Unit 8. Lower Bound Theory

Unit 8. Lower Bound Theory

May 20, 2019 1 / 29

Lower Bounds

• Given a problem, one can device algorithms to solve the problem.

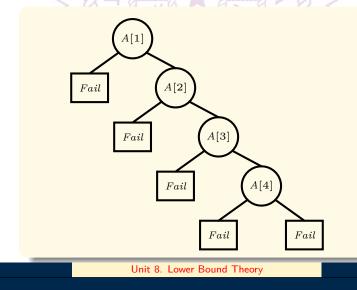
- Once an algorithm is developed, we know how to analyze the time and space complexity.
- Over all the algorithms, the one with the minimum complexity is usually preferred.
- If we know the lower bound of a given problem, then we can strive to solve it with the lowest complexity possible.
- Some problems have been studied extensively and the results are listed in this unit.
- Lower bounds for searching and sorting algorithms are studied first.

Ordered Searching

- Comparison based complexity analysis is assumed.
- To find x in an ordered array A[i] (A[i] < A[j]) if i < j.
- A series of comparisons are to be performed.
- Each comparison can have one of three results:

x < A[i], x = A[i], or x > A[i].

- Array A can be stored as a tree.
- A linear search is shown below.
 - The worst-case complexity is $\mathcal{O}(n)$.



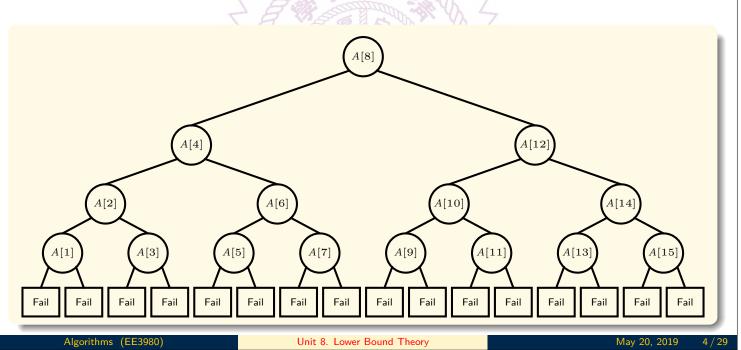
Ordered Searching, II

Algorithms (EE3980)

- A binary search tree is shown below.
- For any array of n elements, there are n+1 possible fails.
- If there are k levels in the tree, then there are at most $2^k 1$ internal nodes.

May 20, 2019

• Therefore, for an array with n elements for the tree with k levels, $n \le 2^k - 1$, or $k \ge \lg(n+1)$.



MMM

Theorem 8.1.1.

Let A[1:n], $n \ge 1$, contains n distinct elements, ordered so that $A[1] < A[2] < \cdots < A[n]$. Let FIND(n) be the minimum number of comparisons needed, in the worst case, by any comparison-based algorithm to recognize whether $x \in A[1:n]$. Then FIND $(n) \ge \lceil \lg(n+1) \rceil$.

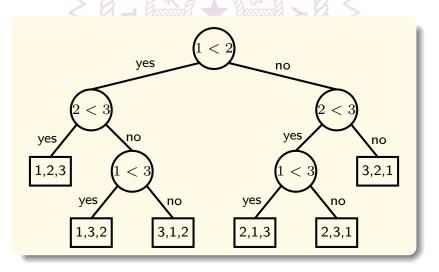
• As a consequence of this algorithm, the binary search algorithm is an optimal worst-case algorithm for the ordered searching problem.

Unit 8. Lower Bound Theory

May 20, 2019 5 / 29

Sorting

- Given an array A[1:n] with all elements distinct. The sorting problem is to rearrange the array A such that A[i] < A[j], if $1 \le i < j \le n$.
- An example of sorting 3-integer array, $\{1, 2, 3\}$, is shown below.
 - Each internal node performs a comparison, A[i] < A[j].
 - The comparison can have only two results: true or false.
 - Each external node represents one of the possible sorting results.
 - With 3 elements, there are 6 = 3! external nodes.



