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Lower Bounds

Given a problem, one can device algorithms to solve the problem.
Once an algorithm is developed, we know how to analyze the time and space
complexity.
Over all the algorithms, the one with the minimum complexity is usually
preferred.
If we know the lower bound of a given problem, then we can strive to solve it
with the lowest complexity possible.

Some problems have been studied extensively and the results are listed in this
unit.

Lower bounds for searching and sorting algorithms are studied first.
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Ordered Searching
Comparison based complexity analysis is assumed.
To find x in an ordered array A[i ] (A[i ] < A[j ] if i < j).
A series of comparisons are to be performed.
Each comparison can have one of three results:

x < A[i ], x = A[i ], or x > A[i ].
Array A can be stored as a tree.
A linear search is shown below.

The worst-case complexity is O(n).

A[1]

Fail A[2]

Fail A[3]

Fail A[4]

Fail Fail
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Ordered Searching, II
A binary search tree is shown below.
For any array of n elements, there are n + 1 possible fails.
If there are k levels in the tree, then there are at most 2k − 1 internal nodes.
Therefore, for an array with n elements for the tree with k levels, n ≤ 2k − 1,
or k ≥ lg(n + 1).

Fail Fail Fail Fail Fail Fail Fail Fail Fail Fail Fail Fail Fail Fail Fail Fail

A[1] A[3] A[5] A[7] A[9] A[11] A[13] A[15]

A[2] A[6] A[10] A[14]

A[4] A[12]

A[8]
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Ordered Searching, III

Theorem 8.1.1.
Let A[1 : n], n ≥ 1, contains n distinct elements, ordered so that
A[1] < A[2] < · · · < A[n]. Let FIND(n) be the minimum number of comparisons
needed, in the worst case, by any comparison-based algorithm to recognize
whether x ∈ A[1 : n]. Then FIND(n) ≥ ⌈lg(n + 1)⌉.

As a consequence of this algorithm, the binary search algorithm is an optimal
worst-case algorithm for the ordered searching problem.
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Sorting

Given an array A[1 : n] with all elements distinct. The sorting problem is to
rearrange the array A such that A[i ] < A[j ], if 1 ≤ i < j ≤ n.
An example of sorting 3-integer array, {1, 2, 3}, is shown below.

Each internal node performs a comparison, A[i ] < A[j ].
The comparison can have only two results: true or false.

Each external node represents one of the possible sorting results.
With 3 elements, there are 6 = 3! external nodes.

1,3,2 3,1,2 2,1,3 2,3,1

1,2,3 1 < 3 1 < 3 3,2,1

2 < 3 2 < 3

1 < 2
yes no

yes no yes no

yes no yes no
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Sorting — Lower Bound

Given A[1 : n], the comparison based algorithm should have a state space
with n! external nodes, and these external nodes are the leaves of the binary
tree.
Assuming that the binary tree has k levels, it takes k comparisons to perform
the sorting algorithm.
Let T(n) be the minimum number of comparisons to sort A[1 : n], then

2T(n) ≥ n!

And
T(n) ≥ ⌈lg n!⌉

By Stirling’s approximation

lg n! = n lg n − n/(lg 2) + (lg n)/2 +O(1)

Thus, any comparison-based sorting algorithm needs at least Ω(n lg n) time.
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Sorting Complexity Example — Merge Sort

Merge sort starts by comparing two elements to form n/2 groups of 2
elements.
Then two two-element groups are sorted.

3 comparisons are needed to form n/4 groups.
The next step compares 4-element groups to form n/8 groups.

7 comparisons are needed to sort two 4-element groups.
Thus, the total number of comparisons is

T(n) =
k∑

i=1

n
2i (2

i − 1) =
k∑

i=1

n − n
k∑

i=1

1

2i

where k = lg n.
Thus, T(n) = n lg n −O(n).
Merge sort achieves the lowest time complexity, but the coefficients can still
be improved.

See textbook [Horowitz], pp. 481-483.
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Merging
Given two ordered arrays A[1 : m] and B[1 : n], a third ordered array
C[1 : m + n] is formed by merging these two arrays together.
Given the numbers m and n, there are

(m+n
n

)
combinations of possibilities

combining A[1 : m] and B[1 : n].
Using comparison based algorithms, a tree can be formed and there should be
at least

(m+n
n

)
external nodes.

