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String Editing Problem

e Given two strings X ="2125---x,” and Y="y192 - yn,', where x;,

1 <i<m, and y;, 1 <j< m, are members of a finite set of symbols known
as the alphabet.

@ The string editing problem is to transform X into Y using the following
editing operations with corresponding cost and to find the sequence of
operations that minimizes the total cost.

o Delete the symbol z; from X with cost D(x;),
o Insert the symbol y; to Y with cost I(y;),
o Change the symbol z; of X into y; with cost C(z;, ;).
o Note that keep z; to become y; has no cost.
@ Example, X ="elate” and Y ="later". Total cost to transform X into Yis

D(e) + I(r).

Step X b Cost
1 elate D(e)
2 elate [ 0
3 elate  la 0
4 elate lat 0
5 elate  late 0
6 elate  later I(r)

D(e) + I(r)
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String Editing — Algorithm

Algorithm 6.3.1. Wagner Fischer Algorithm

// Transform X into Y with minimum cost using matrix M.
// Input: int n, m, strings X, Y, cost D, I, C'; Output: min cost matrix M.
1 Algorithm WagnerFischer(n,m, X, Y, D, I, C, M)

3 Mi[0,0] :=0;
4 for ¢:=1 to ndo M[i,0] := M[i— 1,0] + D(X[7]);

5 for j:=1 to m do M|0,j] := M|0,j— 1] + I(Y]j]);

6 for i:=1 to ndo {

7 for j:=1to mdo {

8 if (X[¢] = Y[j]) then my := 0; else my := C(X[7], Y[j]);
9 mg := M[i—1,j] + D(X[i]) ;

10 my = Mliyj— 1] + I YIj]);

11 M([i, j] := min(mq, ma, ms) ;

12 }

13 } // When done, M[n, m| contains the minimum cost of the transformation
14 }
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String Editing — Example

@ Example. Given X ="elate”, Y ="later” and the cost functions
D(x) - 11 [(y> - 1' C(Zl?,’y) :2' X,y € {A7 ,Z,CL,"' 7Z}v x;é Y.

@ Thus the transformation sequence is

5 1l g ; Z g Step | operation | YV

e|l1 2 3 4 3 4 ; Ee'ete ? l

|2 1 2 3 4 5 cep

al3 2 1 2 3 34 3 Keep a | la

tl4 3 2 1 2 3 4 | Keep t | lat

e|!5 4 3 2 1 2 5 Keep e | late

! 6 Insert  r | later

Matrix MOf _ @ And the total cost is
WagnerFischer algorithm. D(e) + I(r) = 2

@ After WagnerFischer algorithm, the following algorithm traces the M matrix
to generate the transformation sequence.

e Note that array T has the transformation sequence but is in reverse order.
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String

2 {

18 }

Editing — Transformation Trace

Algorithm 6.3.2. Trace

// Trace the matrix M to find the transformation operations.
// Input: int n, m, cost D, I, C'and M; Output: T transformation.
1 Algorithm Trace(n,m, M, D, I, C, T)

i:=mn;j:=m; k:=0;
while (¢ > 0 or j > 0) do {
if (M[i,j] = M[i— 1,j— 1]) then { // Keep X[¢] for Y[j].
Tk ="="5i:=i—1;j:=j—1; k:=k+1;
¥

else if (M[i,j] = M[i— 1,j— 1] + C(X][i], Y[j])) then { // Change.
T :="Ci:=i—1;j:=5—1; k:=k+1;
}

else if (=0 or (M[i,j] = M[i— 1,7] + D(X[¢]))) then { // Delete.
Tkl :="D';i:=1—1; k:=k+1;
t

else { // Add YJj].
Tk =1 j:=7—1; k:=k+1;
¥

} // Array T has the transformation sequence but is in reverse order.
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Editing — Complexities

@ Algorithm WagnerFischer

for loop, lines 613, executes n X m times
for loops, lines 6,7, execute n and m times, separately
Overall time complexity O(mn)

@ Algorithm Trace while loop, lines 4-17, executes at most (m + n) times

Time complexity O(m + n)

@ The longest common substring problem

Given two strings, X and Y, find a common substring Z such that Z has the
most number of characters.

Example, X ="elate” and Y ="later” the longest common substring is

Z ="late". Z has 4 characters.

The WagnerFischer algorithm can be used to find the longest common
substring.

