
Unit 6.2 Dynamic Programming, II

Algorithms

EE3980

May 2, 2019

Algorithms (EE3980) Unit 6.2 Dynamic Programming, II May 2, 2019 1 / 28

Multi-Stage Graphs
A multistage graph G = (V,E) is a directed graph.

Vertices are partitioned into k > 2 disjoint sets Vi, 1 ≤ i ≤ k.
If ⟨u, v⟩ ∈ E, then u ∈ Vi and v ∈ Vi+1 for some i, 1 ≤ i < k.
The sets V1 and Vk both have only one vertex.
Vertex s ∈ V1 is the source and t ∈ Vk is the sink.
The cost of a path from s to t is the sum of the costs of the edges on the path.
The multistage graph problem is to find the minimum-cost path from s to t.

1

2

3

4

5

6

7

8

9

10

11

12s t

9
7

3

2

4
21

2

7

11

11

8

6

5
4

3

5

6

4

2

5

9
2

3 2

V1 V2 V3 V4 V5

Algorithms (EE3980) Unit 6.2 Dynamic Programming, II May 2, 2019 2 / 28

Multi-Stage Graphs — Example
Since edges connect only consecutive stages, ⟨u, v ⟩ ∈ E, u ∈ Vi and
v ∈ Vi+1, minimum cost path from source s is

cost(1, 1) = min
⟨1,j⟩∈E

{c(1, j) + cost(2, j)} (6.2.1)

where cost(a, b) is the minimum cost of vertex b at stage a and c(i, j) is the
edge cost of ⟨i, j ⟩.

1

2

3

4

5

6

7

8

9

10

11

12s t

9
7

3

2

4
21

2

7

11

11

8

6

5
4

3

5

6

4

2

5

9
2

3 2

V1 V2 V3 V4 V5

Algorithms (EE3980) Unit 6.2 Dynamic Programming, II May 2, 2019 3 / 28

Multi-Stage Graphs – Recursive Algorithm
Note that Eq. (6.2.1) can be generalized to

cost(r, i) = min
⟨i,j ⟩∈E

{c[i, j] + cost(r + 1, j)} (6.2.2)

Therefore a recursive algorithm to solve the multistage graph problem is
Algorithm 6.2.1. Recursive Multistage Graph

// Find minimum cost path p of n-vertices multistage graph for vertex i.
// Input: n, cost matrix c, vertex i ; Output: mincost, path p.

1 Algorithm MSGraph_R(n, c, i, p)
2 {
3 if (i = n) then { // sink vertex
4 p[i] := 0 ; return 0 ;
5 } // Otherwise, find the minimum cost path to the sink.
6 mincost := ∞ ; // initialize.
7 for all j such that ⟨i, j ⟩ ∈ E do { // check all out-going edges
8 if (c[i, j]+ MSGraph_R(n, c, j, p) < mincost) then { // smaller cost.
9 mincost := c[i, j]+ MSGraph_R(n, c, j, p) ; p[i] := j ;

10 }
11 }
12 return mincost ;
13 }

Algorithms (EE3980) Unit 6.2 Dynamic Programming, II May 2, 2019 4 / 28

Multi-Stage Graphs – Recursive Algorithm Analysis

The vertices of the graph is assumed to be ordered from 1 to n.
Vertex 1 is the source vertex and n is the sink vertex.

Matrix c[i, j] is the cost of the edge ⟨i, j ⟩.
After completion the array p[1 : n] is the minimum-cost path from source
vertex to sink vertex.
This function is invoked by MSGraph_R(n, c, 1, p) at the top level and it
returns the minimum path cost and the path array p.
Though coding of this recursive version of the algorithm is straightforward,
the execution efficiency can be improved.

For any vertex j, j ̸= 1, with more than one edge ⟨i, j ⟩ ∈ E,
MSGraph_R(n, c, j, p) can be called more than once.
This inefficiency can be corrected by the following algorithms.

