Unit 6.1 Dynamic Programming

Rod Cutting Problem, Formulation

- Given a rod of length n inches, there are totally 2^{n-1} ways of cutting.
- In brute-force approach, the maximum revenue of all these cutting is the optimal solution.
- Using recursive function, we can formulate the solution as

$$
r_n = \max\{p_n, p_1 + r_{n-1}, p_2 + r_{n-2}, \ldots, p_{n-1} + r_1\},\tag{6.1.1}
$$

where r_k is the maximum revenue of cutting the rod of length k , and p_k is the price of length k rod.

This is a recursive formula and it evaluates all possible rod-cutting solutions and finds the maximum revenue.

Algorithms (EE3980) Unit 6.1 Dynamic Programming Apr. 29, 2019 3/28

Rod Cutting Problem, Recursive Algorithm

Rod_R 6.1.1. Recursive Rod-cutting

// Find the maximum revenue for cutting rod of length n . $p[1:n]$ is the price table. // Input: int *n*, price table *p*[1 : *n*] ; Output: max revenue. 1 Algorithm rod_R(*p*, *n*) 2 { $3 \quad \text{if } (n=0) \text{ return } 0;$ 4 $max := p[n]; / /$ no cut. 5 for $i := 1$ to $n - 1$ do $\frac{1}{2}$ // check all possible cutting using recursion.
6 if $\frac{n!}{2} + \frac{1}{2}$ and $\frac{n!}{2} + \frac{n!}{2}$ and $\frac{n!}{2} + \frac{n!}{2}$ and $\frac{n!}{2} + \frac{n!}{2}$ and $\frac{n!}{2} + \frac{n!}{2}$ if $(p[i] + \text{rod}_R(p, n-i) > max)$ then $max := p[i] + \text{rod}_R(p, n-i)$; $\overline{7}$ 8 return *max* ; 9 } • Example of $\text{Rod}_R(p, 4)$ unrolling $Rod_R(p, 4) \Rightarrow p[1] + Rod_R(p, 3)$ $p[2] + Rod_R(p, 2)$ $p[3] + Rod_R(p, 1)$ $p[4]$
 $Rod_R(p, 3) \Rightarrow p[1] + Rod_R(p, 2)$ $p[2] + Rod_R(p, 1)$ $p[3]$ $Rod_R(p, 3) \Rightarrow p[1] + Rod_R(p, 2)$ $p[2]$
 $Rod_R(p, 2) \Rightarrow p[1] + Rod_R(p, 1)$ $p[2]$ $p[1]+\text{Rod}_R(p, 1)$
 $p[1]$ $Rod_R(p,1) \Rightarrow$ • As it is, $\text{rod}_R(p, n)$ may be called many times for $i, 1 \le i \le n$.

• This inefficiency can be improved using dynamic programming method. Algorithms (EE3980) Unit 6.1 Dynamic Programming Apr. 29, 2019

Rod Cutting Problem, Top-Down Dynamic Programming

• Before calling this $\text{rod}_T\text{ID}(p, n, r)$ function, the revenue array should be initialized as

Rod_TD 6.1.2. Rod-cutting top-down dynamic programming

// Find the maximum revenue for cutting rod of length *n*. // Input: int *n*, price table $p[1:n]$; Output: max revenue and array $r[1:n]$. 1 Algorithm rod $TD(p, n, r)$ 2 { 3 if $(r|n| > 0)$ return $r(n)$; // if prior evaluation is done, return value. 4 $max := p[n]$; // no cut. 5 for $i := 1$ to $n - 1$ do { // check all possible cutting using recursion.
6 if $(p[i] + rod \text{ TD}(p, n - i, r) > max)$ then 6 if $(p[i] + \text{rod} \text{TD}(p, n-i, r) > max)$ then
 7 $max := p[i] + \text{rod} \text{TD}(p, n-i, r)$: 7
8

}
 max := $p[i] + \text{rod_TD}(p, n - i, r);$ $\}$ 9 $r[n] := max$; // record max revenue in *r* array. 10 return *max* ; 11 } Algorithms (EE3980) Unit 6.1 Dynamic Programming Apr. 29, 2019 5/28

Rod Cutting Problem, Bottom-Up Dynamic Programming

- For the top-down dynamic function, in addition to the proper initialization of the revenue, $r[0:n]$, table, the function should be called as rod $\text{TD}(p, n, r);$
- A corresponding bottom-up dynamic programming algorithm is as the following.