Sorting — Lower Bound

- Given A[1:n], the comparison based algorithm should have a state space with n! external nodes, and these external nodes are the leaves of the binary tree.
- Assuming that the binary tree has k levels, it takes k comparisons to perform the sorting algorithm.
- Let T(n) be the minimum number of comparisons to sort A[1:n], then

And

By Stirling's approximation

 $\lg n! = n \lg n - n/(\lg 2) + (\lg n)/2 + \mathcal{O}(1)$

 $2^{T(n)} > n!$

• Thus, any comparison-based sorting algorithm needs at least $\Omega(n \lg n)$ time.

Unit 8. Lower Bound The

 $T(n) \ge \lceil \lg n
angle$

Sorting Complexity Example — Merge Sort

- Merge sort starts by comparing two elements to form n/2 groups of 2 elements.
- Then two two-element groups are sorted.
 - 3 comparisons are needed to form n/4 groups.
- The next step compares 4-element groups to form n/8 groups.
 - 7 comparisons are needed to sort two 4-element groups.
- Thus, the total number of comparisons is

$$T(n) = \sum_{i=1}^{k} \frac{n}{2^{i}} (2^{i} - 1) = \sum_{i=1}^{k} n - n \sum_{i=1}^{k} \frac{1}{2^{i}}$$

where $k = \lg n$.

Algorithms (EE3980)

- Thus, $T(n) = n \lg n \mathcal{O}(n)$.
- Merge sort achieves the lowest time complexity, but the coefficients can still be improved.
 - See textbook [Horowitz], pp. 481-483.

Merging

- Given two ordered arrays A[1:m] and B[1:n], a third ordered array C[1:m+n] is formed by merging these two arrays together.
- Given the numbers m and n, there are $\binom{m+n}{n}$ combinations of possibilities combining A[1:m] and B[1:n].
- Using comparison based algorithms, a tree can be formed and there should be at least $\binom{m+n}{n}$ external nodes.
- Let $\underline{\mathsf{MERGE}}(m, n)$ be the minimum number of comparisons to merge A[1:m] and B[1:n], then

$$\mathsf{MERGE}(m,n) \ge \left| \lg \binom{m+n}{n} \right|$$

• It has been shown in Unit 3 that the upper bound of $\underline{\mathrm{MERGE}}(m,n)$, thus

$$\left\lceil \lg \binom{m+n}{n} \right\rceil \le \texttt{MERGE}(m,n) \le m+n-1.$$

• A special case when m = n

Theorem 8.1.2.

 $\underline{\mathsf{MERGE}}(m,m) = 2m-1, \text{ for } m \geq 1.$

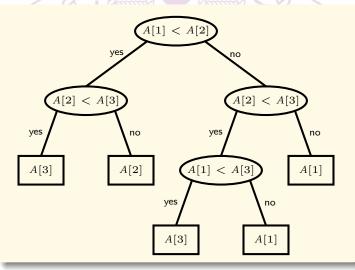
```
Algorithms (EE3980)
```

Unit 8. Lower Bound Theory

May 20, 2019 9 / 29

Finding the Largest Element

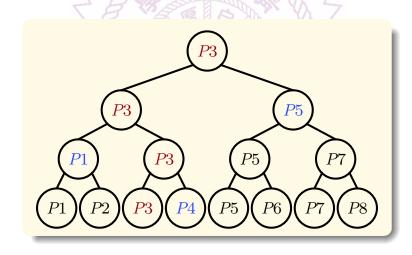
- To find the largest element of an n-element array A, there must be at least n-1 nodes in the tree.
 - After k comparisons, only one element remains that is greater than any other element. The smallest k is n-1.
- Thus, the minimum number of comparisons for finding the largest elements of an *n*-element array is $L_1(n) = n 1$.
- Example of the comparison tree of finding the largest element of a 3-element array, A[1:3].



