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Backtracking Algorithms

The backtracking algorithms are to deal with problems to generate a desired
solution expressible as an n-tuple, (x1, x2, · · · , xn), where xi are chosen from
a finite set Si, and the solution satisfies or minimizes/maximizes a criterion
function P(x1, x2, · · · , xn).
Suppose mi is the size of Si. Then, there are m = m1 × m2 × · · · × mn
possible candidates for satisfying the function P.
The brute force approach is to form all m candidates and evaluate criterion
function on each of them, selects all (or the optimal) solutions.
The backtracking method form the n-tuple one component at a time, and
then use the modified criterion function Pi(x1, x2, · · · , xi) to see if the
current vector can meet the overall criterion. If it cannot, the current vector
is ignored immediately.

The number of tries is substantially smaller with backtracking methods.
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The 8-Queens Problem

A queen in a chess game can attack any other piece if
It is in the same row
It is in the same column
It is in the same diagonal (two directions)

The 8-queens puzzle is to place 8 queens on a chessboard such that they
don’t attack each other.
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The N-Queens Problem — Algorithms
The problem is generalized to placing N-queens onto an N × N board.
Note that each row can have only one queen.

Thus, one can use an array Q[1 : N ] for column position for each queen.
For 8-Queens puzzle this reduces the number of possible checks from 88

(16,777,216), to 8 ! (40,320), 0.24%.

Algorithm 7.1.1. N-Queen puzzle
// Place k’th queen onward, if successful print out solution.
// Input: Q[1 : n], k, n ; Output: Solutions for placing n-Queens.

1 Algorithm NQueens(k,n)
2 {
3 for i := 1 to n do { // all possible positions for Q[k ]
4 if Placeable(k, i ) then { // placing Q[k ] = i is legitimate
5 Q[k ] := i ;
6 if (k = n) then write (Q[1 : n]) ; // a solution found.
7 else NQueens(k + 1,n) ; // place Q[k + 1]
8 }
9 }

10 }
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The N-Queens Problem — Algorithms, II
The Placeable algorithm is shown below.

Algorithm 7.1.2. Placeable
// Test if it is legitimate to place a Queen at (k, i ).
// Input: Q[1 : k ], i ; Output: 1: if OK to place, 0: otherwise.

1 Algorithm Placeable(k, i )
2 {
3 for j := 1 to k − 1 do { // check against Queens placed.
4 if (Q[j ] = i or |Q[j ]− i | = |j − k |) then return false ;
5 }
6 return true ;
7 }

Note that if a queen is not placeable to (k, i ) then rows k onwards are not
checked, thus reducing even more checkings.
An iterative version, NQueens_I, is given next

Same time complexity as the recursive version
The number of try-outs is identical in either case
Smaller heap space for function calls for iterative version

Both NQueens and NQueens_I algorithms can still be improved.
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The N-Queens Problem — Iterative Algorithms
Algorithm 7.1.3. N-Queen puzzle, iterative solution

// Find all solutions for N-Queen problem iteratively.
// Input: number of Queens: n ; Output: Solutions for placing n-Queens.

1 Algorithm NQueens_I(n)
2 {
3 k := 1 ; Q[k ] := 0 ;
4 while (k > 0) do {
5 Q[k ] := Q[k ] + 1 ;
6 while (Q[k ] ≤ n) do {
7 if Placeable(k,Q[k ]) then {
8 if (k = n) then write (Q[1 : n]) ; // a solution is found
9 else {

10 k := k + 1 ; Q[k ] := 0 ; // try next row and initialize
11 }
12 }
13 Q[k ] := Q[k ] + 1 ;
14 }
15 k := k − 1 ; // done with this row, backtrack to previous row
16 }
17 }
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The N-Queen Problem – Solutions
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Both CPU time and number of solution appear to increase exponentially with
N.
The complexity of the algorithms, recursive and iterative, are O(N !).
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Sum of Subsets Problem
Given a set of n distinct positive numbers, {wi, 1 ≤ i ≤ n} and m, m > 0,
the sum of subsets problem is to find all the combinations of those n
numbers whose sum is m.
Example, given the set {4, 11, 15, 24} and m = 15.