Algorithms (EE3980) Unit 6.2 Dynamic Programming, II May 2, 2019 5 / 28

Multi-Stage Graphs — Top-Down Approach
Algorithm 6.2.2. Multistage Graph Top-Down Approach

// Find minimum cost path p of n-vertices multistage graph for vertex i.
// Input: n, cost matrix c, vertex i ; Output: mincost, path p, mincost table d.

1 Algorithm MSGraph_TD(n, c, i, d, p)
2 {
3 if (i = n) then { // sink vertex
4 p[i] := 0 ; d[i] := 0 ; return 0 ;
5 }
6 // Otherwise, find the minimum cost path to the sink.
7 mincost := ∞ ; // initialize.
8 for all j such that ⟨i, j ⟩ ∈ E do { // check all out-going edges
9 if (d[j] < 0) then

10 d[j] := MSGraph_TD(n, c, j, d, p) ; // eval min cost for j.
11 if (c[i, j]+ d[j] < mincost) then { // smaller cost.
12 mincost := c[i, j]+ d[j] ; p[i] := j ;
13 }
14 }
15 d[i] := mincost ; // record min cost for vertex i.
16 return mincost ;
17 }

Algorithms (EE3980) Unit 6.2 Dynamic Programming, II May 2, 2019 6 / 28

Multi-Stage Graphs — Top-down Approach, II
Before the top-down multistage algorithm is called, the array d[i], which
stores the minimum cost from vertex i to sink, should be initialized to −∞.
The algorithm should be called from main function by
MSGraph_TD(n, c, 1, d, p);
where n is the number of vertices of the graph,
c[1 : n, 1 : n] is a matrix such that c[i, j] is the edge cost connecting vertices i
and j,
1 is the source vertex,
d[1 : n] is an array such that d[i] records the min cost from vertex i to sink,
p[1 : n] is an array such that p[i] records the next vertex from vertex i along
the min cost path to the sink.
In this top-down algorithm each vertex is processed once on lines 9-10.
Each edge should be visited once, line 8
The overall time complexity is O(|V|+ |E|)
This is more efficient than the recursive version.
The array (or table) d reduces the number of recursive calls and improves the
efficiency significantly.

This is one of the key in dynamic programming approach.
Algorithms (EE3980) Unit 6.2 Dynamic Programming, II May 2, 2019 7 / 28

Multi-Stage Graphs – Bottom-Up Approach

Algorithm 6.2.3. Multistage Graph Bottom-Up Approach
// Find minimum cost path p of n-vertices multistage graph.
// Input: n, cost matrix c ; Output: path p, mincost table d.

1 Algorithm MSGraph_BU(n, c, d, p)
2 {
3 d[n] := 0 ; // sink vertex.
4 for r := n − 1 to 1 step −1 do { // for n − 1 stages.
5 for each vertex i ∈ Vr do { // All vertices in stage r.
6 d[i] := ∞ ;
7 for each ⟨ i, j ⟩ ∈ E do { // All edges from vertex i.
8 if (c[i, j] + d[j] < d[i]) { // Smaller cost.
9 d[i] := c[i, j] + d[j] ; // Record min cost.

10 p[r] := j ; // Record path.
11 }
12 }
13 }
14 }
15 }

Algorithms (EE3980) Unit 6.2 Dynamic Programming, II May 2, 2019 8 / 28

Multi-Stage Graphs – Bottom-Up Approach, Analysis

This bottom-up multistage algorithm is non-recursive.
It should be called by MSGraph_BU(n, c, d, p),
where n is the number of vertices of the graph,
c[1 : n, 1 : n] is a matrix such that c[i, j] is the edge cost connecting vertices i
and j,
d[1 : n] is an array such that d[i] records the min cost from vertex i to sink,
p[1 : n] is an array such that p[i] records the next vertex from vertex i along
the min cost path to the sink.
This algorithm has the same complexities, time and space, as the top-down
approach.
Similar table, array d, is used to improve the efficiency of the algorithm.