Rod_BU 6.1.3. Rod-cutting bottom-up dynamic programming

```
// Find the maximum revenue for cutting rod of length n.
   // Input: int n, price table p[1:n]; Output: max revenue and array r[1:n].
 1 Algorithm \text{rod\_BU}(p, n, r)2 {
 3 r[0] := 0;
 4 for i := 1 to n do {
 5 max := -\infty;<br>6 for i := 1 to
            for j := 1 to i do {
 7 if (p[j] + r[i - j] > max) then max := p[j] + r[i - j];<br>8
 8 }
 9 r[i] := max;10 }
11 return r[n];
12 }
```
Rod Cutting Problem, Complexities

- For the rod $BU(p, n, r)$ algorithm, for loop on lines 4-10 executes *n* times.
- The inner for loop on lines 6-8 executes $n(n+1)$ 2 times overall.
- Thus the computational complexity is $\Theta(n^2).$
- The space complexity is $\Theta(n)$ due to the $r[0:n]$ and $p[1:n]$ arrays.
- For the rod $TD(p, n, r)$ algorithm, both time and space complexities are the same of the $\text{rod_BU}(p, n, r)$ algorithm asymptotically.
- In both $\text{rod}_B U(p, n, r)$ and $\text{rod}_A TD(p, n, r)$ algorithms, the maximum revenue array, $r[1:n]$, is found. But, not the actual cutting solution. By adding a solution table, *s*[1 : *n*], the following algorithm finds the cutting solution as well.

Rod Cutting Problem, Maximum Revenue and Cutting

Algorithms (EE3980) Unit 6.1 Dynamic Programming Apr. 29, 2019 2019

Rod_R 6.1.4. Rod-cutting with solution

// Find the maximum revenue for cutting rod of length *n*. // Input: int *n*, price table $p[1:n]$; Output: max revenue and array $r[1:n]$. 1 Algorithm rod_SBU (p, n, r, s) 2 { 3 $r[0] := 0$; 4 for $i := 1$ to n do { 5 $max := -\infty;$
6 for $i := 1$ to for $j := 1$ to i do { 7 if $(p[j] + r[i - j] > max)$ then {
8 $max := p[i] + r[i - j]$: 8 $max := p[j] + r[i - j];$
9 $s[i] := j;$ $s[i] := i;$ 10 } 11 } 12 $r[i] := max;$ 13 } 14 return $r[n]$; 15 }

 \bullet Once the cutting solution is found by the rod $SBU(p, n, r, s)$ algorithm, the following algorithm can be used to print out the cutting solution.

Rod_PS 6.1.5. Rod-cutting printing solutions

// Printing the cutting solution store in the solution table, *s*[1 : *n*]. // Input: int *n*, solution array *s*[1 : *n*] ; Output: cutting solution. 1 Algorithm rod_PS(*n*, *s*) 2 { 3 while $(n > 0)$ do { 4 write $s[n]$; 5 $n := n - s[n]$;
6 } 6 } 7 }

Algorithms (EE3980) Unit 6.1 Dynamic Programming Apr. 29, 2019 9/28

Rod Cutting Problem, Solution Example

- The algorithm $\text{rod} \text{SBU}(p, n, r, s)$ has the same complexities as the $\text{rod } \text{BU}(p, n, r)$ algorithm.
	- Time complexity: $\Theta(n^2)$,
	- Space complexity: Θ(*n*).

• Solution example:

Assuming $n = 10$, the following table lists the price table p , maximum revenue table *r*, solution table *s*, and the cutting solutions for various rod lengths, $1 \leq i \leq 10$.

Matrix Multiplication

• Given two matrices, A and B, each of dimensions $p \times q$ and $q \times r$, respectively, i.e., $A[1:p, 1:q]$ and $B[1:q, 1:r]$. The product $C = A \times B$ has the dimension of $p \times r$, $C[1:p, 1:r]$, and it can be found by

$$
C[i,j] = \sum_{k=1}^{q} A[i,k] \cdot B[k,j], \qquad 1 \leq i \leq p, 1 \leq j \leq r. \tag{6.1.2}
$$

There are $p \times r$ elements in C and each takes q multiplications. Thus, the total number of multiplications to form the resultant matrix is $p \cdot q \cdot r$.

