polynomial time complexity.

Algorithms (EE3980) Unit 9. N P-complete Problems May 27, 2019

/ 41

2/41

Nondeterministic Algorithms

@ The algorithms described so far can always be executed with exact results
— deterministic algorithms.
o A different class of algorithms, nondeterministic algorithms, allow the
execution results to be not uniquely defined.
e Three extra functions as following

1. Choice(S): chooses one of the elements of set S arbitrarily.
2. Failure(): signals an unsuccessful completion.
3. Success(): signals an successful completion.

o All three functions can be execute efficiently, i.e., O(1).
e Example

e z:= Choice(l,n)

e zis assigned with an integer in the range [1, n].

Algorithms (EE3980) Unit 9. N P-complete Problems May 27, 2019 3/41

Nondeterministic Algorithms — Example

@ Example: Nondeterministic search
Given an array A[l : n] with n integers, the following algorithm will find the
index j such that A[j] =xzor j=0if z ¢ A.

Algorithm 9.1.1. Nondeterministic Search

// A nondeterministic search algorithm.
// Input: A with n elements, z; Output: j, A[j] = z, or O if £ cannot be found.
1 Algorithm NDSearch(A, n, z)

241

3 j:= Choice (1,n);

4 if (A[j] = z) then { write (j); Success (); }
5 write (0); Failure ();

6 }

v

@ It is assumed that the nondeterministic algorithm NDSearch(A4, n, z) can find
the correct index j such that A[j] = z or 0 if no such zin A[1 : n].

e And it takes O(1) time to execute.

@ As compared to the deterministic algorithm that has time complexity of O(n).

@ It can be assumed there are n processors to make choices then one of them

will succeed.
Algorithms (EE3980) Unit 9. N P-complete Problems May 27, 2019 4/41

Nondeterministic Algorithms — Example, Il

@ Nondeterministic sort algorithm:
Given an n-integer array A, the following algorithm sorts A into a
nondecreasing order.

Algorithm 9.1.2. Nondeterministic Sort

// Sort n positive integers.
// Input: Array A of n positive integers; Output: A in nondecreasing order.

1 Algorithm NDSort(A4, n)

2 {

3 for ¢:=1 to ndo B[i] :=0; // initialize B array.

4 for i:=1to ndo{

5 j:= Choice (1,n);

6 if (B[j] # 0) Failure (); // Repeated assignment.

7 Blj] = Ali];

s}

9 for i:=1 to n—1do // Verify order.

10 if (B[¢] > B[i+ 1]) then Failure ();

11 write (B[l : n]);

12 Success () ;

Unit 9. NV P-complete Problems May 27, 2019 5/41

@ Note that an auxiliary array B is used.

@ If the for loop on lines 4-8 is successfully executed, array B is a permutation
of array A.

@ Lines 9, 10 check if a nondecreasing order is achieved.
If so, the sorting is done.
@ The time complexity of NDSort algorithm is O(n).
o As compared to O(nlgn) in the deterministic case.

@ There is no programming language or computer that can implement or
execute the nondeterministic algorithms.

@ The nondeterministic algorithms are tools for theoretical study in computer
science.

@ The primary objective of nondeterministic algorithm is whether an algorithm
can result in a success
— Verification Algorithms.

Algorithms (EE3980) Unit 9. N P-complete Problems May 27, 2019 6/41

Decision and Optimization Problems

Definition. 9.1.3.

1. Any problem for which the answer is either one or zero (true or false) is called
a decision problem.

2. An algorithm for a decision problem is termed a decision algorithm.

3. Any problem that involves the identification of an optimal (either minimum
or maximum) value of a given cost function is known as an optimization
problem.

4. An optimization algorithm is used to solve an optimization problem.

@ The nondeterministic algorithms are mostly for studying decision problems.

@ Though there might be many failures when a nondeterministic algorithm
executes, the concern is whether a success can be achieved.

@ If a decision problem can be solved in polynomial time, then the
corresponding optimization problem can solve in polynomial time, too.