5/22

The Trace algorithm needs to be modified to find and print out the common

substring.
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0/1 Knapsack Problem

@ The 0/1 knapsack problem is a variation of the knapsack problem.

e Given n objects, each with profit p; and weight w;, 1 < i < n, to be placed
into a sack that can hold maximum of m weight. However, there is an
additional constraint that each object must be placed as a whole into the
sack, or not at all. That is, find z;, 1 < 7 < n, such that

maximize E Di;,

=1
o 6.3.1
subject to Z wiz; < m, ( )
3=
and-, (o= 05er 1< i< n.

@ Let f,(m) be the optimal solution to n-object 0/1 knapsack problem.
@ For the n'th object it can either be placed into the sack or not, thus

fn(m) = max (fn_l(m),fn_l(m — wy) + pn). (6.3.2)

o f,(m) must be the larger of the following two cases
e n-th object is not placed into the sack, z, = 0,

@ In this case, f(m) = fr—1(m).
e n-th object is placed into the sack, =, =1,

o In this case, fr,(m) = fn—1(m — wy) + pn.
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0/1 Knapsack — Recursive Algorithm

e Using Eq. (6.3.2) a recursive version of the 0/1 knapsack algorithm can be
formulated.

Algorithm 6.3.3. Recursive DKP

// Find the solution array z for the 0/1 knapsack problem.
// Input: int n, profit p, weight w, m; Output: Solution z.

1 Algorithm DKPr(n, p, w, m, x)

2 {

3 if (n=1) then {

4 if (m > w[l1]) then {

5 z[1] := 1; return p[1];

6 }

7 else {

8 z[1] := 0; return O;

9 }

10 }

11 f1 :=DKPr(n — 1, p, w, m, x); // object n not placed

12 if (m > w[n]) then // placing n'th object

13 fo := DKPr(n — 1, p, w, m — w[n], ) + p[n];

14 else fo := 0; // no room for additional objects

15 if (fi > f2) then {

16 z[n] := 0; return f; ;

17

18 else {

19 z[n] := 1; return f5;

v
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0/1 Knapsack — Example

e Given 3 objects, (p1,p2,p3) = (1,2,5), (wy, we, ws) = (2,3,4), and m = 6.
Find the optimal 0/1 knapsack solution, (z1, 22, z3), x; = 0 or z; = 1,
1 < i< 3, that maximizes the profit,

3
=1

@ The function DKPr is invoked by calling
P =DKPr(3, p, w, 6, x)
e And the calling sequence of the function is

// DKPr calling sequence
DKPr(3, p, w, 6, x)
DKPr(2, p, w, 6, x) // object 3 not placed
DKPr(1, p, w, 6, ) // object 2 not placed
P=1;2z=(1,0,0);
DKPr(1, p, w, 3, ) // object 2 placed
P=3;2=(1,1,0);
DKPr(2, p, w, 2, ) // object 3 placed
DKPr(1, p, w, 2, ) // object 2 not placed
P=6;x=(1,0,1);
DKPr(1, p, w, —1, x) // object 2 placed
P=—c0;z=(0,1,1);
Maximum profit P = 6, z = (1,0, 1).
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0/1 Knapsack — Complexity

@ Note that function DKPr is invoked 7 times

e All possible combinations of z; = 0 and z; = 1, 1 < ¢ < n are tested for the
maximum profit.

The time complexity of DKPr algorithm is O(2").

@ Line 11 of DKPr algorithm can eliminate unnecessary function calls
o If there is no room for object n then it is not necessary to call DKPr further.

@ The worst-case complexity of DKPr remains as O(2").
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0/1 Knapsack — Dynamic Programming Approach

// Find the solution array x for the 0/1 knapsack problem.
// Input: int n, profit p, weight w, m; Output: Solution .
1 Algorithm DKP(n, p, w, m, x)

24

3 So :={(0,0)};

4 for i:=1ton—1do {

5 St = {(p+ pi, w+ w)|(p, w) € S5 and w+ w; < m};
6 St .= MergePurge(S¢, S7);

7 }

8 (px, wx) := last pair in S§';

9 (py, wy) := (p’ + pn, w’ + wy,) where w’ is the largest w’ for any pairs
10 (p’,w') € S§ such that w’ + w, < m;

11 if (pxz > py) then z, :=0;

12 else z, :=1;