Two subsets, {4, 11} and {15}, have the sum equals to 15.
It is assume that the set is ordered in nondecreasing order,
wi ≤ wi+1, 1 ≤ i < n, and

w1 ≤ m, (7.1.1)
n∑

i=1

wi ≥ m. (7.1.2)

otherwise, there is no solution possible.
Let {xi|xi = 0 or xi = 1, 1 ≤ i ≤ n} be the solution, then

n∑

i=1

xiwi = m. (7.1.3)

To find the solution, all combinations are to be tested.
Backtracking approach can be applied.
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Sum of Subsets, Example
Example, w = {4, 11, 15, 24}, m = 15
Two numbers shown in each node s/r

s =
k∑

i=1

xkwk r =
n∑

i=k+1

wk

54/0 30/0 39/0 15/0 43/0 19/0 28/0 4/0 50/0 26/0 35/0 11/0 39/0 15/0 24/0 0/0

30/24 15/24 19/24 4/24 26/24 11/24 15/24 0/24

15/39 4/39 11/39 0/39

4/50 0/50

0/54

x1 = 1 x1 = 0

x2 = 1 x2 = 0 x2 = 1 x2 = 0

x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0

x4 = 1x4 = 0
x4 = 1x4 = 0

x4 = 1x4 = 0
x4 = 1x4 = 0

x4 = 1x4 = 0
x4 = 1x4 = 0

x4 = 1x4 = 0
x4 = 1x4 = 0
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Sum of Subsets, Algorithm
A recursive algorithm to find all the solutions.

Algorithm 7.1.4. Sum of Subsets
// To test if x[k ] = 1 for sum of subset problem.
// Input: s =

∑k−1
i=1 w[i ]x[i ], r =

∑n
i=k w[i ], k, w[1 : n] ; Output: x[1 : n].

1 Algorithm SumOfSub(s, k, r)
2 {
3 x[k ] := 1 ; // try to include w[i ]
4 if (s + w[k ] = m) then write (x[1 : k ]) ; // one solution found
5 else if (s + w[k ] + w[k + 1] ≤ m) then
6 SumOfSub(s + w[k ], k + 1, r − w[k ]) ;
7 if ((s + r − w[k ] ≥ m) and (s + w[k + 1] ≤ m)) then { // x[i ] = 0 case
8 x[k ] := 0 ;
9 SumOfSub(s, k + 1, r − w[k ]) ;

10 }
11 }

The definition of s is different from the preceding page.
Note the termination condition of this algorithm
With proper checking, lines 5 and 7, number of unsuccessful search is
significantly reduced, but the complexity remains to be O(2n).
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Graph Coloring

Given a map with n regions, the m-colorability decision problem is to find if
one can assign m colors to the map such that each region has a color and no
two adjacent regions have the same color.
Note that the map with n regions can be transformed into a graph.

Each region is represented by a node,
Adjacent regions are connected by an edge between the nodes.

The adjacency relationship can also be represented by the adjacency matrix.

1

2

3

4 5

1

23

4 5



0 1 1 1 0
1 0 1 1 1
1 1 0 1 0
1 1 1 0 1
0 1 0 1 0



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Graph Coloring, Algorithm
The following algorithm solves for the m-coloring problem for a graph, G,
with n vertices and adjacency matrix A.

Global Array x is the solution found, x[i ] is the color for vertex i.
The algorithm should be invoked by

mColoring(n,m, 1);
Algorithm 7.1.5. m-Color Algorithm

// Recursively assign all possible, at most m, colors to node k.
// Input: int n, m, k, adjacent matrix A ; Output: All acceptable solutions.

1 Algorithm mColoring(n,m, k)
2 {
3 for x[k ] := 1 to m do {
4 i := 1 ; // check for colored and adjacent nodes with the same color
5 while (i < k and ((A[i, k ] = 0) or (x[i ] ̸= x[k ]))) do i := i + 1 ;
6 if (i = k) then { // color acceptable
7 if (k = n) then write (x[1 : n]) ; // a solution is found
8 else mColoring(n,m, k + 1);
9 }

10 }
11 }
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Graph Coloring, Complexity

In algorithm mColoring, Algorithm (7.1.5), the for loop, lines 3-10, is
executed m times at each recursive call

And mColoring is called recursively for n times
Again in algorithm mColoring, the while loop, line 5 is executed at most n
times
Thus the total time complexity is O(nmn)

An alternative algorithm is shown on the next page.
The color to be tested for node k is reduced – no repeated colors.
But the complexity is O(mn).