• Given thee matrices $A_1[1:10, 1:100]$, $A_2[1:100, 1:5]$, and $A_3[1:5, 1:50]$, the product of these three matrices, $B = A_1 \cdot A_2 \cdot A_3$, can be formed in two different ways.

$$
B = (A_1 \cdot A_2) \cdot A_3 \tag{6.1.3}
$$

$$
= A_1 \cdot (A_2 \cdot A_3) \tag{6.1.4}
$$

Though the resulting matrix is identical, the number of operations to get matrix *B* is different.

Algorithms (EE3980) Unit 6.1 Dynamic Programming Apr. 29, 2019 11/28

Matrix-Chain Multiplication Problem

• Using Eq. $(6.1.3)$,

 $A_{12} = A_1[1:10, 1:100] \cdot A_2[1:100, 1:5]$ $10 \times 100 \times 5 = 5000$ multiplications
 $B = A_{12}[1:10, 1:5] \cdot A_3[1:5, 1:50]$ $10 \times 5 \times 50 = 2500$ multiplications $B = A_{12}[1:10, 1:5] \cdot A_3[1:5, 1:50]$ 10 × 5 × 50 7500 multiplications

- Using Eq. (6.1.4),
	- $A_{23} = A_2[1:100, 1:5] \cdot A_3[1:5, 1:50]$ $100 \times 5 \times 50 = 25000$ multiplications
 $B = A_1[1:10, 1:100] \cdot A_{23}[1:100, 1:50]$ $10 \times 100 \times 50 = 50000$ multiplications $B = A_1[1:10, 1:100] \cdot A_{23}[1:100, 1:50]$ 10 × 100 × 50 75000 multiplications
- The order of multiplications can make significant difference in computing the resulting product.
- The matrix-chain multiplication problem is to find the sequence of matrix multiplications for a given matrix chain, $A_1 \cdot A_2 \cdot \cdot \cdot A_n$, each with dimensions $p_{i-1}\times p_i$, such that the number of scalar multiplications is minimum.

Matrix-Chain Multiplication Problem, Analysis

Given a chain of matrices, A_1, A_2, \ldots, A_n , the number of possible sequences, *P*(*n*), can be shown to be

$$
P(n) = \begin{cases} \frac{1}{n-1} & \text{if } n = 1, \\ \sum_{k=1}^{n} P(k)P(n-k) & \text{if } n \ge 2. \end{cases}
$$
 (6.1.5)

- It is shown that $P(n) \ge 2^{n-1}$. Thus, $P(n)$ is $\Theta(2^n)$.
- Brute force approach is very inefficient.
- Let the dimensions of the matrices A_i , $1 \leq i \leq n$, be $p_{i-1} \times p_i$.
	- These dimensions can be stored in the array *p*[0 : *n*].
- Let the minimum number of scalar products of performing matrix-chain, $A_i \cdot A_{i+1} \cdots A_{j-1} \cdot A_j$ be $m(i,j)$, then

$$
m(i,j) = \begin{cases} 0 & \text{if } i = j, \\ \min_{i \le k < j} \{m(i,k) + m(k+1,j)\} + p_{i-1} \cdot p_k \cdot p_j & \text{if } i < j. \end{cases} \tag{6.1.6}
$$

• This is to try all groupings, $(A_i \cdots A_k) \cdot (A_{k+1} \cdots A_j)$, and find the minimum recursively.

Algorithms (EE3980) Unit 6.1 Dynamic Programming Apr. 29, 2019 13/28

Matrix-Chain Multiplication Problem, Recursive Algorithm

 \bullet Eq. (6.1.6) can be translated into a recursive algorithm as the following.

Algorithm 6.1.6. Recursive matrix-chain multiplication.