@ On the other hand, if a optimization problem cannot be solved in polynomial
time, then the corresponding decision problem cannot be solved in polynomial
time, either.

Algorithms (EE3980) Unit 9. N P-complete Problems May 27, 2019 7/41

Decision and Optimization Problems — Example

@ Example: Maximum Clique Problem.

A maximal complete subgraph of a graph G(V, E) is a clique.

e The size of a clique is the number of vertices in the clique.

e The maximum clique problem is an optimization problem that is to determine
the largest clique in G.

e The corresponding decision problem is to determine whether G has a clique of
size at least k for some given £.

o Let DClique(G, k) be the deterministic algorithm for the decision problem.

o If the number of vertices in G is n, then the optimization problem can be
solved by applying DClique repeatedly for different k, k= mn,n—1,---, until
the output of DClique is 1.

o If the time complexity of DClique is f(n) then the optimization problem has
the complexity less than or equal to n - f(n).

e On the other hand, if the optimization problem can be solved in g(n) time,
then the decision problem can be solved in time < g(n).

o If the decision problem can be solved in polynomial time, then the
optimization problem can also be solved in polynomial time.

o If the optimization problem cannot be solved in polynomial time, then the

corresponding decision problem cannot be solved in polynomial time, either.

Algorithms (EE3980) Unit 9. N P-complete Problems May 27, 2019 8/41

Nondeterministic Algorithm Time Complexity

Definition 9.1.4.

The time required by a nondeterministic algorithm performing on any given input
is the minimum number of steps needed to reach a successful completion if there
exists a sequence of choices leading to such a completion. In case a successful
completion is not possible, then the time required is O(1). A nondeterministic
algorithm is of complexity O(f(n)) if for all inputs of size n, n > ng, that result in
a successful completion, the time required is at most ¢ - f(n) for some constants ¢
and ny.

@ Note the difference to the time complexity of a deterministic algorithm.

Algorithms (EE3980) Unit 9. N P-complete Problems May 27, 2019 9/41

Nondeterministic Algorithm Time Complexity Example

@ Given n objects with profits p[l : n] and weights w[l : n], and numbers m and
r, the following nondeterministic algorithm determined if there is an
assignment z[1 : n], z[i] =0 or 1, 1 <4< n, such that

Zx[i]-p[z’] > r and Zx[z’]-w[i] < m.

Algorithm 9.1.5. 0/1 Knapsack Decision Algorithm.

// Nondeterministic algorithm to solve 0/1 knapsack problem.
// Input: p, w, n, m; Output: true if solution z exist, false otherwise.

1 Algorithm NDKP(p, w, n, m, T, x)

2 {

3 W:=0; P:=0;

4 for i:=1 to ndo {

5 z[¢] := Choice (0,1); // assign z]i]

6 W:= W+ zfi]|x w[i]; P:= P+ afi]x p[i];

7 ¥

8 if ((W> m) or (P < r)) then Failure ();

9 else Success ();

10 }

v

@ The time complexity of a successful completion of this algorithm is O(n).
Algorithms (EE3980) Unit 9. N P-complete Problems May 27, 2019 10 /41

Nondeterministic Algorithm Time Complexity Example, Il

e Given a graph G(V, E) with n vertices, the following algorithm determines if
there is a clique of size kin G.

Algorithm 9.1.6. Nondeterministic Graph Clique Decision

// To determine if G(V, E) contains a clique of size k.
// Input: G(V,E), n, k; Output: true if yes, false otherwise.
1 Algorithm NDCK(V, E, n, k)

24

w

S:=0 ; // initialize S to be empty set.

4 for i:=1 to kdo { // find k distinct vertices
5 t := Choice (1,n);

6 if (¢t € S) then Failure ();

7 S:=SU{t}; // Add t to set S.

8

}
9 for all (4,7) such that 4,j € S and i+ jdo
10 if (4,j) ¢ E then Failure ();
11 Success ();
12 }

v

e Time complexity is dominated by the for loop on lines 9,10, O(k?) < O(n?).
@ There is no known polynomial time algorithm for the deterministic graph

clique decision problem.
Algorithms (EE3980) Unit 9. N P-complete Problems May 27, 2019 11 /41

P and NP

@ An algorithm A is of polynomial complexity if there exists a polynomial p
such that the computing time of A is O(p(n)) for every input of size n.