13 TraceBack z,—1,--- ,21;

14 }

Algorithm 6.3.4. 0/1 Knapsack
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0/1 Knapsack — Example Revisited

e Given 3 objects, (p1,p2,p3) = (1,2,5), (w1, we, w3) = (2,3,4), and m = 6.
Find the optimal 0/1 knapsack solution, (1,22, 3), x; = 0 or z; = 1,

3
1 <7< 3, that maximizes the profit, P = Zpixi .
@ The sets of feasible solutions are derived asz_tlhe following.
So = {(0,0)}
Si =A{(1,2)}
S; = {(0,0),(1,2)}
St ={(2,3),(3,5)}
Sy = {(0,0),(1,2),(2,3),(3,5)}

@ Thus the optimal solution > p;z; = 6 and > w;x; = 6.
e Since p; # py, 73 = 1.
o Note that (py, wy) — (5,4) = (1,2) ¢ S}, thus z = 0.
o Trace back again, (1,2) € 9, therefore z; = 1.
o Finally we have (21,22, 23) = (1,0,1) and > p;z; = 6, > w;z; = 6.
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0/1 Knapsack — Properties

@ Note that lines 9, 10 of Algorithm (6.3.4) actually requires to evaluate S
@ For the last example, we have

813 > {(57 4)7 (67 6)}

since (7,7) and (8,9) both have w+ w,, £ m.

@ And the optimal solution can be found when S} and S} are merged together
which is
So =1{(0,0)(1,2)(2,3), (3,5), (5,4), (6,6)}.

@ Note that comparing (3,5) and (5,4), the former has smaller profit, 3 < 5,
but larger weight, 5 > 4, thus it is not a likely solution.

@ The former, (3,5), is dominated by the latter, (5,4).

@ When merging two feasible sets, the dominated solutions should be purged.

@ Of course, by definition, the solutions with weight larger than m are also
purged.
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0/1 Knapsack — Dynamic Algorithm

Algorithm 6.3.5. 0/1 Knapsack

1 struct PW {

2 double p, w; // for profit and weight of each object

3}

4 Algorithm DKnap(n, p, w, T, m)

5 // p and w are arrays of n profits and weight; m capacity, x solution.

6 {

7 b[0] := 0; pair[l].p := 0; pair[l].w:=0; // S}

8 t:=1; h:=1; // start and end of S,

9 b[l] := next := 2; // next free spot in pair array
10 for ¢:=1 to n do { // generate Sé+1
11 k=t
12 u := Largest(pasir, t, h, w[i], m); // largest u, pair(u].w + w[i] < m.
13 for j:= t to wdo { // generate Si and merge
14 pp := pair(j].p + p[i] ; ww := pairlj].w+ w[d];
15 while ((k < h) and (pair(k].w < ww)) do {
16 pair[next].p := pair[k].p; pair[next].w := pair(k].w;
17 next := next+ 1; k:=k+ 1;
18
19 if ((k < h) and (pair(k].w = ww)) then {
20 if (pp < pair[k].p) then pp := pair[k].p; // new entry dominated
21 k:=k+1;
22
23 if (pp > pair{next — 1].p) then { // new entry is dominating
24 pair[next].p := pp; pair[next].w := ww;
25 next := next + 1;
26 }

o . IN e/ e 11 e T 11
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0/1 Knapsack — Dynamic Algorithm, Il

27
28
29
30
31
32
33
34
35

36 }

while ((k < h) and (pair(k].p < pair[next — 1].p)) do k:= k+ 1;

}

while (k < h) do { // merge remaining terms from S’

pair[next].p := pair[k].p; pair[nezt].w := pair[k].w;
next := next+ 1; k:=k+1;

}
t:
}

TraceBack(n, p, w, m, pair, z) ; // find solution x

=h+1; h:=next—1; b[i+ 1] := next; // initialize for Sf)'*'l

0/1 Knapsack — Example

@ In the above algorithm
e pairis an array to store all feasible solutions, S5,0 < i < n.

b is an array to store the indices of S in pair array

Function Largest(pair, t, h, w[i], m) finds the largest u satisfying

pair{u].w+ wli] < m,

First S5 is copied into S,
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Then S ' is generated and merged into S,
Lines 19-26 remove dominated entries

t<u<h

The for loop of lines 10-34 generates Sy, 1 < i < n.
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1 <7< 3, that maximizes the profit, P = Zpia:i .

