
Unit 7.1 Backtracking

Algorithms

EE3980

May 9, 2019

Algorithms (EE3980) Unit 7.1 Backtracking May 9, 2019 1 / 23

Backtracking Algorithms

The backtracking algorithms are to deal with problems to generate a desired
solution expressible as an n-tuple, (x1, x2, · · · , xn), where xi are chosen from
a finite set Si, and the solution satisfies or minimizes/maximizes a criterion
function P(x1, x2, · · · , xn).
Suppose mi is the size of Si. Then, there are m = m1 × m2 × · · · × mn
possible candidates for satisfying the function P.
The brute force approach is to form all m candidates and evaluate criterion
function on each of them, selects all (or the optimal) solutions.
The backtracking method form the n-tuple one component at a time, and
then use the modified criterion function Pi(x1, x2, · · · , xi) to see if the
current vector can meet the overall criterion. If it cannot, the current vector
is ignored immediately.

The number of tries is substantially smaller with backtracking methods.

Algorithms (EE3980) Unit 7.1 Backtracking May 9, 2019 2 / 23

The 8-Queens Problem

A queen in a chess game can attack any other piece if
It is in the same row
It is in the same column
It is in the same diagonal (two directions)

The 8-queens puzzle is to place 8 queens on a chessboard such that they
don’t attack each other.

qZ0Z0Z0Z
Z0Z0L0Z0
0Z0Z0Z0L
Z0Z0ZqZ0
0ZqZ0Z0Z
Z0Z0Z0L0
0L0Z0Z0Z
Z0ZqZ0Z0

Algorithms (EE3980) Unit 7.1 Backtracking May 9, 2019 3 / 23

The N-Queens Problem — Algorithms
The problem is generalized to placing N-queens onto an N × N board.
Note that each row can have only one queen.

Thus, one can use an array Q[1 : N] for column position for each queen.
For 8-Queens puzzle this reduces the number of possible checks from 88

(16,777,216), to 8 ! (40,320), 0.24%.

Algorithm 7.1.1. N-Queen puzzle
// Place k’th queen onward, if successful print out solution.
// Input: Q[1 : n], k, n ; Output: Solutions for placing n-Queens.

1 Algorithm NQueens(k,n)
2 {
3 for i := 1 to n do { // all possible positions for Q[k]
4 if Placeable(k, i) then { // placing Q[k] = i is legitimate
5 Q[k] := i ;
6 if (k = n) then write (Q[1 : n]) ; // a solution found.
7 else NQueens(k + 1,n) ; // place Q[k + 1]
8 }
9 }

10 }

Algorithms (EE3980) Unit 7.1 Backtracking May 9, 2019 4 / 23

The N-Queens Problem — Algorithms, II
The Placeable algorithm is shown below.

Algorithm 7.1.2. Placeable
// Test if it is legitimate to place a Queen at (k, i).
// Input: Q[1 : k], i ; Output: 1: if OK to place, 0: otherwise.

1 Algorithm Placeable(k, i)
2 {
3 for j := 1 to k − 1 do { // check against Queens placed.
4 if (Q[j] = i or |Q[j]− i | = |j − k |) then return false ;
5 }
6 return true ;
7 }

Note that if a queen is not placeable to (k, i) then rows k onwards are not
checked, thus reducing even more checkings.
An iterative version, NQueens_I, is given next

Same time complexity as the recursive version
The number of try-outs is identical in either case
Smaller heap space for function calls for iterative version

Both NQueens and NQueens_I algorithms can still be improved.
Algorithms (EE3980) Unit 7.1 Backtracking May 9, 2019 5 / 23

The N-Queens Problem — Iterative Algorithms
Algorithm 7.1.3. N-Queen puzzle, iterative solution

// Find all solutions for N-Queen problem iteratively.
// Input: number of Queens: n ; Output: Solutions for placing n-Queens.