Definition 9.1.7. P and NP

P is the set of all decision problems solvable by deterministic algorithms in
polynomial time. NP is the set of all decision problems solvable by
nondeterministic algorithms in polynomial time.

@ Since deterministic algorithms are special cases of nondeterministic
algorithms, we have P C N'P.

@ It is not known which of the following is true: P = NP or P # NP.
@ The common belief of their relationship is shown below

Algorithms (EE3980) Unit 9. N P-complete Problems

May 27, 2019 12 /41

Polynomial Time Transformation (Reducibility)

@ Given two problems ()1 and (), if there is a polynomial time transformation
such that)1 can be transformed into () we say that (); transforms to ()
and denotes ()1 o< ()s.

e It is also commonly referred as (); reduces to ()s.

@ Given the polynomial transformation (); o< ()2, if ()5 can be solved in
polynomial time, then (); can be solved in polynomial time as well.

Lemma 9.1.8.

If Q1 < @, then if Qo € P then @1 € P (and, equivalently, Q1 ¢ P then @) ¢
P).

Lemma 9.1.9.
If Ql X QQ and Qg X Q3, then Ql X Q3.

Algorithms (EE3980) Unit 9. N P-complete Problems May 27, 2019 13 /41

NP-complete

@ A problem @ is said to be N'P-complete if Q € NP and for all other Q' €
NP, Q' x Q.
e Thus, the N'P-complete problems are the hardest problems in N'P.
o If any one can be solved in polynomial time, then all problems in NP can be
solved in polynomial time.

Lemma 9.1.10.

If @1 and Q2 belong to NP, if Q1 is N'P-complete and Q1 o< Q2 then Q2 is
NP-complete.

Definition 9.1.11. Polynomial equivalency.

Two problems ()1 and ()2 are said to be polynomial equivalent if and only if Q1 o< Q-
and Q2 x Q.

@ To show a problem Qs is N'P-complete, it is adequate to show Q1 < o,
where ()7 is a problem already known to be N"P-complete.

Algorithms (EE3980) Unit 9. N P-complete Problems

May 27, 2019 14 /41

Satisfiability Problem

@ Let z1, 25, -+, x, be boolean variables such that z; can be either true or
false.

@ Let 7; denote the negation of x;.

A literal is either a boolean variable or its negation.

@ A formula in the propositional calculus is an expression that can be
constructed using literals and the operators and and or.

@ Examples of formulas
(2131 A LEQ) V (LL’g /\LU_4), (373 \/33_4) AN ($1 \/33_2)

The symbol V denotes or and A denotes and.
@ A formula is in conjunctive normal form (CNF) if and only if it is represented
as /\f:1 ci, where ¢; are clauses each represented as \/ [;;. The [;; are literals.
o Example of CNF: (a3 V 71) A (21 V 72).
@ A formula is in disjunctive normal form if and only if it is represented as
\/,];:1 ¢; and each clause ¢; is represented as A /; ;.
o Example of DNF: (z1 A 22) V (23 A Z1).

Algorithms (EE3980) Unit 9. N P-complete Problems May 27, 2019 15 /41

Satisfiability Problem, Il

@ The satisfiability problem is to determine whether a formula is true for some
assignment of truth values to the variables.

@ The CNF-satisfiability is the satisfiability problem for CNF formula.

@ Given an expression F and n boolean variables represented by the array
z[1:n| = (z1, 22, ,T,), the following nondeterministic algorithm find a set
of truth value assignments that satisfies F, that is, F(x1, 22, - ,T,) = true.

Algorithm 9.1.12. Nondeterministic Satisfiability.