Algorithms (EE3980) Unit 6.2 Dynamic Programming, II May 2, 2019 9 / 28

Single-Source Shortest Paths: General Weights

The single-source shortest paths problem is revisited to allow negative
weights for some edges.

However, no cycle of negative length is allowed.
Cycle of negative length can lead to −∞ path length.

Example

1 2 37 -5

5

The greedy algorithm ShortestPaths can fail in this case.
If vertex 1 is the source
It generates path ⟨1, 3⟩ with weight 5 as the shortest path
But path ⟨1, 2, 3⟩ has the weight of 2.
This example shows that we need consider paths through other intermediate
vertices.

Algorithms (EE3980) Unit 6.2 Dynamic Programming, II May 2, 2019 10 / 28

Single-Source Shortest Paths: General Weights

With the possibility of negative weights, paths with more segments may have
smaller weights, and thus we need to try all paths between a pairs of vertices.
A shortest path should not include a positive cycle either, since the cycle can
be removed to obtain a shorter path.
A shortest path should not include a cycle with 0 weight, again this cycle can
be removed to obtain a shortest path.

Thus, a shortest path should not have any cycles.
Any shortest paths has at most n − 1 edges, n = |V |.
Let d (k)[u] be the path weight from source vertex v0 to vertex u through k
edges.

Note that d (1)[u] = W[v0, u] if ⟨v0, u⟩ ∈ E and W[v0, u] is the weight of the
edge.

Then we have

d (k)[u] = min{d (k−1)[u],min
i∈V

{d (k−1)[i] + W[i, u]}}. (6.2.3)

And k ≤ n − 1.
This leads to the dynamic programming algorithm shown next.

Algorithms (EE3980) Unit 6.2 Dynamic Programming, II May 2, 2019 11 / 28

Bellman and Ford Algorithm
Algorithm 6.2.4. BellmanFord

// Generate shortest paths, d[1 : n], from v with edge weight W[1 : n, 1 : n].
// Input: n: |V|, source v, weight W ; Output: distance d[1 : n].

1 Algorithm BellmanFord(n, v,W, d)
2 {
3 for i := 1 to n do
4 d[i] := W[v, i] ;
5 for k := 2 to n − 1 do
6 for each u such that u ̸= v and u has incoming edges do
7 for each ⟨i, u⟩ ∈ E do
8 if (d[u] > d[i] + W[i, u]) then
9 d[u] := d[i] + W[i, u] ;

10 }

If W is kept in a matrix form
Lines 6-9 takes O(n2) time
Overall complexity is O(n3)

If W is kept in a list form
Lines 6-9 takes O(e) time (e = |E |)
Overall complexity is O(ne)
Efficiency can still be improved further.

Algorithms (EE3980) Unit 6.2 Dynamic Programming, II May 2, 2019 12 / 28

Bellman and Ford Algorithm — Example

Given the graph on the left, and v = 1 then we have shortest paths to all
other vertices as shown on the right.

1

2

3

4

5

6

7

6

5

5

-2

-2

-1

1

-1

3

3

d (k)[]
k 1 2 3 4 5 6 7
1 0 6 5 5 ∞ ∞ ∞
2 0 3 3 5 5 4 ∞
3 0 1 3 5 2 4 7
4 0 1 3 5 0 4 5
5 0 1 3 5 0 4 3
6 0 1 3 5 0 4 3

Correctness of the Bellman and Ford algorithm can be found in textbook
[Cormen], pp. 652-654.

Algorithms (EE3980) Unit 6.2 Dynamic Programming, II May 2, 2019 13 / 28

All-Pairs Shortest Paths
Given a directed graph G = (V,E) with n vertices and a weight function
w : E → R, define the weight matrix, W[1 : n, 1 : n], as

W [i, i] = 0, 1 ≤ i ≤ n,
W [i, j] = w(i, j), if ⟨i, j ⟩ ∈ E,
W [i, j] = ∞, if ⟨i, j ⟩ /∈ E.

