Unit 6.2 Dynamic Programming, II

Multi-Stage Graphs

• A multistage graph $G = (V, E)$ is a directed graph.

- Vertices are partitioned into $k > 2$ disjoint sets V_i , $1 \leq i \leq k$.
- If $\langle u, v \rangle \in E$, then $u \in V_i$ and $v \in V_{i+1}$ for some *i*, 1 ≤ *i* < *k*.
- The sets V_1 and V_k both have only one vertex.
- Vertex $s \in V_1$ is the source and $t \in V_k$ is the sink.
- The cost of a path from *s* to *t* is the sum of the costs of the edges on the path.
- The multistage graph problem is to find the minimum-cost path from *s* to *t*.

Multi-Stage Graphs — Example

• Since edges connect only consecutive stages, $\langle u, v \rangle \in E$, $u \in V_i$ and $v \in V_{i+1}$, minimum cost path from source *s* is

$$
cost(1, 1) = \min_{\langle 1, j \rangle \in E} \{c(1, j) + cost(2, j)\}
$$
(6.2.1)

where $cost(a, b)$ is the minimum cost of vertex *b* at stage *a* and $c(i, j)$ is the edge cost of $\langle i, j \rangle$.

Multi-Stage Graphs – Recursive Algorithm

• Note that Eq. $(6.2.1)$ can be generalized to

$$
cost(r, i) = \min_{(i,j) \in E} \{c[i,j] + cost(r+1,j)\}
$$
(6.2.2)

• Therefore a recursive algorithm to solve the multistage graph problem is Algorithm 6.2.1. Recursive Multistage Graph

// Find minimum cost path *p* of *n*-vertices multistage graph for vertex *i*. // Input: *n*, cost matrix *c*, vertex *i* ; Output: *mincost*, path *p*. 1 Algorithm MSGraph $R(n, c, i, p)$ 2 { 3 if $(i = n)$ then $\frac{1}{2}$ sink vertex 4 $p[i] := 0$; return 0; $5 \longrightarrow$ // Otherwise, find the minimum cost path to the sink. 6 $mincost := \infty$; // initialize.
7 for all *i* such that $\langle i, i \rangle \in F$ 7 for all *j* such that $\langle i, j \rangle \in E$ do $\{ / \rangle$ check all out-going edges
8 if $(c[i, j] + \text{MSGraph R}(n, c, i, p) < mincost$) then $\{ / \rangle$ sn if $(c[i, j] + \text{MSGraph}_R(n, c, j, p) < mincost$) then $\{ / / \text{ smaller cost.}\}$ 9 $mincost := c[i, j] + \text{MSGraph}_R(n, c, j, p)$; $p[i] := j$; 10 } 11 } 12 return *mincost* ; 13 } Algorithms (EE3980) Unit 6.2 Dynamic Programming, II May 2, 2019

Multi-Stage Graphs – Recursive Algorithm Analysis

- The vertices of the graph is assumed to be ordered from 1 to *n*.
	- Vertex 1 is the source vertex and *n* is the sink vertex.
- Matrix $c[i, j]$ is the cost of the edge $\langle i, j \rangle$.
- After completion the array $p[1:n]$ is the minimum-cost path from source vertex to sink vertex.
- This function is invoked by $MSGraph R(n, c, 1, p)$ at the top level and it returns the minimum path cost and the path array *p*.
- Though coding of this recursive version of the algorithm is straightforward, the execution efficiency can be improved.
	- For any vertex *j*, $j \neq 1$, with more than one edge $\langle i, j \rangle \in E$, $MSGraph_R(n, c, j, p)$ can be called more than once.
	- This inefficiency can be corrected by the following algorithms.

