### Unit 6.3 Dynamic Programming III



### String Editing Problem

- Given two strings  $X = x_1 x_2 \cdots x_n$  and  $Y = y_1 y_2 \cdots y_m$ , where  $x_i$ ,  $1 \le i \le n$ , and  $y_j$ ,  $1 \le j \le m$ , are members of a finite set of symbols known as the alphabet.
- The string editing problem is to transform X into Y using the following editing operations with corresponding cost and to find the sequence of operations that minimizes the total cost.
  - Delete the symbol  $x_i$  from X with cost  $D(x_i)$ ,
  - Insert the symbol  $y_j$  to Y with cost  $I(y_j)$ ,
  - Change the symbol  $x_i$  of X into  $y_j$  with cost  $C(x_i, y_j)$ .
  - Note that keep  $x_i$  to become  $y_j$  has no cost.
- Example, X = "elate" and Y = "later". Total cost to transform X into Y is D(e) + I(r).

| Step | X            | Y      | Cost        |
|------|--------------|--------|-------------|
| 1    | elate        |        | D(e)        |
| 2    | elate        | $\sim$ | 0           |
| 3    | elate        | la     | 0           |
| 4    | elate        | lat    | 0           |
| 5    | <i>elate</i> | late   | 0           |
| 6    | elate        | later  | I(r)        |
|      |              |        | D(e) + I(r) |

Algorithms (EE3980)

## String Editing — Algorithm

#### Algorithm 6.3.1. Wagner Fischer Algorithm

// Transform X into Y with minimum cost using matrix M. // Input: int n, m, strings X, Y, cost D, I, C; Output: min cost matrix M. 1 Algorithm WagnerFischer(n, m, X, Y, D, I, C, M) 2 { M[0,0] := 0;3 for i := 1 to n do M[i, 0] := M[i - 1, 0] + D(X[i]); 4 for j := 1 to m do M[0, j] := M[0, j-1] + I(Y[j]); 5 for i := 1 to n do { 6 7 for j := 1 to m do { if (X[i] = Y[j]) then  $m_1 := 0$ ; else  $m_1 := C(X[i], Y[j])$ ; 8  $m_2 := M[i-1, j] + D(X[i]);$ 9  $m_3 := M[i, j-1] + I(Y[j]);$ 10  $M[i, j] := \min(m_1, m_2, m_3);$ 11 12  $\} // When done, M[n, m] contains the minimum cost of the transformation$ 13 14 }

Unit 6.3 Dynamic Programming III

# String Editing — Example

Algorithms (EE3980)

• Example. Given X = "elate", Y = "later" and the cost functions D(x) = 1, I(y) = 1, C(x, y) = 2,  $x, y \in \{A, \dots, Z, a, \dots, z\}$ ,  $x \neq y$ .

| <ul> <li>Thus the transformation sequence i</li> </ul> |        |        |             |        |             |               |           |                    |               |               |  |  |  |
|--------------------------------------------------------|--------|--------|-------------|--------|-------------|---------------|-----------|--------------------|---------------|---------------|--|--|--|
|                                                        | 0      | l 1    | a<br>2<br>2 | t<br>3 | e<br>4<br>2 | $\frac{r}{5}$ | Step<br>1 | operatic<br>Delete | on<br>e       | Y             |  |  |  |
| $l^{e}$                                                | 1<br>2 | 2      | 3<br>2      | 4<br>3 | 5<br>4      | 4<br>5        | 2         | Keep               | l             | l             |  |  |  |
| $egin{array}{c} a \ t \end{array}$                     | 3<br>4 | 2<br>3 | 1<br>2      | 2<br>1 | 3<br>2      | 4<br>3        | 4         | Keep               | ${a \atop t}$ | lat           |  |  |  |
| e                                                      | 5      | 4      | 3           | 2      | 1           | 2             | 5         | Keep               | e r           | late<br>later |  |  |  |
| Astrin Maf                                             |        |        |             |        |             |               |           |                    |               |               |  |  |  |

Matrix M of WagnerFischer algorithm. • And the total cost is D(e) + I(r) = 2.