Let MERGE(m,n) be the minimum number of comparisons to merge A[1 : m]
and B[1 : n], then

MERGE(m,n) ≥
⌈

lg
(

m + n
n

)⌉
.

It has been shown in Unit 3 that the upper bound of MERGE(m,n), thus
⌈

lg
(

m + n
n

)⌉
≤ MERGE(m,n) ≤ m + n − 1.

A special case when m = n

Theorem 8.1.2.
MERGE(m,m) = 2m − 1, for m ≥ 1.
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Finding the Largest Element
To find the largest element of an n-element array A, there must be at least
n − 1 nodes in the tree.

After k comparisons, only one element remains that is greater than any other
element. The smallest k is n − 1.

Thus, the minimum number of comparisons for finding the largest elements
of an n-element array is L1(n) = n − 1.
Example of the comparison tree of finding the largest element of a 3-element
array, A[1 : 3].

A[3] A[2] A[1] < A[3] A[1]

A[2] < A[3] A[2] < A[3]

A[1] < A[2]

A[3] A[1]

yes no

yes no yes no

yes no
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Largest and 2nd Largest

Given an unordered set A[1 : n], finding the largest element needs n − 1
comparison.
The comparison tree can be arranged as the following.

P1 P2 P3 P4 P5 P6 P7 P8

P1 P3 P5 P7

P3 P5

P3
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Largest and 2nd Largest, II

To find the 2nd largest element, one needs to compare only those elements
that compared to the largest element and were found to be smaller.

There are only lg n such elements.
To find the largest among them needs lg n − 1 comparison.

Thus to find the largest and second largest elements needs n + lg n − 2
comparisons.

Theorem 8.1.3.
Any comparison-based algorithm that computes the largest and the second largest
element of a set of n unordered elements requires n − 2 + ⌈lg n⌉ comparisons.
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The Largest to the k-th Largest Elements

The comparison tree of finding the largest to the k-th largest elements of
A[1 : n] needs to have n · (n − 1) · · · (n − k + 1) external nodes.
Thus, let Lk(n) be the minimum number of comparisons of finding the
largest to the k largest elements

Lk(n) ≥
⌈

lg
(
n · (n − 1) · · · (n − k + 1)

)⌉
.

More detailed analysis shows that

Theorem 8.1.4.
Lk(n) ≥ n − k +

⌈
lg
(
n · (n − 1) · · · (n − k + 2)

)⌉
for all integers k and n, where

1 ≤ k ≤ n.

Note that this is an estimate of the lower bound.
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Find the Largest k elements

Theorem 8.1.5.
Given an unordered set with n elements, the (k − 1)th largest element itself needs
at least (k − 1)

⌈
lg n

2(k − 1)

⌉
comparisons to be identified.

Proof please see textbook [Horowitz], p. 491.

Theorem 8.1.6.
Given an unordered set with n elements, all k − 1 largest elements can be found
with at least n − k + (k − 1)

⌈
lg n

2(k − 1)

⌉
comparisons.

Proof please see textbook [Horowitz], pp. 491-492.
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Finding the Maximum and Minimum

Given n distinct elements, find the maximum and the minimum.
Using comparison-based algorithms, define 4-tuple (a, b, c, d) as

a is the number of elements that have not been compared,
b is the number of elements that have won and never lost,
c is the number of elements that have lost and never won,
d is the number of elements that have both won and lost.

Then given a state (a, b, c, d), an additional comparison can result in one of
the following states:

(a − 2, b + 1, c + 1, d) if a ≥ 2 // Compare two items from a.
(a − 1, b + 1, c, d) // Compare one item from a
(a − 1, b, c + 1, d) if a ≥ 1 // with one item from b
(a − 1, b, c, d + 1) // or from c.
(a, b − 1, c, d + 1) if b ≥ 2 // Compare two items from b.
(a, b, c − 1, d + 1) if c ≥ 2 // Compare two items from c.
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Finding the Maximum and Minimum, II

The initial state is (n, 0, 0, 0) since all elements have not been compared.
Then it takes n/2 comparisons, comparing elements in a, to move to the
state (0,n/2,n/2, 0).
The final state is (0, 1, 1,n− 2) since we want to find the maximum, only one
element left in a, and the minimum, only one element left in b, the rest
elements must be in d.

The minimum number is n − 2 since d can only be increased by 1 with each
comparison.