Algorithms (EE3980) **Unit 6.2 Dynamic Programming, II** May 2, 2019 5/28

Multi-Stage Graphs — Top-Down Approach

Algorithm 6.2.2. Multistage Graph Top-Down Approach

// Find minimum cost path *p* of *n*-vertices multistage graph for vertex *i*. // Input: *n*, cost matrix *c*, vertex *i* ; Output: *mincost*, path *p*, mincost table *d*. 1 Algorithm MSGraph_TD (n, c, i, d, p) 2 { 3 if $(i = n)$ then $\frac{1}{2}$ sink vertex 4 $p[i] := 0$; $d[i] := 0$; return 0; 5 } 6 $\frac{1}{2}$ // Otherwise, find the minimum cost path to the sink. 7 $mincost := \infty$; // initialize. 8 for all *j* such that $\langle i, j \rangle \in E$ do $\{\frac{1}{2}$ check all out-going edges if $(d[i] < 0)$ then if $(d[i] < 0)$ then 10 $d[j] := \text{MSGraph_TD}(n, c, j, d, p)$; // eval min cost for *j*. 11 if $(c[i, j] + d[j] < mincost)$ then $\{\frac{\ }{\ }$ // smaller cost. 12 $mincost := c[i, j] + d[j]; p[i] := j;$ 13 } 14 } 15 $d[i] := mincost; // record min cost for vertex *i*.$ 16 return *mincost* ; 17 }

Multi-Stage Graphs — Top-down Approach, II

- Before the top-down multistage algorithm is called, the array *d*[*i*], which stores the minimum cost from vertex *i* to sink, should be initialized to $-\infty$.
- The algorithm should be called from main function by $MSGraph_TD(n, c, 1, d, p);$ where n is the number of vertices of the graph,

 $c[1:n,1:n]$ is a matrix such that $c[i, j]$ is the edge cost connecting vertices *i* and *j*,

1 is the source vertex.

 $d[1:n]$ is an array such that $d[i]$ records the min cost from vertex *i* to sink,

 $p[1:n]$ is an array such that $p[i]$ records the next vertex from vertex *i* along the min cost path to the sink.

- In this top-down algorithm each vertex is processed once on lines 9-10.
- Each edge should be visited once, line 8
- The overall time complexity is $\mathcal{O}(|V| + |E|)$
- **This is more efficient than the recursive version.**
- The array (or table) *d* reduces the number of recursive calls and improves the efficiency significantly.
	- This is one of the key in dynamic programming approach.

Algorithms (EE3980) Unit 6.2 Dynamic Programming, II May 2, 2019 7/28

Multi-Stage Graphs – Bottom-Up Approach

Algorithm 6.2.3. Multistage Graph Bottom-Up Approach

// Find minimum cost path *p* of *n*-vertices multistage graph. // Input: *n*, cost matrix *c* ; Output: path *p*, mincost table *d*. 1 Algorithm MSGraph_BU (n, c, d, p) 2 { 3 $d[n] := 0$; // sink vertex. 4 for *r* := *n* − 1 to 1 step −1 do { // for *n* − 1 stages. 5 **for each vertex** $i \in V_r$ do $\frac{1}{2}$ All vertices in stage *r*. 6 $d[i] := \infty;$ 7 for each $\langle i, j \rangle \in E$ do $\{\!/ \text{/ All edges from vertex } i.$
8 if $(c[i, j] + d[i] < d[i])$ $\{\!/ \text{/ Smaller cost.}\}$ if $(c[i, j] + d[j] < d[i])$ { // Smaller cost. 9 $d[i] := c[i, j] + d[j]$; // Record min cost. 10 $p[r] := j$; // Record path. $\left\{\n \begin{array}{ccc}\n 11 & & & \\
 & 11 & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 &$ 12 } 13 } 14 } 15 }

- This bottom-up multistage algorithm is non-recursive.
- It should be called by MSGraph_BU (n, c, d, p) , where n is the number of vertices of the graph, $c[1:n,1:n]$ is a matrix such that $c[i, j]$ is the edge cost connecting vertices *i* and *j*, $d[1:n]$ is an array such that $d[i]$ records the min cost from vertex *i* to sink,
	- $p[1:n]$ is an array such that $p[i]$ records the next vertex from vertex *i* along the min cost path to the sink.

