
Unit 6.3 Dynamic Programming III

Algorithms

EE3980

May 6, 2019

Algorithms (EE3980) Unit 6.3 Dynamic Programming III May 6, 2019 1 / 22

String Editing Problem
Given two strings X =“x1x2 · · · xn” and Y =“y1y2 · · · ym”, where xi,
1 ≤ i ≤ n, and yj, 1 ≤ j ≤ m, are members of a finite set of symbols known
as the alphabet.
The string editing problem is to transform X into Y using the following
editing operations with corresponding cost and to find the sequence of
operations that minimizes the total cost.

Delete the symbol xi from X with cost D(xi),
Insert the symbol yj to Y with cost I(yj),
Change the symbol xi of X into yj with cost C(xi, yj).
Note that keep xi to become yj has no cost.

Example, X =“elate” and Y =“later”. Total cost to transform X into Y is
D(e) + I(r).

Step X Y Cost
1 elate D(e)
2 elate l 0
3 elate la 0
4 elate lat 0
5 elate late 0
6 elate later I(r)

D(e) + I(r)
Algorithms (EE3980) Unit 6.3 Dynamic Programming III May 6, 2019 2 / 22

String Editing — Algorithm

Algorithm 6.3.1. Wagner Fischer Algorithm
// Transform X into Y with minimum cost using matrix M.
// Input: int n, m, strings X, Y, cost D, I, C ; Output: min cost matrix M.

1 Algorithm WagnerFischer(n,m,X,Y,D, I,C,M)
2 {
3 M[0, 0] := 0 ;
4 for i := 1 to n do M[i, 0] := M[i − 1, 0] + D(X[i]) ;
5 for j := 1 to m do M[0, j] := M[0, j − 1] + I(Y[j]) ;
6 for i := 1 to n do {
7 for j := 1 to m do {
8 if (X[i] = Y[j]) then m1 := 0 ; else m1 := C(X[i],Y[j]) ;
9 m2 := M[i − 1, j] + D(X[i]) ;

10 m3 := M[i, j − 1] + I(Y[j]) ;
11 M[i, j] := min(m1,m2,m3) ;
12 }
13 } // When done, M[n,m] contains the minimum cost of the transformation
14 }

Algorithms (EE3980) Unit 6.3 Dynamic Programming III May 6, 2019 3 / 22

String Editing — Example

Example. Given X =“elate”, Y =“later” and the cost functions
D(x) = 1, I(y) = 1, C(x, y) = 2, x, y ∈ {A, · · · ,Z, a, · · · , z}, x ̸= y.

l a t e r
0 1 2 3 4 5

e 1 2 3 4 3 4
l 2 1 2 3 4 5
a 3 2 1 2 3 4
t 4 3 2 1 2 3
e 5 4 3 2 1 2

Matrix M of
WagnerFischer algorithm.

Thus the transformation sequence is
Step operation Y

1 Delete e
2 Keep l l
3 Keep a la
4 Keep t lat
5 Keep e late
6 Insert r later

And the total cost is
D(e) + I(r) = 2.

After WagnerFischer algorithm, the following algorithm traces the M matrix
to generate the transformation sequence.

Note that array T has the transformation sequence but is in reverse order.

Algorithms (EE3980) Unit 6.3 Dynamic Programming III May 6, 2019 4 / 22

String Editing — Transformation Trace
Algorithm 6.3.2. Trace

// Trace the matrix M to find the transformation operations.
// Input: int n, m, cost D, I, C and M ; Output: T transformation.

1 Algorithm Trace(n,m,M,D, I,C,T)
2 {
3 i := n ; j := m ; k := 0 ;
4 while (i > 0 or j > 0) do {
5 if (M[i, j] = M[i − 1, j − 1]) then { // Keep X[i] for Y[j].
6 T[k] := ’ − ’ ; i := i − 1 ; j := j − 1 ; k := k + 1 ;
7 }
8 else if (M[i, j] = M[i − 1, j − 1] + C(X[i],Y[j])) then { // Change.
9 T[k] := ’C’ ; i := i − 1 ; j := j − 1 ; k := k + 1 ;

10 }
11 else if (i = 0 or (M[i, j] = M[i − 1, j] + D(X[i]))) then { // Delete.
12 T[k] := ‘D’ ; i := i − 1 ; k := k + 1 ;
13 }
14 else { // Add Y[j].
15 T[k] := ‘I’ ; j := j − 1 ; k := k + 1 ;
16 }
17 } // Array T has the transformation sequence but is in reverse order.
18 }