- After WagnerFischer algorithm, the following algorithm traces the *M* matrix to generate the transformation sequence.
  - Note that array T has the transformation sequence but is in reverse order.

May 6, 2019

#### String Editing — Transformation Trace

#### Algorithm 6.3.2. Trace

// Trace the matrix M to find the transformation operations. // Input: int n, m, cost D, I, C and M; Output: T transformation. 1 Algorithm Trace(n, m, M, D, I, C, T)2 { 3 i := n; j := m; k := 0;while (i > 0 or j > 0) do { 4 if (M[i, j] = M[i-1, j-1]) then  $\{// \text{Keep } X[i] \text{ for } Y[j].$ 5 T[k] := ' - '; i := i - 1; j := j - 1; k := k + 1;6 7 } else if (M[i, j] = M[i - 1, j - 1] + C(X[i], Y[j])) then { // Change. 8 T[k] := 'C'; i := i - 1; j := j - 1; k := k + 1;9 } 10 else if (i = 0 or (M[i, j] = M[i - 1, j] + D(X[i]))) then { // Delete. 11 T[k] := 'D'; i := i - 1; k := k + 1;12 } 13 else { // Add Y[j]. 14 T[k] := 'I'; j := j - 1; k := k + 1;15 16  $\left\{ // \right\}$  Array T has the transformation sequence but is in reverse order. 17 18 } Algorithms (EE3980) Unit 6.3 Dynamic Programming III May 6, 2019 5/22

### String Editing — Complexities

#### • Algorithm WagnerFischer

- for loop, lines 6–13, executes  $n \times m$  times
- for loops, lines 6,7, execute n and m times, separately
- Overall time complexity  $\mathcal{O}(mn)$

#### • Algorithm Trace while loop, lines 4-17, executes at most (m + n) times

• Time complexity  $\mathcal{O}(m+n)$ 

#### • The longest common substring problem

- Given two strings, X and Y, find a common substring Z such that Z has the most number of characters.
- Example, X = "elate" and Y = "later" the longest common substring is Z = "late". Z has 4 characters.
- The WagnerFischer algorithm can be used to find the longest common substring.
- The Trace algorithm needs to be modified to find and print out the common substring.

#### 0/1 Knapsack Problem

- The 0/1 knapsack problem is a variation of the knapsack problem.
  - Given n objects, each with profit  $p_i$  and weight  $w_i$ ,  $1 \le i \le n$ , to be placed into a sack that can hold maximum of m weight. However, there is an additional constraint that each object must be placed as a whole into the sack, or not at all. That is, find  $x_i$ ,  $1 \le i \le n$ , such that

maximize 
$$\sum_{\substack{i=1\\n}}^{n} p_i x_i$$
,  
subject to  $\sum_{\substack{i=1\\n}}^{n} w_i x_i \le m$ ,  
and  $x_i = 0$  or  $1, \quad 1 \le i \le n$ . (6.3.1)

- Let  $f_n(m)$  be the optimal solution to *n*-object 0/1 knapsack problem.
- For the *n*'th object it can either be placed into the sack or not, thus

$$f_n(m) = \max\left(f_{n-1}(m), f_{n-1}(m-w_n) + p_n\right).$$
 (6.3.2)

- $f_n(m)$  must be the larger of the following two cases
- *n*-th object is not placed into the sack, x<sub>n</sub> = 0,
  In this case, f<sub>n</sub>(m) = f<sub>n-1</sub>(m).
- *n*-th object is placed into the sack,  $x_n = 1$ ,
  - In this case,  $f_n(m) = f_{n-1}(m w_n) + p_n$ .

May 6, 2019 7 / 22

#### 0/1 Knapsack — Recursive Algorithm

 Using Eq. (6.3.2) a recursive version of the 0/1 knapsack algorithm can be formulated.