Note that given a graph G with degree d, then G can be colored using d + 1
colors.
The smallest m that can color a graph G is also called the chromatic number
of G.
Note that m ≤ d + 1 and m can be found by using the Algorithm mColoring
using different m.
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Graph Coloring, An Alternative Algorithm

An alternative algorithm for the m-coloring problem.

Algorithm 7.1.6. m-Color Algorithm – Alternative
// Recursively assign all possible, at most m, colors to node k.
// Input: int n, m, k, adjacent matrix A ; Output: All acceptable solutions.

1 Algorithm mColoring_A(n,m, k)
2 {
3 for i := 1 to m do c[i ] := 1 ; // Let all colors be available.
4 for i := 1 to k − 1 do
5 if A[i, k ] = 1 then c[x[i ]] := 0 ; // Color used by adj. nodes.
6 for i := 1 to m do {
7 if c[i ] = 1 then { // Use all available colors.
8 x[k ] := i ;
9 if (k = n) then write (x[1 : n]) ; // A solution is found

10 else mColoring_A(n,m, k + 1) ;
11 }
12 }
13 }
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Hamiltonian Cycles

Let G = (V,E ) be a connected graph with n vertices. A Hamiltonian cycle is
a closed path along n edges of G that visits every vertex once and returning
to its starting position.

If a Hamiltonian cycle begin at a vertex v1 ∈ V and the vertices are visited in
the order (v1, v2, · · · , vn+1), then the edge (vi, vi+1) ∈ E, 1 ≤ i ≤ n, and the
vi are distinct except v1 = vn+1.

1 2 3 4

5678

G1 with Hamiltonian cycles.

1 2 3

45

G2 No Hamiltonian
cycle.
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Hamiltonian Cycles — Algorithm

Algorithm 7.1.7. Hamiltonian Cycle
// Recursively find the k-th vertex of a Hamiltonian cycle.
// Input: graph G(V,E ), int n, k ; Output: All possible Hamiltonian cycles.

1 Algorithm Hamiltonian(n, k)
2 {
3 for x[k ] := 1 to n do { // All possible vertices.
4 if (E[x[k − 1], x[k ]] = 1) then { // Connecting to x[k − 1].
5 i := 1 ;
6 while ((i < k) and (x[i ] ̸= x[k ])) i := i + 1 ; // Check if x[k ] distinct
7 if (i = k) then // x[k ] has not been used
8 if (k < n) Hamiltonian(n, k + 1) ; // Move to the next vertex
9 else {

10 if (E[k, 1] = 1) then write (x[1 : n ]) ; // Print solution
11 }
12 }
13 }
14 }
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Hamiltonian Cycles — Algorithm, II

Backtracking approach to solve the Hamiltonian cycle problem.
x[1 : n] is the solution vector.
E[1 : n, 1 : n] is the adjacency matrix

E[i, j ] = 1 if (i, j) ∈ E is an edge in G
Otherwise, E[i, j ] = 0.

Hamiltonian should be invoked by
Hamiltonian(n, 2);

with x[1] = 1.
Thus, this algorithm always find the Hamiltonian cycle starting from vertex 1.
Note that the depth of the recursive call is n

The maximum number of Hamiltonian recursive call at level k is n − k since
each vertex on the path must be distinct
Thus, the number of function call is bounded above by (n − 1)!

The while loop of line 6 is executed at most n times
The worst case time complexity of Hamiltonian algorithm is O(n!)

Due to the sparsity of the adjacency matrix, this algorithm has much lower
complexity in practice.
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0/1 Knapsack Problem

Given n objects, each with profit pi and weight wi, 1 ≤ i ≤ n, to be placed
into a sack that can hold maximum of m weight. However, there is an
additional constraint that each object must be placed as a whole into the
sack, or not at all. That is, find xi, 1 ≤ i ≤ n, such that

maximize
n∑

i=1

pixi,

subject to
n∑

i=1

wixi ≤ m,

and xi = 0 or 1, 1 ≤ i ≤ n.