Algorithms (EE3980) Unit 6.3 Dynamic Programming III May 6, 2019 5 / 22

String Editing — Complexities

Algorithm WagnerFischer
for loop, lines 6–13, executes n × m times
for loops, lines 6,7, execute n and m times, separately
Overall time complexity O(mn)

Algorithm Trace while loop, lines 4-17, executes at most (m + n) times
Time complexity O(m + n)

The longest common substring problem
Given two strings, X and Y, find a common substring Z such that Z has the
most number of characters.
Example, X =“elate” and Y =“later” the longest common substring is
Z =“late”. Z has 4 characters.
The WagnerFischer algorithm can be used to find the longest common
substring.
The Trace algorithm needs to be modified to find and print out the common
substring.

Algorithms (EE3980) Unit 6.3 Dynamic Programming III May 6, 2019 6 / 22

0/1 Knapsack Problem
The 0/1 knapsack problem is a variation of the knapsack problem.

Given n objects, each with profit pi and weight wi, 1 ≤ i ≤ n, to be placed
into a sack that can hold maximum of m weight. However, there is an
additional constraint that each object must be placed as a whole into the
sack, or not at all. That is, find xi, 1 ≤ i ≤ n, such that

maximize
n∑

i=1

pixi,

subject to
n∑

i=1

wixi ≤ m,

and xi = 0 or 1, 1 ≤ i ≤ n.

(6.3.1)

Let fn(m) be the optimal solution to n-object 0/1 knapsack problem.
For the n’th object it can either be placed into the sack or not, thus

fn(m) = max
(

fn−1(m), fn−1(m − wn) + pn

)
. (6.3.2)

fn(m) must be the larger of the following two cases
n-th object is not placed into the sack, xn = 0,

In this case, fn(m) = fn−1(m).
n-th object is placed into the sack, xn = 1,

In this case, fn(m) = fn−1(m − wn) + pn.
Algorithms (EE3980) Unit 6.3 Dynamic Programming III May 6, 2019 7 / 22

0/1 Knapsack — Recursive Algorithm
Using Eq. (6.3.2) a recursive version of the 0/1 knapsack algorithm can be
formulated.

Algorithm 6.3.3. Recursive DKP
// Find the solution array x for the 0/1 knapsack problem.
// Input: int n, profit p, weight w, m ; Output: Solution x.

1 Algorithm DKPr(n, p, w, m, x)
2 {
3 if (n = 1) then {
4 if (m ≥ w[1]) then {
5 x[1] := 1 ; return p[1] ;
6 }
7 else {
8 x[1] := 0 ; return 0 ;
9 }

10 }
11 f1 := DKPr(n − 1, p, w, m, x) ; // object n not placed
12 if (m ≥ w[n]) then // placing n’th object
13 f2 := DKPr(n − 1, p, w,m − w[n], x) + p[n] ;
14 else f2 := 0 ; // no room for additional objects
15 if (f1 > f2) then {
16 x[n] := 0 ; return f1 ;
17 }
18 else {
19 x[n] := 1 ; return f2 ;
20 }
21 }

Algorithms (EE3980) Unit 6.3 Dynamic Programming III May 6, 2019 8 / 22

0/1 Knapsack — Example
Given 3 objects, (p1, p2, p3) = (1, 2, 5), (w1,w2,w3) = (2, 3, 4), and m = 6.
Find the optimal 0/1 knapsack solution, (x1, x2, x3), xi = 0 or xi = 1,
1 ≤ i ≤ 3, that maximizes the profit,

P =
3∑

i=1

pixi.

The function DKPr is invoked by calling
P =DKPr(3, p,w, 6, x)

And the calling sequence of the function is

// DKPr calling sequence
DKPr(3, p, w, 6, x)

DKPr(2, p, w, 6, x) // object 3 not placed
DKPr(1, p, w, 6, x) // object 2 not placed

P = 1 ; x = (1, 0, 0) ;
DKPr(1, p, w, 3, x) // object 2 placed

P = 3 ; x = (1, 1, 0) ;
DKPr(2, p, w, 2, x) // object 3 placed

DKPr(1, p, w, 2, x) // object 2 not placed
P = 6 ; x = (1, 0, 1) ;

DKPr(1, p, w,−1, x) // object 2 placed
P = −∞ ; x = (0, 1, 1) ;

Maximum profit P = 6, x = (1, 0, 1).