Algorithm 6.3.3. Recursive DKP

// Find the solution array x for the 0/1 knapsack problem. // Input: int n, profit p, weight w, m; Output: Solution x. 1 Algorithm DKPr(n, p, w, m, x)2 { 3 if (n = 1) then { if  $(m \ge w[1])$  then { 4 5 x[1] := 1; return p[1]; 6 } else { 7 x[1] := 0; return 0;8 } 9 10  $f_1 := \mathtt{DKPr}(n-1, p, w, m, x)$ ; // object n not placed 11 if  $(m \geq w[n])$  then // placing n'th object 12  $f_2 := \mathsf{DKPr}(n-1, p, w, m-w[n], x) + p[n];$ 13 else  $f_2 := 0$ ; // no room for additional objects 14 15 if  $(f_1 > f_2)$  then {  $x[n] := 0; \texttt{return} f_1;$ 16 17 } else { 18 19 x[n] := 1; return  $f_2$ ; 20 } 21 }

## 0/1 Knapsack — Example

• Given 3 objects,  $(p_1, p_2, p_3) = (1, 2, 5)$ ,  $(w_1, w_2, w_3) = (2, 3, 4)$ , and m = 6. Find the optimal 0/1 knapsack solution,  $(x_1, x_2, x_3)$ ,  $x_i = 0$  or  $x_i = 1$ ,  $1 \le i \le 3$ , that maximizes the profit,



## 0/1 Knapsack — Complexity

- Note that function DKPr is invoked 7 times
  - All possible combinations of x<sub>i</sub> = 0 and x<sub>i</sub> = 1, 1 ≤ i ≤ n are tested for the maximum profit.
- The time complexity of DKPr algorithm is  $\mathcal{O}(2^n)$ .
- Line 11 of DKPr algorithm can eliminate unnecessary function calls
  - If there is no room for object n then it is not necessary to call DKPr further.
- The worst-case complexity of DKPr remains as  $\mathcal{O}(2^n)$ .

## 0/1 Knapsack — Dynamic Programming Approach

#### Algorithm 6.3.4.0/1 Knapsack

// Find the solution array x for the 0/1 knapsack problem. // Input: int n, profit p, weight w, m; Output: Solution x. 1 Algorithm DKP(n, p, w, m, x)2 {  $S_0^1 := \{(0,0)\};$ 3 for i := 1 to n - 1 do { 4  $S_1^i := \{(p + p_i, w + w_i) | (p, w) \in S_0^i \text{ and } w + w_i \le m\};$ 5  $S_0^{i+1} := \operatorname{MergePurge}(S_0^i, S_1^i);$ 6 7 8 (px, wx) :=last pair in  $S_0^n$ ;  $(py, wy) := (p' + p_n, w' + w_n)$  where w' is the largest w' for any pairs 9  $(p', w') \in S_0^n$  such that  $w' + w_n \leq m$ ; 10 if (px > py) then  $x_n := 0$ ; 11 else  $x_n := 1;$ 12 **TraceBack**  $x_{n-1}, \cdots, x_1$ ; 13 14 }

Algorithms (EE3980)

Unit 6.3 Dynamic Programming III

# 0/1 Knapsack — Example Revisited

• Given 3 objects,  $(p_1, p_2, p_3) = (1, 2, 5)$ ,  $(w_1, w_2, w_3) = (2, 3, 4)$ , and m = 6. Find the optimal 0/1 knapsack solution,  $(x_1, x_2, x_3)$ ,  $x_i = 0$  or  $x_i = 1$ ,

 $1 \leq i \leq 3$ , that maximizes the profit,  $P = \sum_{i=1}^{\circ} p_i x_i$ .

• The sets of feasible solutions are derived as the following.

$$\begin{split} S_0^1 &= \{(0,0)\}\\ S_1^1 &= \{(1,2)\}\\ S_0^2 &= \{(0,0),(1,2)\}\\ S_0^2 &= \{(0,0),(1,2)\}\\ S_1^2 &= \{(2,3),(3,5)\}\\ S_0^3 &= \{(0,0),(1,2),(2,3),(3,5)\} \end{split}$$
• The last pair in  $S^2$  is  $(p_x, p_y) = (3,5)$ , and  $(p_y, w_y) = (6,6).$ • Thus the optimal solution  $\sum p_i x_i = 6$  and  $\sum w_i x_i = 6.$ • Since  $p_x \not> p_y, x_3 = 1.$ • Note that  $(p_y, w_y) - (5, 4) = (1, 2) \notin S_1^1$ , thus  $x_2 = 0.$ • Trace back again,  $(1, 2) \in S_1^0$ , therefore  $x_1 = 1.$ • Finally we have  $(x_1, x_2, x_3) = (1, 0, 1)$  and  $\sum p_i x_i = 6, \sum w_i x_i = 6.$ 