May 20, 2019 10 / 2

Largest and 2nd Largest

- Given an unordered set A[1:n], finding the largest element needs n-1 comparison.
- The comparison tree can be arranged as the following.



Unit 8. Lower Bound Theory

Largest and 2nd Largest, II

Algorithms (EE3980)

- To find the 2nd largest element, one needs to compare only those elements that compared to the largest element and were found to be smaller.
 - There are only $\lg n$ such elements.
 - To find the largest among them needs $\lg n 1$ comparison.
- Thus to find the largest and second largest elements needs $n + \lg n 2$ comparisons.

Theorem 8.1.3.

Any comparison-based algorithm that computes the largest and the second largest element of a set of n unordered elements requires $n - 2 + \lceil \lg n \rceil$ comparisons.

The Largest to the k-th Largest Elements

- The comparison tree of finding the largest to the k-th largest elements of A[1:n] needs to have $n \cdot (n-1) \cdots (n-k+1)$ external nodes.
- Thus, let $L_k(n)$ be the minimum number of comparisons of finding the largest to the k largest elements

 $L_k(n) \ge \left\lceil \log \left(n \cdot (n-1) \cdots (n-k+1)\right) \right\rceil.$

• More detailed analysis shows that

Theorem 8.1.4.

 $L_k(n) \ge n - k + \left\lceil \lg \left(n \cdot (n-1) \cdots (n-k+2) \right) \right\rceil$ for all integers k and n, where $1 \le k \le n$.

Unit 8. Lower Bound Theory

• Note that this is an estimate of the lower bound.

Find the Largest k elements

Theorem 8.1.5.

Algorithms (EE3980)

Given an unordered set with n elements, the (k-1)th largest element itself needs at least $(k-1) \left\lceil \lg \frac{n}{2(k-1)} \right\rceil$ comparisons to be identified.

• Proof please see textbook [Horowitz], p. 491.

Theorem 8.1.6.

Given an unordered set with n elements, all k-1 largest elements can be found with at least $n-k+(k-1)\left\lceil \lg \frac{n}{2(k-1)} \right\rceil$ comparisons.

• Proof please see textbook [Horowitz], pp. 491-492.

May 20, 2019

13/29

Finding the Maximum and Minimum

- Given n distinct elements, find the maximum and the minimum.
- Using comparison-based algorithms, define 4-tuple (a, b, c, d) as
 - *a* is the number of elements that have not been compared,
 - *b* is the number of elements that have won and never lost,
 - c is the number of elements that have lost and never won,
 - d is the number of elements that have both won and lost.
- Then given a state (*a*, *b*, *c*, *d*), an additional comparison can result in one of the following states:

(a-2, b+1, c+1, d)	if $a \ge 2$	// Compare two items from a .
(a-1, b+1, c, d)		// Compare one item from a
(a-1, b, c+1, d)	$\text{if } a \geq 1$	// with one item from b
(a-1, b, c, d+1)		// or from c .
(a, b-1, c, d+1)	if $b \geq 2$	// Compare two items from b .
(a, b, c-1, d+1)	$\text{if } c \geq 2$	// Compare two items from c .

Algorithms (EE3980)

Unit 8. Lower Bound Theory

May 20, 2019 15 / 29

Finding the Maximum and Minimum, II

- The initial state is (n, 0, 0, 0) since all elements have not been compared.
- Then it takes n/2 comparisons, comparing elements in a, to move to the state (0, n/2, n/2, 0).
- The final state is (0, 1, 1, n-2) since we want to find the maximum, only one element left in a, and the minimum, only one element left in b, the rest elements must be in d.
 - The minimum number is n-2 since d can only be increased by 1 with each comparison.

Theorem 8.1.7.

Any algorithm that computes the largest and the smallest elements of a set of n unordered elements requires $\lceil 3n/2 \rceil - 2$ comparisons.