Algorithms (EE3980) Unit 6.3 Dynamic Programming III May 6, 2019 9 / 22

0/1 Knapsack — Complexity

Note that function DKPr is invoked 7 times
All possible combinations of xi = 0 and xi = 1, 1 ≤ i ≤ n are tested for the
maximum profit.

The time complexity of DKPr algorithm is O(2n).
Line 11 of DKPr algorithm can eliminate unnecessary function calls

If there is no room for object n then it is not necessary to call DKPr further.
The worst-case complexity of DKPr remains as O(2n).

Algorithms (EE3980) Unit 6.3 Dynamic Programming III May 6, 2019 10 / 22

0/1 Knapsack — Dynamic Programming Approach

Algorithm 6.3.4. 0/1 Knapsack
// Find the solution array x for the 0/1 knapsack problem.
// Input: int n, profit p, weight w, m ; Output: Solution x.

1 Algorithm DKP(n, p,w,m, x)
2 {
3 S 1

0 := {(0, 0)} ;
4 for i := 1 to n − 1 do {
5 S i

1 := {(p + pi,w + wi)|(p,w) ∈ S i
0 and w + wi ≤ m} ;

6 S i+1
0 := MergePurge(S i

0,S i
1) ;

7 }
8 (px,wx) := last pair in S n

0 ;
9 (py,wy) := (p ′ + pn,w ′ + wn) where w ′ is the largest w ′ for any pairs

10 (p ′,w ′) ∈ S n
0 such that w ′ + wn ≤ m ;

11 if (px > py) then xn := 0 ;
12 else xn := 1 ;
13 TraceBack xn−1, · · · , x1 ;
14 }

Algorithms (EE3980) Unit 6.3 Dynamic Programming III May 6, 2019 11 / 22

0/1 Knapsack — Example Revisited
Given 3 objects, (p1, p2, p3) = (1, 2, 5), (w1,w2,w3) = (2, 3, 4), and m = 6.
Find the optimal 0/1 knapsack solution, (x1, x2, x3), xi = 0 or xi = 1,

1 ≤ i ≤ 3, that maximizes the profit, P =

3∑

i=1

pixi .

The sets of feasible solutions are derived as the following.
S 1
0 = {(0, 0)}

S 1
1 = {(1, 2)}

S 2
0 = {(0, 0), (1, 2)}

S 2
1 = {(2, 3), (3, 5)}

S 3
0 = {(0, 0), (1, 2), (2, 3), (3, 5)}

The last pair in S2 is (px, py) = (3, 5), and
(py,wy) = (6, 6).
Thus the optimal solution

∑
pixi = 6 and

∑
wixi = 6.

Since px ≯ py, x3 = 1.
Note that (py,wy)− (5, 4) = (1, 2) /∈ S1

1, thus x2 = 0.
Trace back again, (1, 2) ∈ S0

1, therefore x1 = 1.
Finally we have (x1, x2, x3) = (1, 0, 1) and

∑
pixi = 6,

∑
wixi = 6.

Algorithms (EE3980) Unit 6.3 Dynamic Programming III May 6, 2019 12 / 22

0/1 Knapsack — Properties

Note that lines 9, 10 of Algorithm (6.3.4) actually requires to evaluate S n
1 .

For the last example, we have

S 3
1 = {(5, 4), (6, 6)}.

since (7, 7) and (8, 9) both have w + wn ≰ m.
And the optimal solution can be found when S3

0 and S3
1 are merged together

which is
S 4
0 = {(0, 0)(1, 2)(2, 3), (3, 5), (5, 4), (6, 6)}.

Note that comparing (3, 5) and (5, 4), the former has smaller profit, 3 < 5,
but larger weight, 5 > 4, thus it is not a likely solution.
The former, (3, 5), is dominated by the latter, (5, 4).
When merging two feasible sets, the dominated solutions should be purged.
Of course, by definition, the solutions with weight larger than m are also
purged.