// To find the minimum scalar multiplications for a matrix chain multiplication. // Input: int *n*, range: *i*, *j*, dim array *p*[1 : *n*] ; Output: min multiplication. 1 Algorithm MCM_R(*i*, *j*, *n*, *p*) 2 { 3 if $(i = j)$ return 0; 4 $u := \infty;$ 5 for $k := i$ to $j - 1$ do {
6 $v := MCM R(i, k, n, n)$ 6 $v := MCM_R(i, k, n, p) + MCM_R(k + 1, j, n, p) + p[i - 1] * p[k] * p[j];$

7 if $(v < u) u := v$: if $(v < u)$ $u := v$; 8 } 9 return *u* ; 10 }

- Again, this recursive algorithm is inefficient due to repeated evaluation of the MCM R function with the same arguments.
- Using the top-down dynamic programming technique, this inefficiency can be avoided by saving the value into an array, in this case, it needs to be a two-dimensional matrix, *m*[*i*, *j*].

Matrix-Chain Multiplication, Top-Down Approach

• The top-down dynamic programming approach to solve the matrix-chain multiplication problem is shown below.

Algorithm 6.1.7. Top-down matrix-chain multiplication.

// To find the minimum scalar multiplications for a matrix chain multiplication. // Input: int *n*, range: *i*, *j*, dim array $p[1:n]$; Output: min and *m* matrix. 1 Algorithm MCM_TD (i, j, n, p, m) 2 { 3 if $(m[i, j] \ge 0)$ return $m[i, j]$;
4 $u := \infty$: $u := \infty$; 5 for $k := i$ to $j - 1$ do {
6 $v := MCM \text{ TD}(i, k, n)$ 6 $v := MCM_TD(i, k, n, p) + MCM_TD(k+1, j, n, p) + p[i-1] \cdot p[k] \cdot p[j];$

7 if $(v < u) u := v$: if $(v < u)$ $u := v$; 8 } 9 $m[i, j] := u$; return $m[i, j]$; 10 }

 \bullet Before MCM TD(1, *n*, *n*, *p*, *m*) is called from the main function, initialization of $m[i][i] = 0, 1 \leq i \leq n$, should be performed.

Algorithms (EE3980) **Unit 6.1 Dynamic Programming** Apr. 29, 2019 15/28

• Also note that only the upper triangular matrix of $m[1:n, 1:n]$ is used.

Matrix-Chain Multiplication, Bottom-Up Approach

The bottom-up dynamic programming algorithm is as following. Algorithm 6.1.8. Bottom-up matrix-chain multiplication.

// To find the minimum scalar multiplications for a matrix chain multiplication. // Input: int *n*, range: *i*, *j*, dim array $p[1:n]$; Output: min and m , *s* matrices 1 Algorithm MCM_BU(*i*, *j*, *n*, *p*, *m*, *s*) 2 { 3 for $i := 1$ to *n* do $m[i, i] := 0$; 4 for $l := 2$ to *n* do $\frac{1}{l}$ / *l* is the chain length. 5 for $i := 1$ to $n - l + 1$ do $\frac{1}{l}$ all possible *i* 6 $j := i + l - 1; // j - i = l - 1.$
7 $u := \infty$: $u := \infty$; 8 for $k := i$ to $j - 1$ do $\{\n/ \mid \text{all possible groupings.}\n\}$
9 $v := m[i, k] + m[k + 1, i] + n[i - 1] \cdot n[k] \cdot n[i]$ 9
 $v := m[i, k] + m[k+1, j] + p[i-1] \cdot p[k] \cdot p[j];$

if $(v < u)$ { if $(v < u)$ { 11 $u := v$; $s[i, j] := k$; // record for solution 12 } 13 } 14 } 15 } 16 }

Matrix-Chain Multiplication, Print Solution

- In this bottom-up dynamic programming algorithm, again, the solution is recorded in the $s[1:n, 1:n]$ matrix.
- To print out the multiplication sequence after calling MCM_BU algorithm, the following algorithm should be called to print out the solution.

Algorithm 6.1.9. Matrix-chain multiplication print solution.

// To print the matrix multiplication sequence. $\frac{1}{\sqrt{2}}$ Input: range: *i*, *j*; Output: multiplication sequence. 1 Algorithm MCM_PS(*i*, *j*, *s*) 2 { 3 if $(i = j)$ write $("A" i);$ 4 else { 5 write ("(") ; 6 MCM_PS(i , $s[i, j], s$); // $(A_i \cdots A_k)$
7 MCM PS($s[i, j] + 1, j, s$) : // (A_{k+1}) 7 MCM_PS($s[i, j] + 1, j, s$); // $(A_{k+1} \cdots A_j)$
8 write (")") : write $(")"$; 9 } 10 }

Algorithms (EE3980) Unit 6.1 Dynamic Programming Apr. 29, 2019 17/28

Matrix-Chain Multiplication, Example

A chain of 6 matrices and their dimensions are shown below.