May 6, 2019

## 0/1 Knapsack — Properties

- Note that lines 9, 10 of Algorithm (6.3.4) actually requires to evaluate  $S_1^n$ .
- For the last example, we have

$$S_1^3 = \{(5,4), (6,6)\}.$$

since (7,7) and (8,9) both have  $w + w_n \nleq m$ .

• And the optimal solution can be found when  $S^3_0$  and  $S^3_1$  are merged together which is

 $S_0^4 = \{(0,0)(1,2)(2,3), (3,5), (5,4), (6,6)\}.$ 

- Note that comparing (3,5) and (5,4), the former has smaller profit, 3 < 5, but larger weight, 5 > 4, thus it is not a likely solution.
- The former, (3,5), is dominated by the latter, (5,4).
- When merging two feasible sets, the dominated solutions should be purged.
- Of course, by definition, the solutions with weight larger than *m* are also purged.

```
Algorithms (EE3980)
```

Unit 6.3 Dynamic Programming III

May 6, 2019

13/22

# 0/1 Knapsack — Dynamic Algorithm

#### Algorithm 6.3.5. 0/1 Knapsack

```
1 struct PW {
 2
          double p, w; // for profit and weight of each object
 3 }
 4 Algorithm DKnap(n, p, w, x, m)
 5 // p and w are arrays of n profits and weight; m capacity, x solution.
 6 {
          b[0] := 0; pair[1].p := 0; pair[1].w := 0; // S_0^1
 7
          t := 1; h := 1; // start and end of S_0^1
 8
          b[1] := next := 2; // next free spot in pair array
 9
          for i:=1 to n do \{ \ // \ {
m generate} \ S_0^{i+1}
10
                 k := t;
11
                 u := \texttt{Largest}(pair, t, h, w[i], m); // \texttt{ largest } u, pair[u].w + w[i] \leq m.
12
                 for j := t to u do \{ // \text{ generate } S_1^i \text{ and merge} \}
13
                       pp := pair[j].p + p[i]; ww := pair[j].w + w[i];
14
                       while ((k \le h) \text{ and } (pair[k].w \le ww)) do {
15
16
                             pair[next].p := pair[k].p; pair[next].w := pair[k].w;
                             next := next + 1; k := k + 1;
17
18
                       if ((k \leq h) \text{ and } (pair[k], w = ww)) then {
19
                             if (pp < pair[k], p) then pp := pair[k], p; // new entry dominated
20
21
                             k := k + 1;
22
                       }
                       if (pp > pair[next - 1].p) then { // new entry is dominating
23
24
                             pair[next].p := pp; pair[next].w := ww;
25
                             next := next + 1;
26
                                            Unit 6.3 Dynamic Programming III
                                                                                                    May 6, 2019
        Algorithms (EE39
```

## 0/1 Knapsack — Dynamic Algorithm, II



## 0/1 Knapsack — Example

- To find if each object is placed into the sack or not,  $x[i], 1 \le i \le n$ .
- One starts from i = n and trace back to 1.
  - The optimal solution is (pp, ww),
  - If  $(pp, ww) \in S_0^n$  then x[n] = 0
    - $(pp_{n-1}, ww_{n-1}) = (pp, ww).$
  - Otherwise x[n] = 1,
    - $(pp_{n-1}, ww_{n-1}) = (pp p[n], ww w[n]).$
- Repeat checking for  $S_0^{n-i}$  and update  $(pp_{n-i}, ww_{n-i})$ , one finds the solution  $x[i], 1 \le i \le n$ .
- For the last example,
  - $(6,6) \notin S^2$ , thus x[3] = 1,
  - $(1,2) \in S^1$ , and x[2] = 0,
  - $(1,2) \notin S^0$ , thus x[1] = 1.
  - Optimal solution x = (1, 0, 1), (p, w) = (6, 6).