After executing the algorithm DKnap, we have

@ Given 3 objects, (pl,pg,pg) = (1, 2,5), (wl, (R ’LU3> = (2,3,4), and m = 6.
Find the optimal 0/1 knapsack solution, (z1, 22, 3), x; = 0 or z; = 1,

1 2 3 4 8 9 10 11 12
pair[]l.p 0 5 i- 09 o 1 2 5 6
pair[].w 0 04 AK A 0O 2 3 4 6
T T T T
b[0]  bl1] b[2] b[3]
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e Note that (p,w) = (3,5) € S5 but not S§ since it is dominated by (5,4).
@ The last entry, (pp, ww) = (6,6), is the optimal solution.
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0/1 Knapsack — Example

@ To find if each object is placed into the sack or not, z[i], 1 < i < n.
One starts from 7 = n and trace back to 1.

e The optimal solution is (pp, ww),
o If (pp, ww) € Sy then z[n] =0

® (ppn—1, wwn—1) = (pp, ww).
o Otherwise z[n] =1,

° (ppn—1,wwn—1) = (pp — p[n], ww — wn]).

@ Repeat checking for S7" and update (pp,,—;, ww,_;), one finds the solution
i, 1 < i< n.
@ For the last example,
o (6,6) ¢ S%, thus 2[3] = 1,
o (1,2) € S', and z[2] =0,
o (1,2) ¢ S°, thus 2[1] = 1.
e Optimal solution z= (1,0,1), (p, w) = (6,6).
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0/1 Knapsack — Complexity

. then

o Let the space needed to store S in pair be |S
|S’(l)‘ S 22'—1

And the total space needed for pair is

iqszﬂ < i?’—l = 9% ]
=1 =1

@ Thus the space complexity is O(2")

o The time needed to generate S} is (S '), therefore the total time to
generate all pairs is

n n—1
Z|Sf(i)—1|§22z’—1:2n—1_1
=1 =1

and the time complexity is O(2").
@ The time complexity of the Traceback function is O(n?) since it involves n
searches in the range b[i] and b7+ 1].
o Each search can take log(|Sj|) = log(2°") = (i — 1) log2.

e Total time is Z(z— 1)log2 = O(n?).

=1
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System Reliability

normally.

=1

@ Suppose a system is composed of n stages of devices connected in series.
o Let r; be the reliability of device D; — the probability that device D; function

e Then the reliability of the system is H i =TiT2 " Tn.

—>

Dr

[
>

D2 >

Ds

e o

D, —>J

=1

@ To improve the reliability of the system, one can replace stage 7 by multiple,
m,, devices connected in parallel.
e Then the reliability of stage i becomes ¢;(m;) =1 — (1 — r;)™.

e The system reliability becomes H@(ml)

Y

A 4

e o

Algorithms (EE3980)

Unit 6.3 Dynamic Programming Ill

Reliability Design Problem
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n
maximize H oi(m;)
<7

n
g cm; < ¢

subject to

and

=1

@ Assuming device D; costs c; each piece, and the total cost of the entire
system is ¢, the reliability design problem is to find the multiplicity of each
device, m; for each D; such that

miENandmizl,

@ Since m; > 1 and ) ¢; = ¢, we can define

n

wi= (et ci= > c)/ci

J=1

@ And the reliability design problem can be reformulated as

n
maximize H oi(m;)
=1

subject to Z cim; < ¢
i=1

and

n
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1 <1< n

(6.3.3)

(6.3.4)

(6.3.5)
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Reliability Design Problem, Il

@ Given the n stages and the total cost of the optimal solution is f,,(c), then
the multiplicity, m,,, for stage n should be determined by

Un,

fn(c) = max ¢n(mn)fn—1(c N Cnmn) (6.3.6)

mp=1

It is also assumed that fy(c) = 1 for any c.

@ Then this problem is similar to the 0/1 knapsack problem and the dynamic
approach can be used to find the solution of the problem.

@ Example, 3 devices, D1, Dy and D3, with r = 0.9, n = 0.8 r3 = 0.5,
c1 = 30, co =15, ¢3 = 20, and the total cost ¢ < 105. (It can derived that
U,1:2, u2:3and U3:3)
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Summary

@ String editing problem
o O(mn)

@ 0/1 knapsack problem
o O(2")

@ System reliability design
e Large time complexity
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