1 Algorithm NQueens_I(n)
2 {
3 k := 1 ; Q[k] := 0 ;
4 while (k > 0) do {
5 Q[k] := Q[k] + 1 ;
6 while (Q[k] ≤ n) do {
7 if Placeable(k,Q[k]) then {
8 if (k = n) then write (Q[1 : n]) ; // a solution is found
9 else {

10 k := k + 1 ; Q[k] := 0 ; // try next row and initialize
11 }
12 }
13 Q[k] := Q[k] + 1 ;
14 }
15 k := k − 1 ; // done with this row, backtrack to previous row
16 }
17 }

Algorithms (EE3980) Unit 7.1 Backtracking May 9, 2019 6 / 23

The N-Queen Problem – Solutions

4 5 6 7 8 9 10 11 12 13 14 1510−7

10−5

10−3

10−1

101

103

N

CP
U

tim
e,

se
c

N-Queen Problem

CPU time
Solutions

1

102

104

106

108

1010

So
lu

tio
ns

Both CPU time and number of solution appear to increase exponentially with
N.
The complexity of the algorithms, recursive and iterative, are O(N !).

Algorithms (EE3980) Unit 7.1 Backtracking May 9, 2019 7 / 23

Sum of Subsets Problem
Given a set of n distinct positive numbers, {wi, 1 ≤ i ≤ n} and m, m > 0,
the sum of subsets problem is to find all the combinations of those n
numbers whose sum is m.
Example, given the set {4, 11, 15, 24} and m = 15.

Two subsets, {4, 11} and {15}, have the sum equals to 15.
It is assume that the set is ordered in nondecreasing order,
wi ≤ wi+1, 1 ≤ i < n, and

w1 ≤ m, (7.1.1)
n∑

i=1

wi ≥ m. (7.1.2)

otherwise, there is no solution possible.
Let {xi|xi = 0 or xi = 1, 1 ≤ i ≤ n} be the solution, then

n∑

i=1

xiwi = m. (7.1.3)

To find the solution, all combinations are to be tested.
Backtracking approach can be applied.

Algorithms (EE3980) Unit 7.1 Backtracking May 9, 2019 8 / 23

Sum of Subsets, Example
Example, w = {4, 11, 15, 24}, m = 15
Two numbers shown in each node s/r

s =
k∑

i=1

xkwk r =
n∑

i=k+1

wk

54/0 30/0 39/0 15/0 43/0 19/0 28/0 4/0 50/0 26/0 35/0 11/0 39/0 15/0 24/0 0/0

30/24 15/24 19/24 4/24 26/24 11/24 15/24 0/24

15/39 4/39 11/39 0/39

4/50 0/50

0/54

x1 = 1 x1 = 0

x2 = 1 x2 = 0 x2 = 1 x2 = 0

x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0

x4 = 1x4 = 0
x4 = 1x4 = 0

x4 = 1x4 = 0
x4 = 1x4 = 0

x4 = 1x4 = 0
x4 = 1x4 = 0

x4 = 1x4 = 0
x4 = 1x4 = 0

Algorithms (EE3980) Unit 7.1 Backtracking May 9, 2019 9 / 23

Sum of Subsets, Algorithm
A recursive algorithm to find all the solutions.

Algorithm 7.1.4. Sum of Subsets
// To test if x[k] = 1 for sum of subset problem.
// Input: s =

∑k−1
i=1 w[i]x[i], r =

∑n
i=k w[i], k, w[1 : n] ; Output: x[1 : n].

1 Algorithm SumOfSub(s, k, r)
2 {
3 x[k] := 1 ; // try to include w[i]
4 if (s + w[k] = m) then write (x[1 : k]) ; // one solution found
5 else if (s + w[k] + w[k + 1] ≤ m) then
6 SumOfSub(s + w[k], k + 1, r − w[k]) ;
7 if ((s + r − w[k] ≥ m) and (s + w[k + 1] ≤ m)) then { // x[i] = 0 case
8 x[k] := 0 ;
9 SumOfSub(s, k + 1, r − w[k]) ;

10 }
11 }

The definition of s is different from the preceding page.
Note the termination condition of this algorithm
With proper checking, lines 5 and 7, number of unsuccessful search is
significantly reduced, but the complexity remains to be O(2n).