Algorithms (EE3980) **Unit 6.2 Dynamic Programming, II** May 2, 2019 9/28

- This algorithm has the same complexities, time and space, as the top-down approach.
- Similar table, array *d*, is used to improve the efficiency of the algorithm.

Single-Source Shortest Paths: General Weights

- The single-source shortest paths problem is revisited to allow negative weights for some edges.
	- However, no cycle of negative length is allowed.
	- Cycle of negative length can lead to $-\infty$ path length.
- Example

- The greedy algorithm ShortestPaths can fail in this case.
	- \bullet If vertex 1 is the source
	- It generates path $\langle 1, 3 \rangle$ with weight 5 as the shortest path
	- But path $\langle 1, 2, 3 \rangle$ has the weight of 2.
	- This example shows that we need consider paths through other intermediate vertices.

Single-Source Shortest Paths: General Weights

- With the possibility of negative weights, paths with more segments may have smaller weights, and thus we need to try all paths between a pairs of vertices.
- A shortest path should not include a positive cycle either, since the cycle can be removed to obtain a shorter path.
- A shortest path should not include a cycle with 0 weight, again this cycle can be removed to obtain a shortest path.
	- Thus, a shortest path should not have any cycles.
- Any shortest paths has at most *n* − 1 edges, *n* = |*V* |.
- Let $d^{\, (k)}[u]$ be the path weight from source vertex v_0 to vertex u through k edges.
	- $\mathsf{Note \ that \ } d^{\,(1)}[u] = W[v_0,u] \ \mathsf{if} \ \langle v_0,u \rangle \in E \ \mathsf{and} \ \ W[v_0,u] \ \mathsf{is \ the \ weight \ of \ the}$ edge.

Algorithms (EE3980) Unit 6.2 Dynamic Programming, II May 2, 2019 11/28

• Then we have

$$
d^{(k)}[u] = \min\{d^{(k-1)}[u], \min_{i \in V} \{d^{(k-1)}[i] + W[i, u]\}\}.
$$
 (6.2.3)

And $k \leq n-1$.

• This leads to the dynamic programming algorithm shown next.

Bellman and Ford Algorithm

```
Algorithm 6.2.4. BellmanFord
```

```
// Generate shortest paths, d[1:n], from v with edge weight W[1:n,1:n].
    // Input: n: |V|, source v, weight W; Output: distance d[1 : n].
 1 Algorithm BellmanFord(n, v, W, d)
 2 {
 3 \quad \text{for } i := 1 \text{ to } n \text{ do}4 d[i] := W[v, i];5 for k := 2 to n - 1 do
 6 for each u such that u \neq v and u has incoming edges do<br>
7 for each \langle i, u \rangle \in E do
 7 for each \langle i, u \rangle \in E do<br>8 if (d|u| > d|i) +if (d[u] > d[i] + W[i, u]) then
 9 d[u] := d[i] + W[i, u];
10 }
 \bullet If W is kept in a matrix form
          Lines 6-9 takes \mathcal{O}(n^2) time
          Overall complexity is \mathcal{O}(n^3)\bullet If W is kept in a list form
       • Lines 6-9 takes \mathcal{O}(e) time (e = |E|)• Overall complexity is \mathcal{O}(ne)• Efficiency can still be improved further.
      Algorithms (EE3980) Unit 6.2 Dynamic Programming, II
```
Bellman and Ford Algorithm — Example

• Given the graph on the left, and $v = 1$ then we have shortest paths to all other vertices as shown on the right.

Correctness of the Bellman and Ford algorithm can be found in textbook [Cormen], pp. 652-654.

Algorithms (EE3980) Unit 6.2 Dynamic Programming, II May 2, 2019 13/28

All-Pairs Shortest Paths

- Given a directed graph $G = (V, E)$ with *n* vertices and a weight function $w: E \to \mathbb{R}$, define the weight matrix, $W[1:n, 1:n]$, as
	- $W[i, i] = 0, 1 \leq i \leq n$,
	- $W[i, j] = w(i, j)$, if $\langle i, j \rangle \in E$,
	- $W[i, j] = \infty$, if $\langle i, j \rangle \notin E$.
- The all-pairs shortest path problem is to determine a matrix *D* such that $D[i, j]$ is the weight of the shortest path from vertex *i* to vertex *j*.
- One can apply the single source shortest path algorithm *n* times to find all-pairs shortest paths.
	- Time complexity is $\mathcal{O}(n^4)$ since the single source shortest path algorithm has the complexity of $\mathcal{O}(n^3)$.
- \bullet $w[i, j]$ can be negative but no negative cycle exists.