Problem Reduction

Definition 8.1.8. Problem reduction.

Let P_1 and P_2 be any two problems. We say P_1 reduces to P_2 , denoted by $P_1 \propto P_2$, in time $\tau(n)$ if an instance of P_1 can be converted into an instance of P_2 and solution for P_1 can be obtained from a solution of P_2 in time $\leq \tau(n)$.

- Example
 - P_1 is the problem of selection (Finding the kth smallest element.)
 - P_2 is the problem of sorting.
 - If the input have n numbers and the number are sorted in an array A[1:n],
 - The kth smallest element of the input can be obtained as A[k].
 - Thus, P_1 reduces to P_2 in $\mathcal{O}(1)$ time.
- Note there are three steps in this formulation
 - Convert the inputs of problem P_1 to P_2
 - In this example, no special action is required.
 - Solve problem P_2 .
 - $\mathcal{O}(n \lg n)$ if comparison based algorithm is adopted.
 - Convert the solution of P_2 to that of P_1 .
 - $\mathcal{O}(1)$ since A[k] is the solution of P_1 .

Problem Reduction, II

Algorithms (EE3980)

• Example 2

- Given two sets S_1 and S_2 with m elements each.
- P_1 is the problem to check if S_1 and S_2 are disjoint, i.e., $S_1 \cap S_2 = \emptyset$.

Unit 8. Lower Bound Theory

- P_2 is the sorting problem.
- Then $P_1 \propto P_2$ in $\mathcal{O}(m)$ time.
- Let $S_1 = \{k_1, k_2, \cdots, k_m\}$ and $S_2 = \{h_1, h_2, \cdots, h_m\}$, then we can create a set $X = \{(k_1, 1), (k_2, 1), \cdots, (k_m, 1), (h_1, 2), (h_2, 2), \cdots, (h_m, 2)\}.$
- This X can be created in 2m time $(\mathcal{O}(m))$.
- Then X can be sorted by the first element of each tuple.
 - $\mathcal{O}(n \lg n)$, n = 2m, if comparison-based method is used.
- After sorting, we can check whether there are two successive elements (x, 1) and (y, 2) such that x = y.
 - 2m-1 comparisons are needed ($\mathcal{O}(m)$).
- If there are no such elements, then S₁ and S₂ are disjoint; otherwise they are not.

- Given two problems P_1 and P_2 such that P_1 reduces to P_2 in $\tau(n)$,
 - The input of P₁ is converted to the input of P₂ and the solution is obtained from P₂ in \(\tau(n)).
 - Suppose problem P_1 can be solved in time $T_1(n)$ and
 - Problem P_2 can be solved in time $T_2(n)$, then

 $T_1(n) \le \tau(n) + T_2(n).$ (8.1.1)

Or,

$$T_2(n) \ge T_1(n) - \tau(n).$$
 (8.1.2)

• Thus, the lower bound for solving problem P_2 is $T_1(n) - \tau(n)$.

Finding Convex Hull

Algorithms (EE3980)

- Let P_1 be a sorting problem on n numbers.
 - $T_1(n) = \mathcal{O}(n \lg n).$
- These numbers can be transformed into n points on a 2-D plane as $\{(k_1, k_1^2), (k_2, k_2^2), \cdots, (k_n, k_n^2)\}.$

Unit 8. Lower Bound Th

- This transformation takes $\mathcal{O}(n)$ time.
- Let P_2 be the problem of finding the convex hull of the n points.
 - $T_2(n)$ is solution time for $P_2(n)$.
- Note that the *n* points arranged in sorted order (sorted by *x* coordinate) form a convex hull with the first point appended to the end.
- In this case

$$T_2(n) \ge T_1(n) - \mathcal{O}(n) = \mathcal{O}(n \lg n) - \mathcal{O}(n).$$
(8.1.3)

• Thus, we have

Lemma 8.1.9. Find Convex Hull

Computing the convex hull of n given points in the plane needs $\Omega(n \lg n)$ time.