// Nondeterministic algorithm for satisfiability problem.
// Inputt: expression F, n; Output: true if E(z) = 1, false otherwise.
1 Algorithm NSat(FE, n, x)

2
3 for i:=1 to ndo // Choose a truth value assignment.
4 z[i] := Choice (false , true);

5 if E(z) then Success ();

6 else Failure ();

7}

@ The time complexity is O(n) (for loop on lines 4-5) plus the time to

evaluation expression F.
Algorithms (EE3980) Unit 9. N P-complete Problems

May 27, 2019 16 /41

Cook’s Theorem

@ It is known from Algorithm (9.1.12) that the satisfiability decision problem is
in AP, and we have the following theorem by Cook.

Theorem 9.1.13. Cook's Theorem.

Satisfiability is in P if and only if P = N'P.

@ Proof please see textbook [Horowitz], pp. 527-535,
or [Cormen] pp. 1074-1077.

@ S.A. Cook, "The complexity of theorem proving procedures.” In Proceedings
of the Third Annual ACM Symposium on Theory of Computing, pp. 151-158,
1971.

@ In other words, satisfiability problem is N/'P-complete.

@ This is the first known N'P-complete problem.
e Then others can be reduced from it.

Algorithms (EE3980) Unit 9. N P-complete Problems May 27, 2019 17 /41

NP-Hard and N'P-Complete

Definition. 9.1.14. A/'P-hard and N'P-complete.

A problem @ is N'P-hard if and only if satisfiability reduces to @ (satisfiability
o Q). A problem @Q is N'P-complete if and only if Q is N'P-hard and Q € N'P.

@ There are N"P-hard problems that are not N'P-complete.

@ Only a decision problem can be N'P-complete.

e If @1 is a decision problem and () is the corresponding optimization
problem, then it is quite possible that @)1 o ()s.

@ An N'P-complete decision problem may have its corresponding optimization
problem be N'P-hard.

@ There are also decision problems that are A/'P-hard.

NP-complete

0 -

Algorithms (EE3980) Unit 9. N P-complete Problems I\/Iay 27 2019 18 /41

3-Satisfiability Problem (3-SAT)

@ 3-satisfiability problem is a special case of the CNF-satisfiability problem,
where each clause has exactly three literals.

@ A clause, Cy, of k literals can be converted into a CNF of 3 literals, C}, as
the following. (y;'s are auxiliary variables.)

k=1, Ci =,
Ci=@Vyu V) A@m VY Vy)A@ Vi Vi) A @ VY Vi),
k=2, C=uxV 12,
Co=(mVaViy)A(mVaVy),
k=3, C3=x1VaxVus,
Cs =21 V 22 V 173,
k>3, Ci=x1VaV---V g,
Ch=(@mVoVy)A@VaVy)A AT sV o Vo).

Theorem 9.1.15. 3-SAT

CNF-satisfiability problem oc 3-satisfiability problem.

@ Thus, 3-satisfiability problem is N'P-complete.

Algorithms (EE3980) Unit 9. N P-complete Problems May 27, 2019 19 /41

Finding Other A/’P-Complete Problems

@ From the Satisfiability problem, more N'P-complete problems were identified.

C SAT)
(3 CNF- SAT

/ S
(Clique (Subset Sum)

(Node Cover)
@AM—CYCL@
(TSp)

Algorithms (EE3980) Unit 9. N P-complete Problems

v

May 27, 2019 20/41

Clique Decision Problem (CDP)

@ A graph clique decision problem (CDP) is given a graph G(V, E) to decide if
there are cliques of size &k in G.

e CDP is N'P-complete.

Theorem 9.1.16. CDF

CNF-satisfiability oc clique decision problem.

o Let F'= /\f:1 C’; be a propositional formula in CNF.
o Let z;,1 < i< n be avariable in F.
e Define G = (V, E) as follows:
o V={(o,%)]|o is a literal in clause C;}.
o E={((0,9),(d,7)|i # jand o # 5}.
@ The F'is satisfiable if and only if G has a clique of size k.
@ If the length of F'is m, the sum variables of each clause, then G is obtainable
from Fin O(m?) time.