The all-pairs shortest path problem is to determine a matrix D such that
D [i, j] is the weight of the shortest path from vertex i to vertex j.
One can apply the single source shortest path algorithm n times to find
all-pairs shortest paths.

Time complexity is O(n4) since the single source shortest path algorithm has
the complexity of O(n3).

w[i, j] can be negative but no negative cycle exists.

1 2

3

4
23

6

11



0 4 11
6 0 2
3 ∞ 0




Weight matrix, W.

Algorithms (EE3980) Unit 6.2 Dynamic Programming, II May 2, 2019 14 / 28

All-Pairs Shortest Paths – Formulation

1 2

3

4
23

6

11

As shown on the left, the edge weight from vertex 2 to 1
is 6.
However, there is a path ⟨2, 3, 1⟩ with small path weight,
5.
Thus, to find the minimum path we need consider paths
through all intermediate vertices.

Let D(0) = W, where W is the weight matrix defined above.
Let D(k)[i, j] be the minimum cost path with intermediate vertices no more
than vertex k, then

D(k)[i, j] = min{D(k−1)[i, j],D(k−1)[i, k] + D(k−1)[k, j]}. (6.2.4)

Since there are only n = |V | vertices in the graph, D(n)[i, j] is the minimum
weight between any pair of vertices, i and j, 1 ≤ i, j ≤ n.
This formulation lends itself to a dynamic programming approach to solve the
all-pair shortest path problem.

Algorithms (EE3980) Unit 6.2 Dynamic Programming, II May 2, 2019 15 / 28

All-Pairs Shortest Paths – Algorithm

Algorithm 6.2.5. All-Pairs Shortest Paths
// Find all-pairs shortest paths and store them in matrix D [1 : n, 1 : n].
// Input: n: |V|, weight W ; Output: distance D.

1 Algorithm AllPairs(n,W,D)
2 {
3 for i := 1 to n do // Create D(0).
4 for j := 1 to n do
5 D [i, j] := W [i, j] ;
6 for k := 1 to n do // Loop through all D(k).
7 for i := 1 to n do
8 for j := 1 to n do
9 if (D [i, j] > D [i, k] + D [k, j]) then

10 D [i, j] := D [i, k] + D [k, j] ;
11 }

Using D to store all D(k) for better space efficiency.
Space complexity remains as Θ(n2).
The time complexity is O(n3).

Triple loop on lines 6-10.
Algorithms (EE3980) Unit 6.2 Dynamic Programming, II May 2, 2019 16 / 28

All-Pairs Shortest Paths – Example

1 2

3

4
23

6

11



0 4 11
6 0 2
3 ∞ 0




D(0).



0 4 6
6 0 2
3 7 0




D(2).



0 4 11
6 0 2
3 7 0




D(1).



0 4 6
5 0 2
3 7 0




D(3).
The minimum cost between all vertices, i and j, is given by D(3)[i, j],
1 ≤ i, j ≤ 3.
To print out the shortest paths for each pair of vertices, the intermediate
vertex k on line 10 should be memorized to another matrix P[1 : n, 1 : n].
Using matrix P the shortest paths can be printed out.
Correctness of the algorithm can be found in textbooks, [Horowitz], pp.
284-287, and [Cormen], pp. 693-695.

Algorithms (EE3980) Unit 6.2 Dynamic Programming, II May 2, 2019 17 / 28

Optimal Binary Search Tree
Possible binary search trees for three identifiers

Successful searches terminate at an internal node, shown in ellipse
Unsuccessful searches terminate at an external node, shown in square
n internal nodes and n + 1 external nodes

do

if

while

do

if

while

do

if

while

do

if

while do

if

while

Algorithms (EE3980) Unit 6.2 Dynamic Programming, II May 2, 2019 18 / 28

Optimal Binary Search Tree — cost

For each identifier, ai, at level(ai) in the tree, each successful search needs
level(ai) comparisons.
Note that for n identifiers there are n + 1 possible unsuccessful searches.