- Given an $n \times n$ matrix A whose elements are $\{a_{i,j} | 1 \le i, j \le n\}$
- A is said to be upper triangular if $a_{ij} = 0$ whenever i > j.
- A is said to be lower triangular if $a_{ij} = 0$ for i < j.
- A is said to be triangular if it is either upper triangular or lower triangular.
- We are interested in the question if multiplying two lower (or upper) triangular matrices is faster than multiplying two full matrices.
- Let
 - M(n) be the time complexity of multiplying two full matrices,
 - $M_t(n)$ be the time complexity of multiplying two lower triangular matrices.
- Note that $M_t(n) \leq M(n)$.

Algorithms (EE3980)

• And $M(n) = \Omega(n^2)$ since there are $2n^2$ elements in the input and n^2 elements in the output.

Multiplying Triangular Matrices, II

• Let P_1 be the problem of multiplying two full matrices A and B, each of size $n \times n$.

Unit 8. Lower Bound Theory

- Let P_2 be the problem of multiplying two lower triangular matrices.
- The problem of P_1 can be transformed into an instance of P_2 problem as

$$A' = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & A & 0 \end{bmatrix} \qquad B' = \begin{bmatrix} 0 & 0 & 0 \\ B & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

where 0 denotes a zero matrix, that is, an $n \times n$ matrix with all elements 0. • Note that both A' nd B' are lower triangular matrices.

• Note that both A nu b are lower thangular matric

$$A'B' = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ AB & 0 & 0 \end{bmatrix}$$

Multiplying Triangular Matrices, III

• Thus, the product of full matrices can be obtained from product of lower triangular matrices.

Unit 8. Lower Bound Theor

- Transforming full matrices to triangular matrices takes $\mathcal{O}(n^2)$ time.
- Getting the product AB from A'B' also takes $\mathcal{O}(n^2)$.
- And we have

$$M_t(3n) \ge M(n) - \mathcal{O}(n^2) = \Omega(n^2) - \mathcal{O}(n^2) = \Omega(n^2)$$
 (8.1.4)

Or

$$M_t(n) \ge \Omega((\frac{n}{3})^2) = \Omega(n^2) = \Omega(M(n)).$$
 (8.1.5)

Thus we have

Lemma 8.1.10. Multiplying triangular matrices

 $M_t(n) = \Omega(M(n)).$

Algorithms (EE3980)

• Since $M(n) \ge M_t(n)$ we conclude that $M_t(n) = \Theta(M(n))$.

Inverting a Lower Triangular Matrix

• An $n \times n$ matrix I is an identity matrix if

$$k = \begin{cases} 1, & \text{if } j = k, \\ 0, & \text{otherwise.} \end{cases}$$
(8.1.6)

- Given an n×n matrix A, if there exists a matrix B such that AB = I, then B is called the inverse of A and A is said to be invertible. Also, the inverse of A is denoted as A⁻¹.
- Note that not every matrix is invertible.
- Given an $n \times n$ lower triangular matrix A, if all the diagonal elements $a_{i,j} \neq 0$, $1 \le i, j \le n$, then A is invertible.
- In the following we are interested in the time complexity of inverting a lower triangular matrix, especially, compared to the full matrix multiplication.

Inverting a Lower Triangular Matrix, II

- Let P_1 be the problem of multiplying two full matrices, and P_2 be the problem of inverting a lower triangular matrix.
- Let $I_t(n)$ be the time complexity of inverting a lower triangular matrix of dimension $n \times n$, and M(n) is the complexity of multiplying two full matrices.
- Given two full $n \times n$ matrices A and B, the following $3n \times 3n$ lower triangular matrix can be constructed

$$C = \begin{bmatrix} I & \mathbf{0} & \mathbf{0} \\ B & I & \mathbf{0} \\ \mathbf{0} & A & I \end{bmatrix}$$
(8.1.7)

where I is the identity matrix of dimension $n \times n$ and $\mathbf{0}$ is the zero matrix of the same dimension.