Algorithms (EE3980) Unit 9. N P-complete Problems May 27, 2019 21/41

Clique Decision Problem (CDP), Il

@ (): 3-Satisfiability.

IT=(n Vo Vo) ATV Va) (@ ViV).
@ ()2: Clique Decision problem.

G(Vz, Ez) has a clique of size 37

Algorithms (EE3980) Unit 9. N P-complete Problems May 27, 2019 22 /41

Node Cover Decision Problem (NCDP)

@ Aset SC Vis a node cover for a graph G(V, F) if and only if all edges in £
are incident to at least one vertex in S. The size | S| of the cover is the
number of vertices in S.

@ The node cover decision problem is given a graph G(V, E) and an integer k
to determine if there is a node cover of size at most k.
@ Example: Given a graph shown below.

o S1 ={2,4} is a node cover of size 2.
e So ={1,3,5} is a node cover of size 3.

Algorithms (EE3980) Unit 9. N P-complete Problems May 27, 2019 23 /41

Node Cover Decision Problem (NCDP), Il

Theorem 9.1.17. NCDP

The clique decision problem o the node cover decision problem.

@ Given a G(V, E) and an integer k, and instance of clique decision problem is
defined. Assume that |V| = n.

e Construct a graph G'(V, E’), where £’ = {(u,v)|u € V,v € V and
(u,v) ¢ E}.
@ This graph G’ is known as the complement of G.

e If Kis a clique in G, since there are no edges in E’ connecting vertices in K,
the remaining n — | K| vertices in G’ must cover all edges in E’.

@ Thus if G has a clique of size at least % if and only if G’ has a node cover of
size at most n — k.

e Note that G’ can be constructed from G in O(n?) time, thus theorem is
proved.

@ Note also that since CNF-satisfiability o« CDP, and CDP o« NCDP, therefore
NCDP is N'P-hard.

@ NCDP is also NP, so NCDP is N'P-complete.

Algorithms (EE3980) Unit 9. N P-complete Problems

May 27, 2019 24 /41

Chromatic Number Decision Problem (CNDP)

@ A coloring of a graph G(V, F) is a function f: V — {1,2,...,k} defined for
all i€ V. If (u,v) € E, then flu) # f(v).

@ The chromatic number decision problem is to determine whether G has a
coloring for a given k.

@ Example: a two-coloring graph.

Theorem 9.1.18. CNDP

3-satisfiability problem o chromatic number decision problem.

@ Proof see textbook [Horowitz], pp. 540-541.

Algorithms (EE3980) Unit 9. N P-complete Problems May 27, 2019 25/41

Directed Hamiltonian Cycle (DHC) Problem

@ A directed Hamiltonian cycle in a directed graph G(V, E) is a directed cycle
of length n=|V/|.

@ The directed Hamiltonian cycle goes through every vertex exactly once and
returns to the starting vertex.

@ The DHC problem is to determine whether G has a directed Hamiltonian
cycle.

e Example: (1,2,3,4,5,1) is a Hamiltonian cycle.

Theorem 9.1.19. DHC
CNF-satisfiability oc directed Hamiltonian cycle.

@ Directed Hamiltonian cycle problem is N'P-complete.
@ Proof please see textbook [Horowitz], pp. 542-545,
or [Cormen], pp. 1091-1096 (for undirected graph).

Algorithms (EE3980) Unit 9. N P-complete Problems May 27, 2019 26 /41

Traveling Salesperson Decision Problem (TSP)

@ The traveling salesperson decision problem (TSP) is to determine whether a
complete directed graph G(V, E') with edge cost ¢(u, v), u, v € V, has a tour
of cost at most M.