Algorithms (EE3980) Unit 7.1 Backtracking May 9, 2019 10 / 23

Graph Coloring

Given a map with n regions, the m-colorability decision problem is to find if
one can assign m colors to the map such that each region has a color and no
two adjacent regions have the same color.
Note that the map with n regions can be transformed into a graph.

Each region is represented by a node,
Adjacent regions are connected by an edge between the nodes.

The adjacency relationship can also be represented by the adjacency matrix.

1

2

3

4 5

1

23

4 5



0 1 1 1 0
1 0 1 1 1
1 1 0 1 0
1 1 1 0 1
0 1 0 1 0




Algorithms (EE3980) Unit 7.1 Backtracking May 9, 2019 11 / 23

Graph Coloring, Algorithm
The following algorithm solves for the m-coloring problem for a graph, G,
with n vertices and adjacency matrix A.

Global Array x is the solution found, x[i] is the color for vertex i.
The algorithm should be invoked by

mColoring(n,m, 1);
Algorithm 7.1.5. m-Color Algorithm

// Recursively assign all possible, at most m, colors to node k.
// Input: int n, m, k, adjacent matrix A ; Output: All acceptable solutions.

1 Algorithm mColoring(n,m, k)
2 {
3 for x[k] := 1 to m do {
4 i := 1 ; // check for colored and adjacent nodes with the same color
5 while (i < k and ((A[i, k] = 0) or (x[i] ̸= x[k]))) do i := i + 1 ;
6 if (i = k) then { // color acceptable
7 if (k = n) then write (x[1 : n]) ; // a solution is found
8 else mColoring(n,m, k + 1);
9 }

10 }
11 }

Algorithms (EE3980) Unit 7.1 Backtracking May 9, 2019 12 / 23

Graph Coloring, Complexity

In algorithm mColoring, Algorithm (7.1.5), the for loop, lines 3-10, is
executed m times at each recursive call

And mColoring is called recursively for n times
Again in algorithm mColoring, the while loop, line 5 is executed at most n
times
Thus the total time complexity is O(nmn)

An alternative algorithm is shown on the next page.
The color to be tested for node k is reduced – no repeated colors.
But the complexity is O(mn).

Note that given a graph G with degree d, then G can be colored using d + 1
colors.
The smallest m that can color a graph G is also called the chromatic number
of G.
Note that m ≤ d + 1 and m can be found by using the Algorithm mColoring
using different m.

Algorithms (EE3980) Unit 7.1 Backtracking May 9, 2019 13 / 23

Graph Coloring, An Alternative Algorithm

An alternative algorithm for the m-coloring problem.

Algorithm 7.1.6. m-Color Algorithm – Alternative
// Recursively assign all possible, at most m, colors to node k.
// Input: int n, m, k, adjacent matrix A ; Output: All acceptable solutions.

1 Algorithm mColoring_A(n,m, k)
2 {
3 for i := 1 to m do c[i] := 1 ; // Let all colors be available.
4 for i := 1 to k − 1 do
5 if A[i, k] = 1 then c[x[i]] := 0 ; // Color used by adj. nodes.
6 for i := 1 to m do {
7 if c[i] = 1 then { // Use all available colors.
8 x[k] := i ;
9 if (k = n) then write (x[1 : n]) ; // A solution is found

10 else mColoring_A(n,m, k + 1) ;
11 }
12 }
13 }

Algorithms (EE3980) Unit 7.1 Backtracking May 9, 2019 14 / 23

Hamiltonian Cycles

Let G = (V,E) be a connected graph with n vertices. A Hamiltonian cycle is
a closed path along n edges of G that visits every vertex once and returning
to its starting position.