#### Algorithms (EE3980)

Unit 6.3 Dynamic Programming III

## 0/1 Knapsack — Complexity

 $\bullet$  Let the space needed to store  $S_0^i$  in pair be  $|S_0^i|,$  then

$$|S_0^i| \le 2^{i-1}$$

And the total space needed for pair is

$$\sum_{i=1}^{n} |S_0^i| \le \sum_{i=1}^{n} 2^{i-1} = 2^n - 1$$

- Thus the space complexity is  $\mathcal{O}(2^n)$
- The time needed to generate  $S_0^i$  is  $\Theta(S_0^{i-1}),$  therefore the total time to generate all pairs is

$$\sum_{i=1}^{n} |S_0^{i-1}| \le \sum_{i=1}^{n-1} 2^{i-1} = 2^{n-1} - 1$$

and the time complexity is  $\mathcal{O}(2^n)$ .

- The time complexity of the Traceback function is  $\mathcal{O}(n^2)$  since it involves n searches in the range b[i] and b[i+1].
  - Each search can take  $\log(|S_0^i|) = \log(2^{i-1}) = (i-1)\log 2$ .
  - Total time is  $\sum_{i=1}^{n} (i-1) \log 2 = \mathcal{O}(n^2).$

### System Reliability

- Suppose a system is composed of *n* stages of devices connected in series.
  - Let  $r_i$  be the reliability of device  $D_i$  the probability that device  $D_i$  function normally.



device, 
$$m_i$$
 for each  $D_i$  such that

$$\begin{array}{rl} \underset{i=1}{\max imize} & \prod_{i=1}^{n} \phi_{i}(m_{i}) \\ & \text{subject to} & \sum_{i=1}^{n} c_{i}m_{i} \leq c \\ & \text{and} & m_{i} \in N \text{ and } m_{i} \geq 1, \quad 1 \leq i \leq n. \end{array}$$

$$\begin{array}{r} \text{(6.3.3)} \\ \text{o Since } m_{i} \geq 1 \text{ and } \sum c_{i} = c, \text{ we can define} \\ & u_{i} = \lfloor (c + c_{i} - \sum_{j=1}^{n} c_{j})/c_{i} \rfloor \\ & u_{i} = \lfloor (c + c_{i} - \sum_{j=1}^{n} c_{j})/c_{i} \rfloor \\ \text{o And the reliability design problem can be reformulated as} \\ & \max imize & \prod_{i=1}^{n} \phi_{i}(m_{i}) \\ & \text{subject to} & \sum_{i=1}^{n} c_{i}m_{i} \leq c \\ & \text{and} & 1 \leq m_{i} \leq u_{i}. \end{array} \end{array}$$

Algorithms (EE3980)

May 6, 2019 20 / 2

### Reliability Design Problem, II

• Given the n stages and the total cost of the optimal solution is  $f_n(c)$ , then the multiplicity,  $m_n$ , for stage n should be determined by

$$f_n(c) = \max_{m_n=1}^{u_n} \phi_n(m_n) f_{n-1}(c - c_n m_n)$$
(6.3.6)

It is also assumed that  $f_0(c) = 1$  for any c.

- Then this problem is similar to the 0/1 knapsack problem and the dynamic approach can be used to find the solution of the problem.
- Example, 3 devices,  $D_1$ ,  $D_2$  and  $D_3$ , with  $r_1 = 0.9$ ,  $r_2 = 0.8$   $r_3 = 0.5$ ,  $c_1 = 30$ ,  $c_2 = 15$ ,  $c_3 = 20$ , and the total cost  $c \le 105$ . (It can derived that  $u_1 = 2$ ,  $u_2 = 3$  and  $u_3 = 3$ ).

Unit 6.3 Dynamic Programming III

Summary

- String editing problem
  - $\mathcal{O}(mn)$

Algorithms (EE3980)

- 0/1 knapsack problem
  - $\mathcal{O}(2^n)$
- System reliability design
  - Large time complexity

May 6, 2019