
Unit 7.2 Branch and Bound

Algorithms

EE3980

May 16, 2019

Algorithms (EE3980) Unit 7.2 Branch and Bound May 16, 2019 1 / 22

0/1 Knapsack Problem
Given n objects, each with profit pi and weight wi, and a sack of maximum
weight m, select the objects to be placed into the sack such that the profits
of the objects in the sack is maximum. (Note that the object must be placed
as a whole, no fraction, into the sack.)
Recall that the greedy algorithm that allows the fraction of an object to be
placed into the sack generate the optimal solution (maximal profits).

Algorithm 4.1.5. Knapsack
// n objects with w[i ] and p[i ] find x[i ] that maximizes

∑
pixi with

∑
wixi ≤ m.

// Input: m, n, w[ ], p[ ] ; Output: solution vector x[ ].
1 Algorithm Knapsack(m,n,w, p, x)
2 {
3 a := Sort(p/w) ; // sort p[a[i ]]/w[a[i ]] into non-increasing order.
4 for i := 1 to n do x[i ] := 0 ;
5 i := 1 ;
6 while (i ≤ n and w[a[i ]] ≤ m) do {
7 x[i ] := 1 ; m := m − w[a[i ]] ; i := i + 1 ;
8 }
9 if (i ≤ n) then x[i ] := m/w[a[i ]] ;

10 }
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0/1 Knapsack Problem, Bounds

Note that on line 9 the last object included might be a fraction which violate
the requirement of a whole object.

Thus, excluding this line the profit p =

i∑

j=1

pj is the least one can get for the

profit.
We can use this p as a lower bound (lb)for the profits.

The profits, P, with the fraction object is the maximum and can be used as
the upper bound (ub).
Thus, assuming the objects are ordered by p/w, the following function
generates two bounds for the set of objects
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0/1 Knapsack Problem, Bounds Algorithm

Algorithm 7.2.1. Bounds
// Estimate two bounds lb and ub for n-object 0/1 knapsack problem
// Input: k, cw c weight, cp c profit ; Output: lb lower bound, ub upper bound.

1 Algorithm Bounds(k, cw, cp, lb, ub)
2 {
3 i := k + 1 ; lb := cp ;
4 while (i ≤ n and cw ≤ m) do {
5 lb := lb + p[i ] ; cw := cw + w[i ] ; i := i + 1 ;
6 }
7 if (i > n) then ub := lb ;
8 else ub := lb + (1− (cw − m)/w[i ]) ∗ p[i ] ;
9 }

The above algorithm has been generalized such that the decision on the first
k objects have been made and cp and cw are the current profits and weights
for the first k objects.
The algorithm estimate the two bounds for the remaining n − k objects.
Note that arguments lb and ub need to be passed by reference (in C++), or
passed by pointer (in C).
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0/1 Knapsack Problem Example

0/1 knapsack problem example:
n = 4, p = (10, 10, 12, 18), w = (2, 4, 6, 9), m = 15.
Complete state space can be shown to be

0/0 32/32 38/38 20/20 0/0 22/22 28/28 10/10 0/0 22/22 28/28 10/10 30/30 12/12 18/18 0/0

32/38 38/38 22/36 28/28 22/32 28/28 30/30 18/18

32/38 22/36 22/32 30/30

32/38 22/32

32/38
x1=1 x1=0

x2=1 x2=0 x2=1 x2=0

x3=1 x3=0 x3=1 x3=0 x3=1 x3=0 x3=1 x3=0

x4=1 x4=0 x4=1 x4=0 x4=1 x4=0 x4=1 x4=0 x4=1 x4=0 x4=1 x4=0 x4=1 x4=0 x4=1 x4=0
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0/1 Knapsack Problem Example — Depth First
0/1 knapsack problem example:
n = 4, p = (10, 10, 12, 18), w = (2, 4, 6, 9), m = 15.
Using depth-first traversal branch and bound approach, we have

0/0 32/32 38/38 20/20 0/0 22/22 28/28 10/10 0/0 22/22 28/28 10/10 30/30 12/12 18/18 0/0