Unit 8. Lower Bound Theory

Inverting a Lower Triangular Matrix, III

• Since

$$\begin{bmatrix} I & 0 & 0 \\ B & I & 0 \\ 0 & A & I \end{bmatrix} \begin{bmatrix} I & 0 & 0 \\ -B & I & 0 \\ AB & -A & I \end{bmatrix} = \begin{bmatrix} I & 0 & 0 \\ 0 & 0 & I \end{bmatrix}$$
• We have

$$C^{-1} = \begin{bmatrix} I & 0 & 0 \\ -B & I & 0 \\ AB & -A & I \end{bmatrix}$$
(8.1.8)
• Thus, matrix product can be obtained from inverting a matrix.
• Furthermore, we have $I_t(3n) \ge M(n) - \mathcal{O}(n^2)$.

• Since $M(n) = \Omega(n^2)$ we have the following Lemma.

Lemma 8.1.11.

 $I_t(n) = \Omega(M(n)).$

Algorithms (EE3980)

May 20, 2019

25 / 29

Inverting a Lower Triangular Matrix, IV

• Given an $n \times n$ lower triangular matrix A, we can partition it into 4 submatrices of dimension $\frac{n}{2} \times \frac{n}{2}$ each as

 $A = \begin{bmatrix} A_{11} & \mathbf{0} \\ A_{21} & A_{22} \end{bmatrix}$ (8.1.9)

where both A_{11} and A_{22} are lower triangular matrices, but A_{21} can be full. • It can be shown that

$$A^{-1} = \begin{bmatrix} A_{11}^{-1} & \mathbf{0} \\ -A_{22}^{-1}A_{21}A_{11}^{-1} & A_{22}^{-1} \end{bmatrix}$$
(8.1.10)

Thus, the inverse of A can be constructed using divide-and-conquer approach.

• The inverse of submatrices A_{11} and A_{22} are first found, $2I_t(\frac{n}{2})$, and then two matrix multiplications are performed, $2M(\frac{n}{2})$, followed by negating all elements of the products, $O(\frac{n^2}{4})$.

Unit 8. Lower Bound Theory

Inverting a Lower Triangular Matrix, V

• And the currence equation is

Algorithms (EE3980)

$$I_t(n) = 2I_t(\frac{n}{2}) + 2M(\frac{n}{2}) + \frac{n^2}{4}$$

= $4I_t(\frac{n}{4}) + 4M(\frac{n}{4}) + 2\frac{n^2}{16} + 2M(\frac{n}{2}) + \frac{n^2}{4}$
= $2M(\frac{n}{2}) + 4M(\frac{n}{4}) + \dots + \frac{n^2}{4} + \frac{n^2}{8} + \dots$
= $\mathcal{O}(M(n) + n^2)$

The last equality comes from $M(n) = \Omega(n^2)$. The following Lemma is obtained.

Lemma 8.1.12.

 $I_t(n) = \mathcal{O}(M(n)).$

 Combining the last two lemmas, we conclude that I_t(n) = Θ(M(n)). That is inverting a lower triangular matrix has the same time complexity as multiplying two full matrices.

Summary

- Theoretical lower bounds
 - Ordered searching
 - Sorting
 - Merge sort
 - Merging ordered arrays
 - Finding the largest element
 - The largest and 2nd largest elements
 - The largest to the k-th largest elements
 - Finding the maximum and the minimum
- Problem reduction
- Lower bound through problem reduction
 - Finding convex hull.
 - Lower triangular matrix multiplication
 - Lower triangular matrix inversion

Algorithms (EE3980)

Unit 8. Lower Bound Theory

May 20, 2019 29 / 29