Algorithms (EE3980) Unit 6.3 Dynamic Programming III May 6, 2019 13 / 22

0/1 Knapsack — Dynamic Algorithm
Algorithm 6.3.5. 0/1 Knapsack

1 struct PW {
2 double p, w ; // for profit and weight of each object
3 }
4 Algorithm DKnap(n, p, w, x, m)
5 // p and w are arrays of n profits and weight; m capacity, x solution.
6 {
7 b[0] := 0 ; pair[1].p := 0 ; pair[1].w := 0 ; // S1

0

8 t := 1 ; h := 1 ; // start and end of S1
0

9 b[1] := next := 2 ; // next free spot in pair array
10 for i := 1 to n do { // generate Si+1

0
11 k := t ;
12 u := Largest(pair, t, h, w[i], m) ; // largest u, pair[u].w + w[i] ≤ m.
13 for j := t to u do { // generate Si

1 and merge
14 pp := pair[j].p + p[i] ; ww := pair[j].w + w[i] ;
15 while ((k ≤ h) and (pair[k].w ≤ ww)) do {
16 pair[next].p := pair[k].p ; pair[next].w := pair[k].w ;
17 next := next + 1 ; k := k + 1 ;
18 }
19 if ((k ≤ h) and (pair[k].w = ww)) then {
20 if (pp < pair[k].p) then pp := pair[k].p ; // new entry dominated
21 k := k + 1 ;
22 }
23 if (pp > pair[next − 1].p) then { // new entry is dominating
24 pair[next].p := pp ; pair[next].w := ww ;
25 next := next + 1 ;
26 }
27 while ((k ≤ h) and (pair[k].p ≤ pair[next − 1].p)) do k := k + 1 ;
28 }
29 while (k ≤ h) do { // merge remaining terms from Si

1
30 pair[next].p := pair[k].p ; pair[next].w := pair[k].w ;
31 next := next + 1 ; k := k + 1 ;
32 }
33 t := h + 1 ; h := next − 1 ; b[i + 1] := next ; // initialize for Si+1

0
34 }
35 TraceBack(n, p,w, m, pair, x) ; // find solution x
36 }

Algorithms (EE3980) Unit 6.3 Dynamic Programming III May 6, 2019 14 / 22

0/1 Knapsack — Dynamic Algorithm, II

27 while ((k ≤ h) and (pair[k].p ≤ pair[next − 1].p)) do k := k + 1 ;
28 }
29 while (k ≤ h) do { // merge remaining terms from Si

1
30 pair[next].p := pair[k].p ; pair[next].w := pair[k].w ;
31 next := next + 1 ; k := k + 1 ;
32 }
33 t := h + 1 ; h := next − 1 ; b[i + 1] := next ; // initialize for Si+1

0
34 }
35 TraceBack(n, p,w, m, pair, x) ; // find solution x
36 }

In the above algorithm
pair is an array to store all feasible solutions, Si

0, 0 ≤ i ≤ n.
b is an array to store the indices of Si

0 in pair array
Function Largest(pair, t, h,w[i],m) finds the largest u satisfying

pair[u].w + w[i] ≤ m, t ≤ u ≤ h

The for loop of lines 10–34 generates Si
0, 1 ≤ i ≤ n.

First Si−1
0 is copied into Si

0

Then Si−1
1 is generated and merged into Si

0

Lines 19-26 remove dominated entries
Algorithms (EE3980) Unit 6.3 Dynamic Programming III May 6, 2019 15 / 22

0/1 Knapsack — Example

Given 3 objects, (p1, p2, p3) = (1, 2, 5), (w1,w2,w3) = (2, 3, 4), and m = 6.
Find the optimal 0/1 knapsack solution, (x1, x2, x3), xi = 0 or xi = 1,

1 ≤ i ≤ 3, that maximizes the profit, P =

3∑

i=1

pixi .

After executing the algorithm DKnap, we have

1 2 3 4 5 6 7 8 9 10 11 12

pair[].p 0 0 1 0 1 2 3 0 1 2 5 6

pair[].w 0 0 2 0 2 3 5 0 2 3 4 6

↑ ↑ ↑ ↑
b[0] b[1] b[2] b[3]

Note that (p,w) = (3, 5) ∈ S3
0 but not S4

0 since it is dominated by (5, 4).
The last entry, (pp,ww) = (6, 6), is the optimal solution.

Algorithms (EE3980) Unit 6.3 Dynamic Programming III May 6, 2019 16 / 22

0/1 Knapsack — Example

To find if each object is placed into the sack or not, x[i], 1 ≤ i ≤ n.
One starts from i = n and trace back to 1.

