Unit 7.1 Backtracking

Algorithms
EE3980

May 9, 2019

Algorithms (EE3980) Unit 7.1 Backtracking May 9, 2019 1/23

Backtracking Algorithms

@ The backtracking algorithms are to deal with problems to generate a desired

solution expressible as an n-tuple, (z1, 22, -+ ,x,), where x; are chosen from
a finite set S;, and the solution satisfies or minimizes/maximizes a criterion
function P(zy, 22, - , Zp).

@ Suppose m; is the size of S;. Then, there are m = my X mg X --- X m,
possible candidates for satisfying the function P.

@ The brute force approach is to form all m candidates and evaluate criterion
function on each of them, selects all (or the optimal) solutions.

@ The backtracking method form the n-tuple one component at a time, and
then use the modified criterion function P;(z;, 22, - , z;) to see if the
current vector can meet the overall criterion. If it cannot, the current vector
is ignored immediately.

e The number of tries is substantially smaller with backtracking methods.

Algorithms (EE3980) Unit 7.1 Backtracking May 9, 2019 2/23

The 8-Queens Problem

@ A queen in a chess game can attack any other piece if

e It is in the same row
e It is in the same column
e It is in the same diagonal (two directions)

@ The 8-queens puzzle is to place 8 queens on a chessboard such that they
don't attack each other.

Algorithms (EE3980) Unit 7.1 Backtracking May 9, 2019 3/23

The N-Queens Problem — Algorithms

@ The problem is generalized to placing N-queens onto an N x N board.
@ Note that each row can have only one queen.
e Thus, one can use an array Q[1 : N] for column position for each queen.

@ For 8-Queens puzzle this reduces the number of possible checks from 8®
(16,777,216), to 8! (40,320), 0.24%.

Algorithm 7.1.1. N-Queen puzzle

// Place k'th queen onward, if successful print out solution.
// Input: Q[1:n], k, n; Output: Solutions for placing n-Queens.

1 Algorithm NQueens(k, n)

2 {

3 for i:=1 to ndo { // all possible positions for Q[k]

4 if Placeable(k, ¢) then { // placing Q[k] = i is legitimate

5 Qlk] =1

6 if (k= n) then write (@[l : n]); // a solution found.

7 else NQueens(k+ 1,n); // place Q[k+ 1]

:)

9 }

10 }

Algorithms (EE3980) Unit 7.1 Backtracking May 9, 2019

The N-Queens Problem — Algorithms, Il

@ The Placeable algorithm is shown below.

Algorithm 7.1.2. Placeable

// Test if it is legitimate to place a Queen at (k, 7).
// Input: Q[1: k], ¢; Output: 1: if OK to place, 0: otherwise.
1 Algorithm Placeable(k, i)
2 {
3 for j:=1to k— 1 do { // check against Queens placed.
4 if (Q[j] =ior |Q[j] —i| =|j— k|) then return false ;
5}
6 return true ;
7}

@ Note that if a queen is not placeable to (%, ¢) then rows k onwards are not
checked, thus reducing even more checkings.
@ An iterative version, NQueens_T, is given next
e Same time complexity as the recursive version
e The number of try-outs is identical in either case
e Smaller heap space for function calls for iterative version

@ Both NQueens and NQueens_1I algorithms can still be improved.

Algorithms (EE3980) Unit 7.1 Backtracking May 9, 2019 5/23

The N-Queens Problem — lterative Algorithms

Algorithm 7.1.3. N-Queen puzzle, iterative solution

// Find all solutions for N-Queen problem iteratively.
// Input: number of Queens: n; Output: Solutions for placing n-Queens.
1 Algorithm NQueens_I(n)
2{
3 k:=1; Qk]:=0;
4 while (k> 0) do {
5 Qk] == Qk] +1;
6 while (Q[k] < m) do {
7 if Placeable(k, Q[k]) then {
8 if (k= n) then write (Q[1: n]); // a solution is found
9 else {
10 k:=k+1; Q[k] :=0; // try next row and initialize
11 }
12 }
13 Qlk] :== Q[k] + 1;

1
15 k:=k—1; // done with this row, backtrack to previous row

17 }

v

Algorithms (EE3980) Unit 7.1 Backtracking May 9, 2019 6/23

The N-Queen Problem — Solutions

N-Queen Problem
103 1010
—e— CPU time -
== Solutions
10" |- | 10°
8 1 6
2 101 4106 o
4 S
£ 5
o
z 1073 110t @
)
10_5 B | 102
10_7 | | | | [
4 5 6 7 38 9 10 11 12 131415
N
y
@ Both CPU time and number of solution appear to increase exponentially with
N.
@ The complexity of the algorithms, recursive and iterative, are O(N!).