Theorem 9.1.20. TSP

Directed Hamiltonian cycle (DHC) « the traveling salesperson decision problem

(TSP).

e Given a directed graph G(V, E) for the DHC problem, construct a complete
directed graph G'(V, E’), E' = {(i,j)|i # j} and c(i,5) = 1 if (i,j) € E;
c(i,j) =2 if i# jand (i,j) ¢ E. In this case, G’ has a tour of cost at most
n if and only if G has a directed Hamiltonian cycle.

@ TSP is an N'P-completeproblem.

@ Both Hamiltonian Cycle and Travelling Salesperson Problem can be defined
for undirected graph as well.

@ Both undirected Hamiltonian Cycle and Travelling salesperson Problem are
also N'P-complete.

@ Proof please see textbook [Cormen], pp. 1091-1097.

Algorithms (EE3980) Unit 9. N P-complete Problems May 27, 2019 27 /41

Partition Problem

e Given aset A = {ay,as, - ,a,} of nintegers. The partition problem is to
determine whether there is a partition P such that

A e

i€P i¢ P

Theorem 9.1.21. Partition Problem.

3-satisfiability problem o partition problem.

@ Proof see Garey and Johnson, Computers and Intractability, Freeman, 1979,
p. 60.

@ Thus, partition problem is a N'P-complete problem.

Algorithms (EE3980) Unit 9. N P-complete Problems

May 27, 2019 28 /41

Sum of Subsets Problem

o Given aset A =1{a1,as, - ,a,} of nintegers and an integer M. The sum of
subsets problem is to determine whether there is a subset S C A such that

Zai:M.

a; €S
@ Given the n-integer set A, an n+ 2 set B can be constructed as
bi = ay, 1<i<mn,

Blwsay (Z) — M+ 1,

’[,_

Then bupo+ > bi=bup1+ »_ bi

b;ES b;¢ S

The partition problem in B is equivalent to the sum of subsets problem in A.

Theorem 9.1.22. Sum of subsets.
Sum of subsets problem o partition problem.

@ The sum of subsets problem is N"P-complete.

Algorithms (EE3980) Unit 9. N P-complete Problems May 27, 2019 29 /41

Scheduling Identical Processors Problems

@ Let P;, 1 < i< m, be m identical processors.
@ Let J;, 1 <7< n, be njobs. Each job J; requires t; processing time.
@ A schedule S'is an assignment of jobs to processors. For each job J;, S
specifies the time interval and the processor that processes J;.
e A job cannot be processed by more than one processor at any given time.
@ Let f; be the time at which job J; complete processing. The mean finish time
(MFT) of schedule S is

MFT(S) = %Zn:f (9.1.1)

@ Let w; be a weight associated with each job J;. The weighted mean finish
time (WMFT) of schedule §'is

WMFT(S) = Zw £ (9.1.2)

@ Let T; be the time at which P; finishes processing all jobs assigned to it. The
finish time (FT) of schedule S'is
FT(S) = mﬁfc T;. (9.1.3)

@ Schedule S is a nonpreemptive schedule if and only if each job J; is processed
continuously from start to finish on the same processor. Otherwise, it is

preemptive.
Algorithms (EE3980) Unit 9. N P-complete Problems May 27, 2019 30/41

Scheduling Problems — Complexities

Theorem 9.1.23. MFT

Partition problem o minimum finish time nonpreemptive schedule problem.

@ For m = 2 case, given the set {ay,as,- -, a,} as an instance of the partition
problem. Define n jobs with processing time t; = a;, 1 < i< n. There is a
nonpreemptive schedule for this set of jobs on two processors with finish time
at most > t;/2 if and only if there is a partition of the set {a;/1 < i< n}. It
can also be proved for m > 2 cases.

Theorem 9.1.24. WMFT

Partition problem oc minimum WMFT nonpreemptive schedule problem.

@ For m = 2 case, given the set {ay, as,- -, a,} define a two-processor
scheduling problem with w; = t; = a;. Then there is a nonpreemptive
schedule S with weighted mean finish time at most 1/23" a7 + 1/4(3 a;)? if
and only if the set {a;|1 < i< n} has a partition.

The rest of the proof please see textbook [Horowitz], pp. 554-555.