32/38 38/38 22/36 28/28 22/32 28/28 30/30 18/18

32/38 22/36 22/32 30/30

32/38 22/32

32/38
x1=1 x1=0

x2=1 x2=0 x2=1 x2=0

x3=1 x3=0 x3=1 x3=0 x3=1 x3=0 x3=1 x3=0

x4=1 x4=0 x4=1 x4=0 x4=1 x4=0 x4=1 x4=0 x4=1 x4=0 x4=1 x4=0 x4=1 x4=0 x4=1 x4=0

1
fp=32

2
fp=32

3
fp=32

4
fp=32

5
fp=32

6
fp=32

7
fp=38

8
fp=38

9
fp=38

10
fp=38

11
fp=38

Branch and bound stops after 11 steps
The solution is x = (1, 1, 0, 1), fp = 38, fw = 15.
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0/1 Knapsack Problem Example — Breadth First
0/1 knapsack problem example:
n = 4, p = (10, 10, 12, 18), w = (2, 4, 6, 9), m = 15.
Using breadth-first traversal branch and bound approach, we have

0/0 32/32 38/38 20/20 0/0 22/22 28/28 10/10 0/0 22/22 28/28 10/10 30/30 12/12 18/18 0/0

32/38 38/38 22/36 28/28 22/32 28/28 30/30 18/18

32/38 22/36 22/32 30/30

32/38 22/32

32/38
x1=1 x1=0

x2=1 x2=0 x2=1 x2=0

x3=1 x3=0 x3=1 x3=0 x3=1 x3=0 x3=1 x3=0

x4=1 x4=0 x4=1 x4=0 x4=1 x4=0 x4=1 x4=0 x4=1 x4=0 x4=1 x4=0 x4=1 x4=0 x4=1 x4=0

1
fp=32

2
fp=32

3
fp=32

4
fp=32

5
fp=32

6
fp=32

7
fp=32

8
fp=32

9
fp=38

10
fp=38

11
fp=38

12
fp=38

13
fp=38

14
fp=38

15
fp=38

16
fp=38

19
fp=38

Branch and bound stops after 19 steps
The solution is x = (1, 1, 0, 1), fp = 38, fw = 15.
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0/1 Knapsack Problem Example — Least Cost
0/1 knapsack problem example:
n = 4, p = (10, 10, 12, 18), w = (2, 4, 6, 9), m = 15.
Using Least-cost branch and bound approach, we have

0/0 32/32 38/38 20/20 0/0 22/22 28/28 10/10 0/0 22/22 28/28 10/10 30/30 12/12 18/18 0/0

32/38 38/38 22/36 28/28 22/32 28/28 30/30 18/18

32/38 22/36 22/32 30/30

32/38 22/32

32/38
x1=1 x1=0

x2=1 x2=0 x2=1 x2=0

x3=1 x3=0 x3=1 x3=0 x3=1 x3=0 x3=1 x3=0

x4=1 x4=0 x4=1 x4=0 x4=1 x4=0 x4=1 x4=0 x4=1 x4=0 x4=1 x4=0 x4=1 x4=0 x4=1 x4=0

1
fp=32

2
fp=32

3
fp=32

4
fp=38

5
fp=38

6
fp=38

7
fp=38

8
fp=38

9
fp=38

10
fp=38

11
fp=38

Branch and bound stops after 11 steps
The solution is x = (1, 1, 0, 1), fp = 38, fw = 15.
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Branch and Bound Algorithms
Branch and bound method is applicable to all state space search methods.

All children of a search node are generated before any other live node is
explored.
Bounding functions are used to help reducing the number of subtrees to be
explored.

Two tree traversal algorithms are applicable to explore the state space.
Breadth-first search: also known as first-in-first-out (FIFO) strategy.

Need a stack to keep the live nodes.
Depth-first search: also known as the last-in-first-out (LIFO) strategy.

An additional strategy least cost search has been introduced.
Each node is associated with a cost that estimates the solution cost.
To select the next node to explore, select one with the least cost.

The following algorithm is a high level description of the LC-search approach.
The LC-search algorithm uses the following structure.

1 struct listnode {
2 double cost , lb , ub ; // cost and estimated lower and upper bounds
3 struct listnode ∗next, ∗parent ;
4 }
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Branch and Bound Algorithms — LC Search

Algorithm 7.2.2. LC Search
// General framework for least cost search.
// Input: tree with root t ; Output: solution path.