Algorithms (EE3980) Unit 7.1 Backtracking May 9, 2019 7/23

Sum of Subsets Problem

e Given a set of n distinct positive numbers, {w;, 1 < i< n} and m, m > 0,
the sum of subsets problem is to find all the combinations of those n
numbers whose sum is m.

e Example, given the set {4,11,15,24} and m = 15.

o Two subsets, {4,11} and {15}, have the sum equals to 15.

@ [t is assume that the set is ordered in nondecreasing order,
w; < wir1,1 <7< n, and

wr < m, (7.1.1)

Z w; > m. (7.1.2)

otherwise, there is no solution possible.
o Let {z;|x; =0 or z; = 1,1 < i < n} be the solution, then

inwi = m. (7.1.3)
i=1

@ To find the solution, all combinations are to be tested.
e Backtracking approach can be applied.

Algorithms (EE3980) Unit 7.1 Backtracking May 9, 2019 8/23

Sum of Subsets, Example

o Example, w= {4,11,15,24}, m=15
@ Two numbers shown in each node s/r

k n
S = E Tk Wi r= E W
=1

i=k+1
T =

Ty = =0 T = =0

zg = 1 zg3 = 0 z3 = 1 z3 = 0 z3 = 1 z3 = 0 zg = 1 zg3 = 0

Algorithms (EE3980) Unit 7.1 Backtracking May 9, 2019

|
)

Sum of Subsets, Algorithm

@ A recursive algorithm to find all the solutions.

Algorithm 7.1.4. Sum of Subsets

// To test if z[k] = 1 for sum of subset problem.
// Input: s= Zf 11'w[Jz[z], r= >, w[¢], k, w[l : n]; Output: z[1 : n].
1 Algorithm Sum0OfSub(s, k, 7)
2 {
3 zlk] :=1; // try to include w|7]
4 if (s+ w[k] = m) then write (z[l : k]); // one solution found
5 else if (s+ wlk] + w[k+ 1] < m) then
6 Sum0fSub(s + w[k], k+ 1,7 — w[k]) ;
7 if ((s+ r— w[k] > m) and (s+ w[k+ 1] < m)) then { // z[i] = 0 case
8 z[k] ;=
9 Sum0fSub(s, k+ 1,7 — w[k]) ;
10 }
11}

@ The definition of s is different from the preceding page.

@ Note the termination condition of this algorithm

@ With proper checking, lines 5 and 7, number of unsuccessful search is
significantly reduced, but the complexity remains to be O(2").

Algorithms (EE3980) Unit 7.1 Backtracking May 9, 2019 10/23

Graph Coloring

@ Given a map with n regions, the m-colorability decision problem is to find if

@ Note that the map with n regions can be transformed into a graph.

@ The adjacency relationship can also be represented by the adjacency matrix.

one can assign m colors to the map such that each region has a color and no
two adjacent regions have the same color.

e Each region is represented by a node,
e Adjacent regions are connected by an edge between the nodes.

5
> 0 1 1 1 0]
10 1 1 1
1 1.0 1 0
1 1 1 1 0 1
010 1 0

Algorithms (EE3980) Unit 7.1 Backtracking May 9, 2019

Graph Coloring, Algorithm

@ The following algorithm solves for the m-coloring problem for a graph, G,

@ The algorithm should be invoked by

Algorithm 7.1.5. m-Color Algorithm

// Recursively assign all possible, at most m, colors to node k.
// Input: int n, m, k, adjacent matrix A ; Output: All acceptable solutions.

1 Algorithm mColoring(n, m, k)

2 {

3 for a[k] :=1 to mdo {

Z i:=1; // check for colored and adjacent nodes with the same color

5 while (i < k and ((A[i, k] = 0) or (] # z[k]))) do i:= i+ 1;

6 if (¢= k) then { // color acceptable

7 if (k= n) then write (z[1 : n]); // a solution is found

8 else mColoring(n, m, k+ 1);

9 }

10 }

11}

with n vertices and adjacency matrix A.
o Global Array z is the solution found, x[i] is the color for vertex 1.

mColoring(n,m, 1);

v

Algorithms (EE3980) Unit 7.1 Backtracking May 9, 2019 12 /23

Graph Coloring, Complexity

@ In algorithm mColoring, Algorithm (7.1.5), the for loop, lines 3-10, is
executed m times at each recursive call

e And mColoring is called recursively for n times
@ Again in algorithm mColoring, the while loop, line 5 is executed at most n
times
@ Thus the total time complexity is O(nm"™)

@ An alternative algorithm is shown on the next page.

e The color to be tested for node k is reduced — no repeated colors.
o But the complexity is O(m").