Algorithms (EE3980) Unit 9. N P-complete Problems May 27, 2019 31/41

Scheduling Problems — Complexities, |l

Theorem 9.1.25. Flow Shop Scheduling

Partition problem o< the minimum finish time preemptive flow shop schedule with
m > 2. (m is the number of processors.)

@ Proof please see textbook [Horowitz], pp. 555-556.

Theorem 9.1.26. 2-processor Flow Shop Scheduling

2-processor flow shop schedule € P.

@ Dynamic programming approach can solve this problem in polynomial time.
Please see textbook [Horowitz], pp. 321-325.

Theorem 9.1.27. Job Shop Scheduling

Partition problem o the minimum finish time preemptive job shop schedule with
m > 1. (m is the number of processors.)

@ Proof please see textbook [Horowitz], pp. 557-558.

Algorithms (EE3980) Unit 9. N P-complete Problems

May 27, 2019 32/41

Other N'P-complete Problems

COMPUTERS AND INTRACTABILITY

@ Since 1971, man -complete problems
y NP P P A Guide 1o the Theory of NP-Completeness

have been found.

° A gOOd source bOOk iS Michael R. Garey / David S. Johnson
M.R. Garey and D.S. Johnson,
Computers and Intractability
— A Guide to the Theory of
NP-Completeness,

W.H. Freeman, 1979.

@ More than 320 A'P-complete problems
listed in its reference, pp. 190-288.

Algorithms (EE3980) Unit 9. N P-complete Problems May 27, 2019 33/41

2-SAT Problem

@ It has been shown that Satisfiability (SAT) and 3-SAT problems are
NP-complete.

@ In the following we study 2-SAT problem.

@ 2-SAT problem is also a special case of SAT problem. In this problem, each
clause has exactly two literals.

e Example

F(xy, 20, 3, 24) = (11 V 22) A (22 VT3) A (T2 VTg) A (22 V 24) A (24 V 17).

o Given formula shown above, is it satisfiable? That is, can one set z; =true or
x; =false for each z; such that the formula is evaluated to be true.

May 27, 2019 34 /41

Algorithms (EE3980) Unit 9. N P-complete Problems

2-SAT Problem, Il

e Example
F(xy, 20,23, 24) = (11 V 22) AN (22 VI3) A (T2 VTg) A (22 V 24) A (T4 V 17).

@ In evaluating F(x;, x5, 23, 24), one can set x5 = 1 (true), then 7 = 0
(false) and the formula becomes

F(:Bl,xg e 1,1133,113‘4) — (117_4) N\ ((E4 V 371).

@ Three clauses, (71 V 12), (22 V @3), and (22 V 24), become true, and thus can
be eliminated from the formula.

The clause (73 V 7z) reduces to (7z) since 73 = 0.

°
@ In order F(x1, 22, x3,24) = 1, one must have x4 = 0 and z; = 1.

@ The value of z3 does not impact F and can be either 0 or 1 (don't care).
°

This shows that F(z;, 25, z3, 24) is satisfiable with
(xl, X2, X3, £B4) = (1, 1, X,O).

Algorithms (EE3980) Unit 9. N P-complete Problems May 27, 2019 35/41

2-SAT Problem, Il

F(oy, 20,23, 24) = (21 V 22) A (22 VT3) A (T2 VTg) A (22 V 24) A (24 V 11).

@ The complete state space for the formula
e Backtracking or branch-and-bound can be used to find the answer.
e O(2"), nis the number of boolean variables.

71 =1 @ z7 =0
Ty =1 @ o = 0 0 = 1 @ o = 0

Algorithms (EE3980) Unit 9. N P-complete Problems May 27, 2019 36 /41

2-SAT Problem — Implicative Form

@ In propositional calculus, the following two simple formulas are equivalent.

F1:£I}1\/£132

Fo =71 = 2o (9.1.4)
@ Since 11 V 25 = 12 V 11, the following three are equivalent

Fi=x1V 2

Fo =71 — o (9.1.5)

F3 =7 — 1

@ |t is easy to see the followings.