All-Pairs Shortest Paths – Formulation

- As shown on the left, the edge weight from vertex 2 to 1 is 6.
- However, there is a path $(2,3,1)$ with small path weight, 5.

• Thus, to find the minimum path we need consider paths through all intermediate vertices.

- Let $D^{(0)} = W$, where W is the weight matrix defined above.
- Let $D^{(k)}[i,j]$ be the minimum cost path with intermediate vertices no more than vertex *k*, then

$$
D^{(k)}[i,j] = \min\{D^{(k-1)}[i,j], D^{(k-1)}[i,k] + D^{(k-1)}[k,j]\}.
$$
 (6.2.4)

- Since there are only $n = |V|$ vertices in the graph, $D^{(n)}[i,j]$ is the minimum weight between any pair of vertices, *i* and *j*, $1 \le i, j \le n$.
- This formulation lends itself to a dynamic programming approach to solve the all-pair shortest path problem.

Algorithms (EE3980) **Unit 6.2 Dynamic Programming, II** May 2, 2019 15/28

All-Pairs Shortest Paths – Algorithm

Algorithm 6.2.5. All-Pairs Shortest Paths

```
// Find all-pairs shortest paths and store them in matrix D [1 : n, 1 : n].
   // Input: n: |V|, weight W; Output: distance D.
 1 Algorithm AllPairs(n, W, D)
 2 {
 3 \qquad \quad {\bf for} \,\, i:=1 \,\, {\bf to} \,\, n \,\, {\bf do} \,\, // \,\, {\bf Create} \,\, D^{(0)}.4 for j := 1 to n do
 5 D[i, j] := W[i, j];
 6 for k := 1 to n do // Loop through all D^{(k)}.
 7 \quad \text{for } i := 1 \text{ to } n \text{ do}8 for j := 1 to n do
 9 if (D[i, j] > D[i, k] + D[k, j]) then
10 D[i, j] := D[i, k] + D[k, j];11 }
```
- Using D to store all $D^{(k)}$ for better space efficiency.
- Space complexity remains as $\Theta(n^2)$.
- The time complexity is $\mathcal{O}(n^3)$.
	- Triple loop on lines 6-10.

All-Pairs Shortest Paths – Example

- The minimum cost between all vertices, *i* and *j*, is given by $D^{(3)}[i, j]$, $1 \le i, j \le 3.$
- To print out the shortest paths for each pair of vertices, the intermediate vertex *k* on line 10 should be memorized to another matrix $P[1 : n, 1 : n]$.
- Using matrix P the shortest paths can be printed out.
- Correctness of the algorithm can be found in textbooks, [Horowitz], pp. 284-287, and [Cormen], pp. 693-695.

Algorithms (EE3980) Unit 6.2 Dynamic Programming, II May 2, 2019 17/28

Optimal Binary Search Tree

- Possible binary search trees for three identifiers
	- Successful searches terminate at an internal node, shown in ellipse
	- Unsuccessful searches terminate at an external node, shown in square
	- *n* internal nodes and *n* + 1 external nodes

Optimal Binary Search Tree — *cost*

- For each identifier, a_i , at $level(a_i)$ in the tree, each successful search needs *level*(*aⁱ*) comparisons.
- Note that for *n* identifiers there are $n+1$ possible unsuccessful searches.
	- Name these unsuccessful events, E_i , $0 \leq j \leq n$.
	- For each unsuccessful search E_i at $level(E_i)$ of the binary tree, there are $level(E_i) - 1$ comparisons.
- Let p_i be the probability of searching for identifier a_i and q_i be the probability of searching for *Eⁱ* .

$$
\sum_{i=1}^{n} p_i + \sum_{j=0}^{n} q_i = 1 \tag{6.2.5}
$$

• The cost of the binary search tree is the expected value of the number of comparisons <u>mmon</u>

$$
cost(t) = \sum_{i=1}^{n} p_i \times level(a_i) + \sum_{j=0}^{n} q_i \times (level(E_i) - 1).
$$
 (6.2.6)

• The optimal binary search tree is the binary tree such that the cost of the tree is minimum.