@ Note that given a graph G with degree d, then G can be colored using d + 1
colors.

@ The smallest m that can color a graph G'is also called the chromatic number

of G.

@ Note that m < d+ 1 and m can be found by using the Algorithm mColoring
using different m.

Algorithms (EE3980) Unit 7.1 Backtracking May 9, 2019 13/23

Graph Coloring, An Alternative Algorithm

@ An alternative algorithm for the m-coloring problem.

Algorithm 7.1.6. m-Color Algorithm — Alternative

// Recursively assign all possible, at most m, colors to node k.
// Input: int n, m, k, adjacent matrix A ; Output: All acceptable solutions.
1 Algorithm mColoring_A(n, m, k)
2 {
3 for i:=1 to mdo c[i] :=1; // Let all colors be available.
4 for i:=1to k— 1 do
5 if A[i, k] =1 then c[z[i]] := 0; // Color used by adj. nodes.
6 for i:=1 to mdo {
7 if ¢[i] =1 then { // Use all available colors.
8 zlk] == 1;
9 if (k= n) then write (z[1: n]); // A solution is found
10 else mColoring_A(n,m,k+ 1);
11 }
12 }
13 }

v

Algorithms (EE3980) Unit 7.1 Backtracking

May 9, 2019 14 /23

Hamiltonian Cycles

@ Let G= (V, F) be a connected graph with n vertices. A Hamiltonian cycle is
a closed path along n edges of G that visits every vertex once and returning
to its starting position.

e If a Hamiltonian cycle begin at a vertex v; € V and the vertices are visited in
the order (vi, v2,: -+, vnt1), then the edge (vi, viy1) € E, 1 < i< n, and the
v; are distinct except v1 = VUn41.

Go No Hamiltonian
G1 with Hamiltonian cycles. cycle.

Algorithms (EE3980) Unit 7.1 Backtracking May 9, 2019 15/23

Hamiltonian Cycles — Algorithm

Algorithm 7.1.7. Hamiltonian Cycle

// Recursively find the k-th vertex of a Hamiltonian cycle.
// Input: graph G(V, E), int n, k; Output: All possible Hamiltonian cycles.
1 Algorithm Hamiltonian(n, k)
2 {
3 for z[k] :=1 to ndo { // All possible vertices.
4 if (E[z[k — 1], 2[k]] = 1) then { // Connecting to z[k — 1].
5 1:=1;
6 while ((¢ < k) and (z[¢] # a[k])) i:= i+ 1; // Check if z[k] distinct
7 if (¢ = k) then // z[k] has not been used
8 if (k< m) Hamiltonian(n,k+ 1); // Move to the next vertex
9 else {
10 if (E[k,1] = 1) then write (z[1 : n]); // Print solution
11 }
12 }
13 }
14 }

Algorithms (EE3980) Unit 7.1 Backtracking

May 9, 2019 16 /23

Hamiltonian Cycles — Algorithm, Il

@ Backtracking approach to solve the Hamiltonian cycle problem.

@ z[1 : n] is the solution vector.
@ E[1:mn,1:n]is the adjacency matrix
o E[i,jl=1if (¢,j) € E'is an edge in G
o Otherwise, E[i,j] = 0.
@ Hamiltonian should be invoked by
Hamiltonian(n,?2);
with z[1] = 1.
@ Thus, this algorithm always find the Hamiltonian cycle starting from vertex 1.
@ Note that the depth of the recursive call is n
e The maximum number of Hamiltonian recursive call at level kis n — k since
each vertex on the path must be distinct
e Thus, the number of function call is bounded above by (n — 1)!
@ The while loop of line 6 is executed at most n times

@ The worst case time complexity of Hamiltonian algorithm is O(n!)

@ Due to the sparsity of the adjacency matrix, this algorithm has much lower
complexity in practice.

Algorithms (EE3980) Unit 7.1 Backtracking May 9, 2019 17/23

0/1 Knapsack Problem

@ Given n objects, each with profit p; and weight w;, 1 < 7 < n, to be placed
into a sack that can hold maximum of m weight. However, there is an
additional constraint that each object must be placed as a whole into the
sack, or not at all. That is, find z;, 1 < 7 < n, such that

n
maximize E DiTs,

B 7
= 7.1.4
subject to Z i 2SS, ()
=1
Fad O Oer B 1< i< n.