If a Hamiltonian cycle begin at a vertex v1 ∈ V and the vertices are visited in
the order (v1, v2, · · · , vn+1), then the edge (vi, vi+1) ∈ E, 1 ≤ i ≤ n, and the
vi are distinct except v1 = vn+1.

1 2 3 4

5678

G1 with Hamiltonian cycles.

1 2 3

45

G2 No Hamiltonian
cycle.

Algorithms (EE3980) Unit 7.1 Backtracking May 9, 2019 15 / 23

Hamiltonian Cycles — Algorithm

Algorithm 7.1.7. Hamiltonian Cycle
// Recursively find the k-th vertex of a Hamiltonian cycle.
// Input: graph G(V,E), int n, k ; Output: All possible Hamiltonian cycles.

1 Algorithm Hamiltonian(n, k)
2 {
3 for x[k] := 1 to n do { // All possible vertices.
4 if (E[x[k − 1], x[k]] = 1) then { // Connecting to x[k − 1].
5 i := 1 ;
6 while ((i < k) and (x[i] ̸= x[k])) i := i + 1 ; // Check if x[k] distinct
7 if (i = k) then // x[k] has not been used
8 if (k < n) Hamiltonian(n, k + 1) ; // Move to the next vertex
9 else {

10 if (E[k, 1] = 1) then write (x[1 : n]) ; // Print solution
11 }
12 }
13 }
14 }

Algorithms (EE3980) Unit 7.1 Backtracking May 9, 2019 16 / 23

Hamiltonian Cycles — Algorithm, II

Backtracking approach to solve the Hamiltonian cycle problem.
x[1 : n] is the solution vector.
E[1 : n, 1 : n] is the adjacency matrix

E[i, j] = 1 if (i, j) ∈ E is an edge in G
Otherwise, E[i, j] = 0.

Hamiltonian should be invoked by
Hamiltonian(n, 2);

with x[1] = 1.
Thus, this algorithm always find the Hamiltonian cycle starting from vertex 1.
Note that the depth of the recursive call is n

The maximum number of Hamiltonian recursive call at level k is n − k since
each vertex on the path must be distinct
Thus, the number of function call is bounded above by (n − 1)!

The while loop of line 6 is executed at most n times
The worst case time complexity of Hamiltonian algorithm is O(n!)

Due to the sparsity of the adjacency matrix, this algorithm has much lower
complexity in practice.

Algorithms (EE3980) Unit 7.1 Backtracking May 9, 2019 17 / 23

0/1 Knapsack Problem

Given n objects, each with profit pi and weight wi, 1 ≤ i ≤ n, to be placed
into a sack that can hold maximum of m weight. However, there is an
additional constraint that each object must be placed as a whole into the
sack, or not at all. That is, find xi, 1 ≤ i ≤ n, such that

maximize
n∑

i=1

pixi,

subject to
n∑

i=1

wixi ≤ m,

and xi = 0 or 1, 1 ≤ i ≤ n.

(7.1.4)

Note that xi = 0 or 1 and the solution space can be expanded as a tree.
The solution can be found by traversing the tree.
In the following, we assume the objects are ordered as

p1

w1
≥ p2

w2
≥ · · · ≥ pn

wn
. (7.1.5)

And, fp is the final profit, fw is the final weight. Both are global variables.

Algorithms (EE3980) Unit 7.1 Backtracking May 9, 2019 18 / 23

0/1 Knapsack Problem — Search Space
Given 3 objects, (p1, p2, p3) = (5, 2, 1), (w1,w2,w3) = (4, 3, 2), and m = 6.
Find the optimal 0/1 knapsack solution, (x1, x2, x3), xi = 0 or xi = 1,
1 ≤ i ≤ 3, that maximizes the profit.
Two numbers shown in each node cp/cw

cp =
k∑

i=1

xkpk cw =
k∑

i=1

xkwk

8/9 7/7 6/6 5/4 3/5 2/3 1/2 0/0

7/7 5/4 2/3 0/0

5/4 0/0

0/0

x1 = 1 x1 = 0

x2 = 1 x2 = 0 x2 = 1 x2 = 0

x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0

Red: optimal solution; Blue: feasible solutions
Algorithms (EE3980) Unit 7.1 Backtracking May 9, 2019 19 / 23