The optimal solution is (pp,ww),
If (pp,ww) ∈ Sn

0 then x[n] = 0

(ppn−1,wwn−1) = (pp,ww).
Otherwise x[n] = 1,

(ppn−1,wwn−1) = (pp − p[n],ww − w[n]).

Repeat checking for Sn−i
0 and update (ppn−i,wwn−i), one finds the solution

x[i], 1 ≤ i ≤ n.
For the last example,

(6, 6) /∈ S2, thus x[3] = 1,
(1, 2) ∈ S1, and x[2] = 0,
(1, 2) /∈ S0, thus x[1] = 1.
Optimal solution x = (1, 0, 1), (p,w) = (6, 6).

Algorithms (EE3980) Unit 6.3 Dynamic Programming III May 6, 2019 17 / 22

0/1 Knapsack — Complexity
Let the space needed to store Si

0 in pair be |Si
0|, then

|Si
0| ≤ 2i−1

And the total space needed for pair is
n∑

i=1

|Si
0| ≤

n∑

i=1

2i−1 = 2n − 1

Thus the space complexity is O(2n)

The time needed to generate Si
0 is Θ(Si−1

0), therefore the total time to
generate all pairs is

n∑

i=1

|Si−1
0 | ≤

n−1∑

i=1

2i−1 = 2n−1 − 1

and the time complexity is O(2n).
The time complexity of the Traceback function is O(n2) since it involves n
searches in the range b[i] and b[i + 1].

Each search can take log(|Si
0|) = log(2i−1) = (i − 1) log 2.

Total time is
n∑

i=1

(i − 1) log 2 = O(n2).

Algorithms (EE3980) Unit 6.3 Dynamic Programming III May 6, 2019 18 / 22

System Reliability
Suppose a system is composed of n stages of devices connected in series.

Let ri be the reliability of device Di – the probability that device Di function
normally.

Then the reliability of the system is
n∏

i=1

ri = r1r2 · · · rn.

D1 D2 D3 Dn

To improve the reliability of the system, one can replace stage i by multiple,
mi, devices connected in parallel.

Then the reliability of stage i becomes ϕi(mi) = 1− (1− ri)
mi .

The system reliability becomes
n∏

i=1

ϕi(mi).

D1

D1

D1

D2

D2

D3

D3

D3

D3

Dn
Dn

Dn

Algorithms (EE3980) Unit 6.3 Dynamic Programming III May 6, 2019 19 / 22

Reliability Design Problem
Assuming device Di costs ci each piece, and the total cost of the entire
system is c, the reliability design problem is to find the multiplicity of each
device, mi for each Di such that

maximize
n∏

i=1

ϕi(mi)

subject to
n∑

i=1

cimi ≤ c

and mi ∈ N and mi ≥ 1, 1 ≤ i ≤ n.

(6.3.3)

Since mi ≥ 1 and
∑

ci = c, we can define

ui = ⌊(c + ci −
n∑

j=1

cj)/ci⌋ (6.3.4)

And the reliability design problem can be reformulated as

maximize
n∏

i=1

ϕi(mi)

subject to
n∑

i=1

cimi ≤ c

and 1 ≤ mi ≤ ui.

(6.3.5)

Algorithms (EE3980) Unit 6.3 Dynamic Programming III May 6, 2019 20 / 22

Reliability Design Problem, II

Given the n stages and the total cost of the optimal solution is fn(c), then
the multiplicity, mn, for stage n should be determined by

fn(c) =
unmax

mn=1
ϕn(mn)fn−1(c − cnmn) (6.3.6)

It is also assumed that f0(c) = 1 for any c.
Then this problem is similar to the 0/1 knapsack problem and the dynamic
approach can be used to find the solution of the problem.
Example, 3 devices, D1, D2 and D3, with r1 = 0.9, r2 = 0.8 r3 = 0.5,
c1 = 30, c2 = 15, c3 = 20, and the total cost c ≤ 105. (It can derived that
u1 = 2, u2 = 3 and u3 = 3).

Algorithms (EE3980) Unit 6.3 Dynamic Programming III May 6, 2019 21 / 22

Summary

String editing problem
O(mn)

0/1 knapsack problem
O(2n)

System reliability design
Large time complexity

Algorithms (EE3980) Unit 6.3 Dynamic Programming III May 6, 2019 22 / 22