(7.1.4)

Note that xi = 0 or 1 and the solution space can be expanded as a tree.
The solution can be found by traversing the tree.
In the following, we assume the objects are ordered as

p1

w1
≥ p2

w2
≥ · · · ≥ pn

wn
. (7.1.5)

And, fp is the final profit, fw is the final weight. Both are global variables.
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0/1 Knapsack Problem — Search Space
Given 3 objects, (p1, p2, p3) = (5, 2, 1), (w1,w2,w3) = (4, 3, 2), and m = 6.
Find the optimal 0/1 knapsack solution, (x1, x2, x3), xi = 0 or xi = 1,
1 ≤ i ≤ 3, that maximizes the profit.
Two numbers shown in each node cp/cw

cp =
k∑

i=1

xkpk cw =
k∑

i=1

xkwk

8/9 7/7 6/6 5/4 3/5 2/3 1/2 0/0

7/7 5/4 2/3 0/0

5/4 0/0

0/0

x1 = 1 x1 = 0

x2 = 1 x2 = 0 x2 = 1 x2 = 0

x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0

Red: optimal solution; Blue: feasible solutions
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0/1 Knapsack Problem — Algorithm

Algorithm 7.1.8. 0/1 Knapsack
// Find solution of 0/1 knapsack problem.
// Input: int k, n, cp/cw/cx: current profit/weight/sol ; Output: Solution x[1 : n].

1 Algorithm BKnap(k, cp, cw)
2 {
3 if (cw + w[k ] ≤ m) then { // Add k-th object.
4 cx[k ] := 1 ;
5 if (k < n) then BKnap(k + 1, cp + p[k ], cw + w[k ]) ; // Check next.
6 else if ((cp + p[k ] > fp) and (k = n)) then { // Record solution
7 fp := cp + p[k ] ; fw := cw + w[k ] ;
8 for i := 1 to n do x[i ] := cx[i ] ;
9 }

10 }
11 if ( Bound(cp, cw, k) ≥ fp) { // Continue traversing only if needs to.
12 cx[k ] := 0 ; // Not placing k-th object.
13 if (k < n) then BKnap(k + 1, cp, cw) ; // Check next object.
14 else if ((cp > fp) and (k = n)) then { // Record solution.
15 fp := cp ; fw := cw ;
16 for i := 1 to n do x[i ] := cx[i ] ;
17 }
18 }
19 }
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0/1 Knapsack Problem — Bound Algorithm

Due to Eq. (7.1.5), Bound function can estimate the maximum profit quickly.

Algorithm 7.1.9. Bounding function
// Estimate maximum profit for k + 1 to n objects.
// Input: int k, n, cp/cw: current profit/weight ; Output: maximum profit mp.

1 Algorithm Bound(cp, cw, k)
2 {
3 mp := cp ; mw := cw ; // Init to current values.
4 for i := k + 1 to n do { // Evaluate all possible.
5 mw := mw + w[i ] ; // Update maximum weight.
6 if (mw < m) then mp := mp + p[i ] ; // Within limit.
7 else return mp + (1− (mw − m)/w[i ]) ∗ p[i ] ; // Exceeding limit.
8 }
9 return mp ;

10 }

Note that Bound function returns a floating number instead of an integer.
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0/1 Knapsack Problem — Example

Given 3 objects, (p1, p2, p3) = (5, 2, 1), (w1,w2,w3) = (4, 3, 2), and m = 6.
Find the optimal 0/1 knapsack solution, (x1, x2, x3), xi = 0 or xi = 1,
1 ≤ i ≤ 3, that maximizes the profit.
The calling sequence of BKnap algorithm

BKnap(k = 1, cp = 0, cw = 0)
test cx[1] = 1, cw + w[1] ≤ m
BKnap(k = 2, cp = 5, cw = 4)

test cx[2] = 1, cw + w[2] > m
test cx[2] = 0, Bound= 6
BKnap(k = 3, cp = 5, cw = 4)

test cx[3] = 1, cw + w[3] = m, feasible solution: fp = 6, x = (1, 0, 1)
test cx[3] = 0, Bound= 5, terminates

test cx[1] = 0, Bound= 3, terminates

Function Bound helps to reduce the number of evaluations
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Summary

Backtracking algorithm
8-queens problem
Sum of subsets problem
Graph coloring problem
Hamiltonian cycles
0/1 knapsack problem
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