Theorem 8.1.7.
Any algorithm that computes the largest and the smallest elements of a set of n
unordered elements requires ⌈3n/2⌉ − 2 comparisons.
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Problem Reduction

Definition 8.1.8. Problem reduction.
Let P1 and P2 be any two problems. We say P1 reduces to P2, denoted by
P1 ∝ P2, in time τ(n) if an instance of P1 can be converted into an instance of
P2 and solution for P1 can be obtained from a solution of P2 in time ≤ τ(n).

Example
P1 is the problem of selection (Finding the kth smallest element.)
P2 is the problem of sorting.
If the input have n numbers and the number are sorted in an array A[1 : n],
The k th smallest element of the input can be obtained as A[k ].
Thus, P1 reduces to P2 in O(1) time.

Note there are three steps in this formulation
Convert the inputs of problem P1 to P2

In this example, no special action is required.
Solve problem P2.

O(n lg n) if comparison based algorithm is adopted.
Convert the solution of P2 to that of P1.

O(1) since A[k ] is the solution of P1.
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Problem Reduction, II

Example 2
Given two sets S1 and S2 with m elements each.
P1 is the problem to check if S1 and S2 are disjoint, i.e., S1 ∩ S2 = ∅.
P2 is the sorting problem.
Then P1 ∝ P2 in O(m) time.

Let S1 = {k1, k2, · · · , km} and S2 = {h1, h2, · · · , hm}, then we can create a
set X = {(k1, 1), (k2, 1), · · · , (km, 1), (h1, 2), (h2, 2), · · · , (hm, 2)}.
This X can be created in 2m time (O(m)).
Then X can be sorted by the first element of each tuple.

O(n lg n), n = 2m, if comparison-based method is used.
After sorting, we can check whether there are two successive elements (x, 1)
and (y, 2) such that x = y.

2m − 1 comparisons are needed (O(m)).
If there are no such elements, then S1 and S2 are disjoint; otherwise they are
not.
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Lower Bounds Through Reductions

Given two problems P1 and P2 such that P1 reduces to P2 in τ(n),
The input of P1 is converted to the input of P2 and the solution is obtained
from P2 in τ(n).
Suppose problem P1 can be solved in time T1(n) and
Problem P2 can be solved in time T2(n), then

T1(n) ≤ τ(n) + T2(n). (8.1.1)

Or,
T2(n) ≥ T1(n)− τ(n). (8.1.2)

Thus, the lower bound for solving problem P2 is T1(n)− τ(n).
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Finding Convex Hull

Let P1 be a sorting problem on n numbers.
T1(n) = O(n lg n).

These numbers can be transformed into n points on a 2-D plane as
{(k1, k 2

1 ), (k2, k 2
2 ), · · · , (kn, k 2

n )}.
This transformation takes O(n) time.

Let P2 be the problem of finding the convex hull of the n points.
T2(n) is solution time for P2(n).

Note that the n points arranged in sorted order (sorted by x coordinate) form
a convex hull with the first point appended to the end.
In this case

T2(n) ≥ T1(n)−O(n) = O(n lg n)−O(n). (8.1.3)
Thus, we have

Lemma 8.1.9. Find Convex Hull
Computing the convex hull of n given points in the plane needs Ω(n lg n) time.
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Multiplying Triangular Matrices

Given an n × n matrix A whose elements are {ai,j|1 ≤ i, j ≤ n}
A is said to be upper triangular if aij = 0 whenever i > j.
A is said to be lower triangular if aij = 0 for i < j.
A is said to be triangular if it is either upper triangular or lower triangular.
We are interested in the question if multiplying two lower (or upper)
triangular matrices is faster than multiplying two full matrices.
Let

M(n) be the time complexity of multiplying two full matrices,
Mt(n) be the time complexity of multiplying two lower triangular matrices.

Note that Mt(n) ≤ M(n).
And M(n) = Ω(n2) since there are 2n2 elements in the input and n2

elements in the output.
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Multiplying Triangular Matrices, II

Let P1 be the problem of multiplying two full matrices A and B, each of size
n × n.
Let P2 be the problem of multiplying two lower triangular matrices.
The problem of P1 can be transformed into an instance of P2 problem as

A ′ =




0 0 0
0 0 0
0 A 0


 B ′ =




0 0 0
B 0 0
0 0 0




where 0 denotes a zero matrix, that is, an n × n matrix with all elements 0.
Note that both A ′ nd B ′ are lower triangular matrices.
And

A ′B ′ =




0 0 0
0 0 0

AB 0 0
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Multiplying Triangular Matrices, III

Thus, the product of full matrices can be obtained from product of lower
triangular matrices.
Transforming full matrices to triangular matrices takes O(n2) time.
Getting the product AB from A ′B ′ also takes O(n2).
And we have

Mt(3n) ≥ M(n)−O(n2) = Ω(n2)−O(n2) = Ω(n2) (8.1.4)

Or
Mt(n) ≥ Ω((

n
3
)2) = Ω(n2) = Ω(M(n)). (8.1.5)

Thus we have

Lemma 8.1.10. Multiplying triangular matrices
Mt(n) = Ω(M(n)).