Algorithms (EE3980) Unit 6.2 Dynamic Programming, II May 2, 2019 19/28

Optimal Binary Search Tree — Example

Optimal Binary Search Tree — Example II

• Suppose $p_1 = 0.5$ (do), $p_2 = 0.1$ (if), $p_3 = 0.05$ (while), $q_0 = 0.15$, $q_1 = 0.1$, $q_2 = 0.05$, $q_3 = 0.05$, then

Optimal Binary Search Tree — Properties

- Given internal nodes $\{a_1, a_2, \cdots, a_n\}$ with probabilities $\{p_1, p_2, \cdots, p_n\}$ and the external nodes with probabilities $\{q_0, q_1, \cdots, q_n\}$.
- If a_k is the root of a binary search tree, then its left subtree consists of internal nodes $\{a_1, a_2, \cdots, a_{k-1}\}$ and external nodes $\{q_0, q_1, \cdots, q_{k-1}\}.$
- The right subtree consists of internal nodes $\{a_{k+1}, \cdots, a_n\}$ and external nodes $\{q_k, \dots, q_n\}$.

 $w(1, n) = \sum_{n=0}^{n}$

• Let the cost of the left subtree be c_l and the cost of the right subtree be c_r , then the cost of the tree with *a^k* as the root is

i=1

 $p_i + \sum^n$

i=0

$$
c(a_k) = c_l + c_r + w(1, n)
$$
 (6.2.7)

where

Example $c_l = p_1 + q_0 + q_1$ $c_r = p_3 + q_2 + q_3$ $c(p_2) = p_2 + 2(p_1 + q_0 + q_1) + 2(p_3 + q_2 + q_3)$ $= c_1 + c_r + p_1 + p_2 + p_3 + q_0 + q_1 + q_2 + q_3$

 $(6.2.8)$

Optimal Binary Search Tree — Recursive Algorithm

Algorithm 6.2.6. Recursive OBST

```
// Find the root r of the optimal binary search tree for nodes a_i to a_j.
   // Input: range: i, j; probabilities: p, q ; Output: cost, root r.
 1 Algorithm OBSTr(i, j, p, q, r)
 2 {
 3 if (i = j) then \frac{1}{2} single vertex
 4 r := i; return q[i-1] + q[i] + p[i];
 5 }
 6 cost := \infty; w := q[i-1];<br>7 for k := i to i do w := wfor k := i to j do w := w + p[k] + q[k]; // calculate w(i, j)8 for k := i to j do \frac{1}{i} try every vertex and find the minimum cost one
9 cL := \text{OBSTr}(i, k-1, p, q, rL); // find minimum cost left subtree<br>10 cR := \text{OBSTr}(k+1, i, p, q, rR); // find minimum cost right subtre
              cR := \text{OBSTr}(k+1, j, p, q, rR); // find minimum cost right subtree
11 if (cL + cR + w < cost) then {
12 cost := cL + cR + w;13 r := k;
14 }
15 }
16 return cost ;
17 }
     Algorithms (EE3980) Unit 6.2 Dynamic Programming, II May 2, 2019 23/28
```
Optimal Binary Search Tree — Recursive Algorithm, II

- This algorithm finds the minimum-cost left subtree and right subtree and combines those two to form the minimum-cost binary search tree.
- The recursive algorithm is invoked by **,** where *p* is the array for the internal node probabilities, *q* is the array for the external nodes probabilities.
- \bullet It then finds the root r of the minimum-cost binary search tree.
	- The roots of the left and right subtrees should be found by calling $OBSTr(1, r-1, p, q, rL)$ and $OBSTr(r+1, n, p, q, rR)$ recursively.
- As most of the recursive function, the time complexity can be improved.