Name these unsuccessful events, Ej, 0 ≤ j ≤ n.
For each unsuccessful search Ei at level(Ei) of the binary tree, there are
level(Ei)− 1 comparisons.

Let pi be the probability of searching for identifier ai and qi be the probability
of searching for Ei.

n∑

i=1

pi +
n∑

j=0

qi = 1. (6.2.5)

The cost of the binary search tree is the expected value of the number of
comparisons

cost(t) =
n∑

i=1

pi × level(ai) +
n∑

j=0

qi × (level(Ei)− 1). (6.2.6)

The optimal binary search tree is the binary tree such that the cost of the
tree is minimum.

Algorithms (EE3980) Unit 6.2 Dynamic Programming, II May 2, 2019 19 / 28

Optimal Binary Search Tree — Example
Suppose pi = qi = 1/7 then

do

if

while

cost = 15/7

do

if

while

cost = 13/7, optimal

do

if

while

cost = 15/7

do

if

while

cost = 15/7

do

if

while

cost = 15/7
Algorithms (EE3980) Unit 6.2 Dynamic Programming, II May 2, 2019 20 / 28

Optimal Binary Search Tree — Example II
Suppose p1 = 0.5(do), p2 = 0.1(if), p3 = 0.05(while), q0 = 0.15, q1 = 0.1,
q2 = 0.05, q3 = 0.05, then

do

if

while

cost = 2.65

do

if

while

cost = 1.9

do

if

while

cost = 1.5, optimal

do

if

while

cost = 2.15

do

if

while

cost = 1.6
Algorithms (EE3980) Unit 6.2 Dynamic Programming, II May 2, 2019 21 / 28

Optimal Binary Search Tree — Properties
Given internal nodes {a1, a2, · · · , an} with probabilities {p1, p2, · · · , pn} and
the external nodes with probabilities {q0, q1, · · · , qn}.
If ak is the root of a binary search tree, then its left subtree consists of
internal nodes {a1, a2, · · · , ak−1} and external nodes {q0, q1, · · · , qk−1}.
The right subtree consists of internal nodes {ak+1, · · · , an} and external
nodes {qk, · · · , qn}.
Let the cost of the left subtree be cl and the cost of the right subtree be cr,
then the cost of the tree with ak as the root is

c(ak) = cl + cr + w(1,n) (6.2.7)
where

w(1,n) =
n∑

i=1

pi +

n∑

i=0

qi. (6.2.8)

p1

p2

p3

q0 q1 q2 q3

Example
cl = p1 + q0 + q1
cr = p3 + q2 + q3

c(p2) = p2 + 2(p1 + q0 + q1) + 2(p3 + q2 + q3)
= cl + cr + p1 + p2 + p3 + q0 + q1 + q2 + q3

Algorithms (EE3980) Unit 6.2 Dynamic Programming, II May 2, 2019 22 / 28

Optimal Binary Search Tree — Recursive Algorithm
Algorithm 6.2.6. Recursive OBST

// Find the root r of the optimal binary search tree for nodes ai to aj.
// Input: range: i, j; probabilities: p, q ; Output: cost, root r.

1 Algorithm OBSTr(i, j, p, q, r)
2 {
3 if (i = j) then { // single vertex
4 r := i ; return q[i − 1] + q[i] + p[i] ;
5 }
6 cost := ∞ ; w := q[i − 1] ;
7 for k := i to j do w := w + p[k] + q[k] ; // calculate w(i, j)
8 for k := i to j do { // try every vertex and find the minimum cost one
9 cL := OBSTr(i, k − 1, p, q, rL) ; // find minimum cost left subtree

10 cR := OBSTr(k + 1, j, p, q, rR) ; // find minimum cost right subtree
11 if (cL + cR + w < cost) then {
12 cost := cL + cR + w ;
13 r := k ;
14 }
15 }
16 return cost ;
17 }

Algorithms (EE3980) Unit 6.2 Dynamic Programming, II May 2, 2019 23 / 28

Optimal Binary Search Tree — Recursive Algorithm, II

This algorithm finds the minimum-cost left subtree and right subtree and
combines those two to form the minimum-cost binary search tree.
The recursive algorithm is invoked by OBSTr(1,n, p, q, r),
where p is the array for the internal node probabilities,
q is the array for the external nodes probabilities.
It then finds the root r of the minimum-cost binary search tree.