Fy =% — o1 =71 V.11 = true, (9.1.6)
Fs =71 571 =21 V7T = true. (9.1.7)
Yet,
Fo=m 5T =T VE (9.1.8)
Fr=7 wxm =2V (9.1.9)

Fg can be true if z; =false, and F7 can be true if 11 =true.

Algorithms (EE3980) Unit 9. N P-complete Problems May 27, 2019 37 /41

2-SAT Problem — Implicative Form, Il

e But,

=71 A 21 = false. (9.1.10)
@ Using this equivalent relationship, the formulas in conjunctive normal form
can be easily translated to the implicative form.
F(xl, T2, X3, $4) :(331 V xz) AN (xQ \/x_g) AN (:IZ_Q\/$_4) N (.’L’Q V LL’4) AN (334 V $1)
=(T1 > w2) A (T2 > T3) A (22 = Ta) A (T2 = 24) N (T — 11)A
(117_2—>$1)/\($3 —)xz)/\(l’zl —>$_2)/\(£L'_4—>l’2)/\($_1—>l’4)

e And, a directed graph G(V, E) can be constructed from the conjunctive
normal form (F(z1, z2,...,2,) = N2 (2 V 15)).
V:{yz’|yi:$i or Y; = Ty, 1 = 1,...,n},
E = {(vi, v5)(5, ys) | (ys V v;) is one clause in F}.

Note that | V| = 2n and |E| = 2m, where n is the number of variables and m

is the number of clauses in F.
Algorithms (EE3980) Unit 9. N P-complete Problems

May 27, 2019 38 /41

Implicative Graph

@ Given the formula, the following graph is constructed.
e Two strongly connected components, {x2,71} and {2, z4} can be observed.

F($1,$2,$3,$4) = (iL’1 Vv 1172) A (l‘Q \/x‘_g) AN ($_2V$_4) A (ZEQ V 1134) AN ($4 V xl)

Lemma 9.1.28. 2SAT

Given a formula F(x1, 2, ..., z,) and its implicative graph G(V, E) then F'is
NOT satisfiable if and only if there is a strongly connected component in G that
contains a boolean variable z; and its complement 7;.

@ By the preceding lemma, the formula given above is satisfiable since those
two strongly connected components contain no boolean variable together

with its complement.
Algorithms (EE3980) Unit 9. N P-complete Problems May 27, 2019 39 /41

Solving 2-SAT Problems

@ From the lemma, one can solve the 2-SAT problem by

1. Construct the implicative graph, G(V, E), of the formula F(x1, x2,...,zy).
2. Find all the strongly connected components, S;, of G(V, E).
3. Check all the strongly connected components to see if any S; contains both z;

and ;.
4. If no such S; and z; exist, then F(z1,x2,...,x,) is satisfiable; Otherwise,
F(x1,x2,...,x,) is not satisfiable.
@ Note that

1. G(V,E) can be constructed in O(n+ m) time, since | V| = 2n and |E| = 2m.
(n is the number of boolean variables and m is the number of clauses in F).

2. The strongly connected graph can be find in O(| V] + |E]|) time.

Check for if both z; and Z; are in S; can be done in O(|S;|) time.

4. Thus, determine if F(x1, 2, ..., 2,) is satisfiable can be done in O(n + m)
time.

Lemma 9.1.29.
2-SAT e P.

Algorithms (EE3980) Unit 9. N P-complete Problems May 27, 2019 40 /41

w

@ Nondeterministic algorithms
e Examples
o Complexity
Decision and optimization problems

Polynomial time transformation

P, NP and N'P-complete

Satisfiability problem
NP-complete problems

e 3-SAT
Graph clique problem
Node cover problem
Chromatic number problem
Hamiltonian cycle problem
Traveling salesperson problem
Partition problem
Sum of subsets problem
Scheduling identical processors problem

@ 2-SAT problem
Algorithms (EE3980) Unit 9. A/ P-complete Problems