1 Algorithm LCSearch(t)
2 {
3 if t is an answer node then { write (t) ; return ; }
4 E := t ; // Current search node.
5 Initialize the list of live nodes to be empty ;
6 while (E ̸= ∅) do {
7 for each child x of E do {
8 if x is an answer node then { write ( path from x to t) ; return ; }
9 Add(x) ; // x is a new live node.

10 x → parent := E ;
11 }
12 if there are no live nodes then { write (”No answer.”) ; return ; }
13 E := Least() ;
14 }
15 }
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Branch and Bound Algorithms — General
In the above algorithm, two functions are used

Add: add a new live node to the list.
Least: find the minimum cost node from the live node list and remove it from
the list.

The list data structure is used for LCS for searching of least cost node is
needed. In contrast,

DFS uses stack (LIFO),
BFS uses queue (FIFO).
Selecting the next live node is more consuming in LCS approach.

All three search approaches can be used in branch-and-bound method.
For each E-node, in addition to the cost c two more estimates are calculated:
a lower bound lb and an upper bound ub.
In exploring each node, the best cost fc is also tracked.
Thus, when exploring node E if lb > fc then there is no need to traverse the
subtree of E.

And, in selecting E node, the one with the minimum lb should be selected.
By reducing the number of subtrees to be explored, the branch-and-bound
algorithm can be fast.
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Traveling Salesperson Problem
Let G = (V,E) be a directed graph, with |V| = n and cij be the cost of edge
⟨i, j⟩ ∈ E, cij = ∞ if ⟨i, j⟩ /∈ E.
Without loss of generality, we can assume every tour start from vertex 1. So,
the solution space is S = {1, π, 1|π is a permutation of (2, 3, · · · ,n).
Of course, for any solution (1, i1, i2, · · · , in−1, 1) ∈ S, ⟨ij, ij+1⟩ ∈ E,
0 ≤ j ≤ n − 1 and i0 = in = 1.
The objective is to find a path with the minimum cost.
Traveling salesperson problem example

1

2

34

5

20
15

165

2
18

3 16

16
11

30
3

10
19

2
4

4674

10

6

2

7

3

Cost matrix



∞ 20 30 10 11
15 ∞ 16 4 2
3 5 ∞ 2 4
19 6 18 ∞ 3
16 4 7 16 ∞
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Traveling Salesperson Problem — Reduced Cost Matrix
Given a cost matrix, it can reduced as following.
Note that ci,j is the cost from vertex i to vertex j

Thus, if ci,k =
n

min
j=1

ci,j, then ci,k is the minimum cost leaving vertex i.

And, if ck,j =
n

min
i=1

ci,j, then ck,j is the minimum cost entering vertex j.

Original cost matrix



∞ 20 30 10 11
15 ∞ 16 4 2
3 5 ∞ 2 4
19 6 18 ∞ 3
16 4 7 16 ∞




row 1 − 10
row 2 − 2
row 3 − 2
row 4 − 3
row 5 − 4

Row- and Column-reduced cost
matrix




∞ 10 17 0 1
12 ∞ 11 2 0
0 3 ∞ 0 2
15 3 12 ∞ 0
11 0 0 12 ∞




Row-reduced cost matrix



∞ 10 20 0 1
13 ∞ 14 2 0
1 3 ∞ 0 2
16 3 15 ∞ 0
12 0 3 12 ∞




Column 1 is reduced by 1, and
column 3 reduced by 3 are
performed.
The total reduction
R = 10+2+2+3+4+1+3 = 25
is the lower bound for for the
salesperson traveling problem.
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Traveling Salesperson Problem — Reduced Cost Matrix, II

The technique of reduced cost matrix to estimate the lower bound of the
traveling salesperson problem can be extended to estimating path selection.
Suppose an edge ⟨i, j⟩ is selected, the cost of the path is increased by ci,j

All other edges ⟨i, k⟩, k ̸= j cannot be selected. Thus, set ci,k = ∞,
1 ≤ k ≤ n. (Row i)
All edges ⟨k, j⟩, k ̸= i, cannot be selected. Thus, set ck,j = ∞, 1 ≤ k ≤ n.
(Column j)
The edge ⟨j, 1⟩ cannot be selected (unless j is the only vertex not selected).
Thus, set cj,1 = ∞.
Perform reduced matrix technique to the resulting matrix to get the lower
bound, r.
Then the lower bound of path cost of selecting edge ⟨i, j⟩ is R + ci,j + r, where
R is the lower bound before selecting edge ⟨i, j⟩.
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Traveling Salesperson Problem — Reduced Cost Matrix, III

Example

Original cost matrix



∞ 20 30 10 11
15 ∞ 16 4 2
3 5 ∞ 2 4
19 6 18 ∞ 3
16 4 7 16 ∞




Cost-reduced cost matrix, R = 25.