0/1 Knapsack Problem — Algorithm

Algorithm 7.1.8. 0/1 Knapsack
// Find solution of 0/1 knapsack problem.
// Input: int k, n, cp/cw/cx: current profit/weight/sol ; Output: Solution x[1 : n].

1 Algorithm BKnap(k, cp, cw)
2 {
3 if (cw + w[k] ≤ m) then { // Add k-th object.
4 cx[k] := 1 ;
5 if (k < n) then BKnap(k + 1, cp + p[k], cw + w[k]) ; // Check next.
6 else if ((cp + p[k] > fp) and (k = n)) then { // Record solution
7 fp := cp + p[k] ; fw := cw + w[k] ;
8 for i := 1 to n do x[i] := cx[i] ;
9 }

10 }
11 if (Bound(cp, cw, k) ≥ fp) { // Continue traversing only if needs to.
12 cx[k] := 0 ; // Not placing k-th object.
13 if (k < n) then BKnap(k + 1, cp, cw) ; // Check next object.
14 else if ((cp > fp) and (k = n)) then { // Record solution.
15 fp := cp ; fw := cw ;
16 for i := 1 to n do x[i] := cx[i] ;
17 }
18 }
19 }

Algorithms (EE3980) Unit 7.1 Backtracking May 9, 2019 20 / 23

0/1 Knapsack Problem — Bound Algorithm

Due to Eq. (7.1.5), Bound function can estimate the maximum profit quickly.

Algorithm 7.1.9. Bounding function
// Estimate maximum profit for k + 1 to n objects.
// Input: int k, n, cp/cw: current profit/weight ; Output: maximum profit mp.

1 Algorithm Bound(cp, cw, k)
2 {
3 mp := cp ; mw := cw ; // Init to current values.
4 for i := k + 1 to n do { // Evaluate all possible.
5 mw := mw + w[i] ; // Update maximum weight.
6 if (mw < m) then mp := mp + p[i] ; // Within limit.
7 else return mp + (1− (mw − m)/w[i]) ∗ p[i] ; // Exceeding limit.
8 }
9 return mp ;

10 }

Note that Bound function returns a floating number instead of an integer.

Algorithms (EE3980) Unit 7.1 Backtracking May 9, 2019 21 / 23

0/1 Knapsack Problem — Example

Given 3 objects, (p1, p2, p3) = (5, 2, 1), (w1,w2,w3) = (4, 3, 2), and m = 6.
Find the optimal 0/1 knapsack solution, (x1, x2, x3), xi = 0 or xi = 1,
1 ≤ i ≤ 3, that maximizes the profit.
The calling sequence of BKnap algorithm

BKnap(k = 1, cp = 0, cw = 0)
test cx[1] = 1, cw + w[1] ≤ m
BKnap(k = 2, cp = 5, cw = 4)

test cx[2] = 1, cw + w[2] > m
test cx[2] = 0, Bound= 6
BKnap(k = 3, cp = 5, cw = 4)

test cx[3] = 1, cw + w[3] = m, feasible solution: fp = 6, x = (1, 0, 1)
test cx[3] = 0, Bound= 5, terminates

test cx[1] = 0, Bound= 3, terminates

Function Bound helps to reduce the number of evaluations

Algorithms (EE3980) Unit 7.1 Backtracking May 9, 2019 22 / 23

Summary

Backtracking algorithm
8-queens problem
Sum of subsets problem
Graph coloring problem
Hamiltonian cycles
0/1 knapsack problem

Algorithms (EE3980) Unit 7.1 Backtracking May 9, 2019 23 / 23