Since M(n) ≥ Mt(n) we conclude that Mt(n) = Θ(M(n)).
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Inverting a Lower Triangular Matrix

An n × n matrix I is an identity matrix if

Ij,k =

{
1, if j = k,
0, otherwise. (8.1.6)

Given an n× n matrix A, if there exists a matrix B such that AB = I, then B
is called the inverse of A and A is said to be invertible. Also, the inverse of A
is denoted as A−1.
Note that not every matrix is invertible.
Given an n × n lower triangular matrix A, if all the diagonal elements
ai,j ̸= 0, 1 ≤ i, j ≤ n, then A is invertible.
In the following we are interested in the time complexity of inverting a lower
triangular matrix, especially, compared to the full matrix multiplication.
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Inverting a Lower Triangular Matrix, II

Let P1 be the problem of multiplying two full matrices, and P2 be the
problem of inverting a lower triangular matrix.
Let It(n) be the time complexity of inverting a lower triangular matrix of
dimension n × n, and M(n) is the complexity of multiplying two full matrices.
Given two full n× n matrices A and B, the following 3n× 3n lower triangular
matrix can be constructed

C =




I 0 0
B I 0
0 A I


 (8.1.7)

where I is the identity matrix of dimension n × n and 0 is the zero matrix of
the same dimension.
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Inverting a Lower Triangular Matrix, III

Since 


I 0 0
B I 0
0 A I






I 0 0
−B I 0
AB −A I


 =




I 0 0
0 I 0
0 0 I




We have

C−1 =




I 0 0
−B I 0
AB −A I


 (8.1.8)

Thus, matrix product can be obtained from inverting a matrix.
Furthermore, we have It(3n) ≥ M(n)−O(n2).
Since M(n) = Ω(n2) we have the following Lemma.

Lemma 8.1.11.
It(n) = Ω(M(n)).
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Inverting a Lower Triangular Matrix, IV

Given an n × n lower triangular matrix A, we can partition it into 4
submatrices of dimension n

2
× n

2
each as

A =

[
A11 0
A21 A22

]
(8.1.9)

where both A11 and A22 are lower triangular matrices, but A21 can be full.
It can be shown that

A−1 =

[
A−1

11 0
−A−1

22 A21A−1
11 A−1

22

]
(8.1.10)

Thus, the inverse of A can be constructed using divide-and-conquer approach.
The inverse of submatrices A11 and A22 are first found, 2It(

n
2
), and then two

matrix multiplications are performed, 2M(
n
2
), followed by negating all

elements of the products, O(
n2

4
).
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Inverting a Lower Triangular Matrix, V
And the currence equation is

It(n) = 2It(
n
2
) + 2M(

n
2
) +

n2

4

= 4It(
n
4
) + 4M(

n
4
) + 2

n2

16
+ 2M(

n
2
) +

n2

4

= 2M(
n
2
) + 4M(

n
4
) + · · ·+ n2

4
+

n2

8
+ · · ·

= O(M(n) + n2)

The last equality comes from M(n) = Ω(n2). The following Lemma is
obtained.

Lemma 8.1.12.
It(n) = O(M(n)).

Combining the last two lemmas, we conclude that It(n) = Θ(M(n)). That is
inverting a lower triangular matrix has the same time complexity as
multiplying two full matrices.

Algorithms (EE3980) Unit 8. Lower Bound Theory May 20, 2019 28 / 29



Summary

Theoretical lower bounds
Ordered searching
Sorting

Merge sort
Merging ordered arrays
Finding the largest element
The largest and 2nd largest elements
The largest to the k-th largest elements
Finding the maximum and the minimum

Problem reduction
Lower bound through problem reduction

Finding convex hull.
Lower triangular matrix multiplication
Lower triangular matrix inversion
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