@ Note that x; = 0 or 1 and the solution space can be expanded as a tree.

@ The solution can be found by traversing the tree.
@ In the following, we assume the objects are ordered as

N N LN (7.1.5)
w1 W Whn,

And, fp is the final profit, fw is the final weight. Both are global variables.

Algorithms (EE3980) Unit 7.1 Backtracking

May 9, 2019 18 /23

0/1 Knapsack Problem — Search Space

e Given 3 objects, (p1,p2,p3) = (5,2,1), (w1, we, ws) = (4,3,2), and m = 6.
Find the optimal 0/1 knapsack solution, (x1, 22, z3), ©; = 0 or z; = 1,
1 <4< 3, that maximizes the profit.

@ Two numbers shown in each node c¢p/cw

k k
cp = g TPk cw = E T Wk

May 9, 2019 19/23

Algorithm 7.1.8. 0/1 Knapsack

// Find solution of 0/1 knapsack problem.
// Input: int k, m, c¢p/cw/cx: current profit/weight/sol; Output: Solution z[1 : n).
1 Algorithm BKnap(k, cp, cw)
2 {
3 if (cw+ w[k] < m) then { // Add k-th object.
4 czlk] :=1;
5 if (kK < m) then BKnap(k+ 1, cp + p[k], cw + w[k]); // Check next.
6 else if ((cp + p[k] > fp) and (k= n)) then { // Record solution
7 fp = cp + plk]; fw = cw+ wk];
8 for ¢:=1 to n do z[i] := cx[7];
9 }
10 }
11 if (Bound(cp, cw, k) > fp) { // Continue traversing only if needs to.
12 cz[k] := 0; // Not placing k-th object.
13 if (k < n) then BKnap(k+ 1, c¢p, cw); // Check next object.
14 else if ((cp > fp) and (k= n)) then { // Record solution.
15 fo:i=cp; fw:= cw;
16 for ¢:=1 to n do z[¢] := cz[7];
17 }
18 }
19 }

May 9, 2019 20/23

Algorithms (EE3980) Unit 7.1 Backtracking

0/1 Knapsack Problem — Bound Algorithm

@ Due to Eq. (7.1.5), Bound function can estimate the maximum profit quickly.

Algorithm 7.1.9. Bounding function

// Estimate maximum profit for £+ 1 to n objects.
// Input: int k, n, cp/cw: current profit/weight; Output: maximum profit mp.
1 Algorithm Bound(cp, cw, k)
2 {
3 mp := cp; mw := cw; // Init to current values.
4 for i:=k+ 1 to ndo { // Evaluate all possible.
5 mw := mw+ w(i]; // Update maximum weight.
6 if (mw < m) then mp := mp + p[i]; // Within limit.
7 else return mp + (1 — (mw — m)/wi]) = p[¢]; // Exceeding limit.
8 }
9 return mp;
10 }

@ Note that Bound function returns a floating number instead of an integer.

Algorithms (EE3980) Unit 7.1 Backtracking May 9, 2019 21/23

0/1 Knapsack Problem — Example

e Given 3 objects, (p1,p2,p3) = (5,2,1), (w1, we, w3) = (4,3,2), and m = 6.
Find the optimal 0/1 knapsack solution, (1, 2, 23), x; = 0 or x; = 1,
1 < i< 3, that maximizes the profit.

@ The calling sequence of BKnap algorithm

BKnap(k=1,cp =0, cw = 0)
test cz[l] =1, cw+ w[l] < m
BKnap(k = 2,cp =5, cw = 4)
test ca[2] =1, cw+ w[2] > m
test cz[2] = 0, Bound= 6
BKnap(k = 3, cp = 5, cw = 4)
test ca[3] = 1, cw+ w[3] = m, feasible solution: fp =6, z=(1,0,1)
test cz[3] = 0, Bound= 5, terminates
test cz[l] = 0, Bound= 3, terminates

@ Function Bound helps to reduce the number of evaluations

Algorithms (EE3980) Unit 7.1 Backtracking

May 9, 2019 22/23

Backtracking algorithm

8-queens problem

Graph coloring problem

°
°
@ Sum of subsets problem
°
@ Hamiltonian cycles

°

0/1 knapsack problem

Algorithms (EE3980) Unit 7.1 Backtracking May 9, 2019 23/23