The roots of the left and right subtrees should be found by calling
OBSTr(1, r − 1, p, q, rL) and OBSTr(r + 1,n, p, q, rR) recursively.

As most of the recursive function, the time complexity can be improved.

Algorithms (EE3980) Unit 6.2 Dynamic Programming, II May 2, 2019 24 / 28

Optimal Binary Search Tree — Improved Algorithm
Algorithm 6.2.7. Optimal Binary Search Tree

// Find the matrix r. Each r[i, j] is the optimal root for ai to aj.
// Input: int n, probabilities: p, q ; Output: r: optimal root matrix.

1 Algorithm OBST(n, p, q, r)
2 {
3 for i := 0 to n − 1 do {
4 w[i, i] := q[i] ; r[i, i] := 0 ; c[i, i] := 0 ;
5 w[i, i + 1] := q[i] + q[i + 1] + p[i + 1] ; // one node trees
6 r[i, i + 1] := i + 1 ;
7 c[i, i + 1] := q[i] + q[i + 1] + p[i + 1] ;
8 }
9 w[n,n] := q[n] ; r[n,n] := 0 ; c[n,n] := 0 ;

10 for m := 2 to n do { // Find optimal trees with m nodes
11 for i := 0 to n − m do {
12 j := i + m ; w[i, j] := w[i, j − 1] + p[j] + q[j] ;
13 k := KnuthFind(c, r, i, j) ; // root with min cost of m-node tree
14 r[i, j] := k ; // root for tree ai to aj
15 c[i, j] := w[i, j] + c[i, k − 1] + c[k, j] ; // record min cost
16 }
17 } // When done, r[0,n] is the root, c[0,n] is the min cost
18 }

Algorithms (EE3980) Unit 6.2 Dynamic Programming, II May 2, 2019 25 / 28

Optimal Binary Search Tree — KnuthFind
Algorithm 6.2.8. Knuth Find

// Find the min-cost root for tree ai to aj.
// Input: c: min cost, r: min cost root matrix ; Output: min cost root.

1 Algorithm KnuthFind(c, r, i, j)
2 {
3 min := ∞ ;
4 for m := r[i, j − 1] to r[i + 1, j] do {
5 if ((c[i,m − 1] + c[m, j]) < min) then {
6 min := c[i,m − 1] + c[m, j] ; l := m ;
7 }
8 }
9 return l ;

10 }

In the OBST Algorithm
r[i, j] is the min-cost root for tree ai to aj

p[i, j] is the probabilities of the internal nodes ai to aj
q[i − 1, j] is the probabilities of the external nodes

c[i, j] is the cost of the optimal search tree
w[i, j] is the sum of all the probabilities for internal and external nodes from ai
to aj.

Algorithms (EE3980) Unit 6.2 Dynamic Programming, II May 2, 2019 26 / 28

Optimal Binary Search Tree — OBST and Complexity

After completion of the algorithm
The root of the optimal tree is given by r[0,n]
Let k = r[0,n], then
The root of the left subtree is r[0, k − 1]
And the root of the right subtree is r[k + 1,n]
Repeating this process the entire tree can be built.

Using KnuthFind function in OBST algorithm, the time complexity is O(n2)

Exercise
And the complexity of using resulting r[0,n] to build the optimal binary
search tree is O(n)

Algorithms (EE3980) Unit 6.2 Dynamic Programming, II May 2, 2019 27 / 28

Summary

Multistage graph problem
All-pairs shortest paths
Single-source shortest path
Optimal binary search tree

Algorithms (EE3980) Unit 6.2 Dynamic Programming, II May 2, 2019 28 / 28