Optimal Binary Search Tree — Improved Algorithm Algorithm 6.2.7. Optimal Binary Search Tree

// Find the matrix r. Each $r[i, j]$ is the optimal root for a_i to a_j . // Input: int *n*, probabilities: *p*, *q* ; Output: *r*: optimal root matrix. 1 Algorithm $\text{O़}(\textit{n}, p, q, r)$ 2 { 3 for $i := 0$ to $n - 1$ do {
4 $w[i, i] := q[i] : r[i, i]$ $w[i, i] := q[i]; r[i, i] := 0; c[i, i] := 0;$ 5 $w[i, i+1] := q[i] + q[i+1] + p[i+1]$; // one node trees 6 $r[i, i+1] := i+1;$ 7 $c[i, i+1] := q[i] + q[i+1] + p[i+1]$; 8 } 9 $w[n, n] := q[n]; r[n, n] := 0; c[n, n] := 0;$ 10 for $m := 2$ to n do $\frac{1}{2}$ / Find optimal trees with m nodes 11 for $i := 0$ to $n - m$ do {

12 $i := i + m$; w[i. 12 $j := i + m;$ $w[i, j] := w[i, j - 1] + p[j] + q[j];$

13 $k :=$ KnuthFind(c r i i) // root with min cost of $k :=$ KnuthFind (c, r, i, j) ; $//$ root with min cost of *m*-node tree 14 $r[i, j] := k$; // root for tree a_i to a_j 15 $c[i, j] := w[i, j] + c[i, k - 1] + c[k, j] ; // record min cost$ 16 } 17 $\{\frac{1}{2}, \frac{1}{2}\}$ // When done, $r[0, n]$ is the root, $c[0, n]$ is the min cost 18 } Algorithms (EE3980) **1988** Unit 6.2 Dynamic Programming, II May 2, 2019 25 / 28

Optimal Binary Search Tree — KnuthFind

Algorithm 6.2.8. Knuth Find

```
// Find the min-cost root for tree a_i to a_j.
    // Input: c: min cost, r: min cost root matrix ; Output: min cost root.
 1 Algorithm KnuthFind(c, r, i, j)
 2 {
 3 min := \infty;<br>4 for m := r4 for m := r[i, j - 1] to r[i + 1, j] do {<br>5 if ((c[i, m - 1] + c[m, i]) < min5 if ((c[i, m-1] + c[m, j]) < min then {<br>6 min := c[i, m-1] + c[m, j]: l := m:
 6 min := c[i, m-1] + c[m, j]; l := m;<br>7
 7 }
 8 }
 9 return l ;
10 }
```
• In the OBST Algorithm

- $r[i, j]$ is the min-cost root for tree a_i to a_j
	- $p[i,j]$ is the probabilities of the internal nodes a_i to a_j
	- $q[i-1,j]$ is the probabilities of the external nodes
- $c[i, j]$ is the cost of the optimal search tree
- $w[i, j]$ is the sum of all the probabilities for internal and external nodes from a_i to a_i .

Optimal Binary Search Tree — OBST and Complexity

After completion of the algorithm

- The root of the optimal tree is given by $r[0, n]$
- Let $k = r[0, n]$, then
- The root of the left subtree is $r[0, k-1]$
- And the root of the right subtree is $r[k+1, n]$
- Repeating this process the entire tree can be built.
- Using KnuthFind function in <mark>OBST</mark> algorithm, the time complexity is $\mathcal{O}(n^2)$

Algorithms (EE3980) **Unit 6.2 Dynamic Programming, II** May 2, 2019 27/28

- **•** Exercise
- And the complexity of using resulting $r[0, n]$ to build the optimal binary search tree is $\mathcal{O}(n)$

Summary

- Multistage graph problem
- All-pairs shortest paths
- Single-source shortest path
- Optimal binary search tree