∞ 10 17 0 1
12 ∞ 11 2 0
0 3 ∞ 0 2
15 3 12 ∞ 0
11 0 0 12 ∞




Selecting edge ⟨1, 3⟩



∞ ∞ ∞ ∞ ∞
1 ∞ ∞ 2 0
∞ 3 ∞ 0 2
4 3 ∞ ∞ 0
0 0 ∞ 12 ∞




c1,3 = 17.
Row 1 is set to ∞
Column 3 is set to ∞
c3,1 is set to ∞
Then column 1 can be reduced by 11.
(r = 11)
The lower bound for selecting edge
⟨1, 3⟩ is
R + c1,3 + r = 25 + 17 + 11 = 53.
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Traveling Salesperson Problem

The full state space is shown below
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Traveling Salesperson Problem — Depth-First Search BB

Using depth-first search with BB, we have
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DFS BB stops in 19 steps
The solution is 1− 4− 2− 5− 3− 1, total cost is 28.
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Traveling Salesperson Problem — Least-Cost Search BB

Using least-cost search with BB, we have

5
57

4
75

5
62

3
37

4
50

3
59

5
58

4
72

5
56

2
54

4
61

2
71

5
52

3
28

5
51

2
51

3
36

2
40

4
52

3
40

4
46

2
41

3
52

2
65

4
57

5
75

3
62

5
37

3
50

4
59

4
58

5
72

2
56

5
54

2
61

4
71

3
52

5
28

2
51

5
51

2
36

3
40

3
52

4
40

2
46

4
41

2
52

3
65

3
57

4
37

5
47

2
58

4
53

5
60

2
28

3
50

5
36

2
40

3
41

4
52

2
35

3
53

4
25

5
31

1
25

1

25

2

35

3

53

4

25

5

31

6

28

7

50

8

36

9

52

10

28

11

28

LCBB stops in 11 steps
The solution is 1− 4− 2− 5− 3− 1, total cost is 28.
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Theories
Some theories concerning branch-and-bound approaches.

Theorem 7.2.3.
Let t be a state space tree. The number of nodes of t generated by FIFO, LIFO
and LC branch-and-bound algorithms cannot be decreased by the expansion of
any node x with lb(x) >= upper, where upper is the upper bound on the cost of a
minimum-cost solution node in the tree t.

Theorem 7.2.4.
Let U1 and U2, U1 < U2, be two initial upper bounds on the cost of a
minimum-cost solution node in the state space tree t. The FIFO, LIFO, and LC
branch-and-bound algorithms beginning with U1 will generate no more nodes than
they would if they started with U2 as the initial upper bound.

Theorem 7.2.5.
The use of a better lower bound function lb in conjunction with FIFO and LIFO
branch-and-bound algorithms does not increase the number of nodes generated.
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Theories, II

Theorem 7.2.6.
If a better lower bound function is used in a LC branch-and-bound algorithm, the
number of nodes generated may increase.

Theorem 7.2.7.
The number of nodes generated during FIFO and LIFO branch-and-bound search
for a least-cost solution the number of nodes generated may increase when a
stronger dominance relation is used.

Theorem 7.2.8.
Let D1 and D2 be two dominance relations. Let D2 be stronger than D1 such that
(i, j) ∈ D2, i ̸= j, implies lb(i) < lb(j). An LC branch-and-bound using D1

generates at least as many nodes as the one using D2.
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Branch and Bound

Branch and bound methods belong to the all state space search method.
To avoid extensive searching of all states, bounding functions for lower bound
and upper bound are keys.
Accurate bounding functions can decrease the state space that needs to be
searched.
Three traversal techniques can be used to explore the state space
– depth first search, breadth first search and least cost search.
Least cost searching is shown to be effective in some problems.
With good bounding function and effective traversal method, branch and
bound can solve real problems with significant time saving.
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Summary

0/1 knapsack problem
Branch-and-bound algorithms
Least-cost branch-and-bound
The salesperson traveling problem
Theories on branch-and bound algorithms
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