• The optimal solution is

 $(A_1(A_2A_3))((A_4A_5)A_6)$

with 15125 scalar multiplications.

The *m* and *s* tables are also shown below.

Matrix-Chain Multiplication, Complexities

- The bottom-up matrix-chain multiplication algorithm (6.1.8) has three nested loops, each executed at most *n* times.
	- Total time complexity is $\mathcal{O}(n^3)$.
	- The space complexity is $\Theta(n^2)$ due to m and s tables.
- The top-down algorithm $(6.1.7)$ has essentially the same complexities.
	- Time complexity: $\mathcal{O}(n^3)$
	- Space complexity: $\Theta(n^2)$
- Note that the *m* and *s* tables need only the upper triangular matrix only, but the space complexity is still $\Theta(n^2).$
- For the recursive algorithm $(6.1.6)$, however, the time complexity is $\mathcal{O}(2^n)$. It's space complexity is $\mathcal{O}(n)$.

Dynamic Programming

• For the rod-cutting problem, the solution is found by solving Eq. $(6.1.1)$, which is repeated below.

$$
r_n = \max\{p_n, p_1 + r_{n-1}, p_2 + r_{n-2}, \ldots, p_{n-1} + r_1\}.
$$

Algorithms (EE3980) Unit 6.1 Dynamic Programming Apr. 29, 2019 19/28

Time complexity is $\mathcal{O}(n^2)$.

For the matrix-chain multiplication problem, the solution is found by solving Eq. $(6.1.6)$. $\mathscr{F}_{\hspace{-1pt}\text{\rm M}}$ 1945.

$$
m(i,j) = \min_{i \leq k \leq j} \{m(i,k) + m(k+1,j)\} + p_{i-1} \cdot p_k \cdot p_j.
$$

This requires $\mathcal{O}(n^3)$ time complexity.

- To apply dynamic programming method, the problem can be formulated to the overall optimal solution is constructed using the optimal solutions of its subproblems.
	- The problem should be divided into subproblems.
	- The optimal solutions for the subproblems need to be found.
	- Overall optimal solution is then constructed from those solutions.
- Recursive algorithm can usually developed from the equation.
	- Using table to record solutions of subproblems improves the efficiency greatly.
	- Bottom-up approach, without recursion, usually improve the efficiency further.

Longest Common Subsequence Problem

Practical problem: Given two strands of DNA, such as

- S_1 = $ACCGGTCGAGTGGCGGAAGCCGGCCGAA$
- $S_2 =$ GTCGTTCGGAATGCCGTTGCTCTGTAAA

find the longest strand S_3 such that S_3 is a subsequence of both S_1 and S_2 .

Definition 6.1.10. Subsequence

Given a sequence $X = \langle x_1, x_2, \cdots, x_m \rangle$, another sequence $Z = \langle z_1, z_2, \cdots, z_k \rangle$ is a subsequence of X if there is a strictly increasing sequence $\langle i_1, i_2, \cdots, i_k \rangle$ of indices of X such that for all $j = 1, 2, \ldots, k$, $x_{i_j} = z_j$.

• Example: Given $X = \langle A, B, C, B, D, A, B \rangle$, $Z = \langle B, C, D, B \rangle$ is a subsequence of *X*.

Definition 6.1.11. Common subsequence

Given two sequences *X* and *Y*, sequence *Z* is a common subsequence of *X* abd *Y* if *Z* is a subsequence of both *X* and *Y*.

• Example: Given $X = \langle A, B, C, B, D, A, B \rangle$ and $Y = \langle B, D, C, A, B, A \rangle$, then $Z = \langle B, C, B, A \rangle$ is a common subsequence of X and Y.

Algorithms (EE3980) Unit 6.1 Dynamic Programming Apr. 29, 2019 21/28

Longest Common Subsequence – Properties

- Given a sequence $X_m = \langle x_1, x_2, \ldots, x_m \rangle$, then there are 2^m subsequence for *Xm*.
- Brute-force approach to find a longest common subsequence (LCS) would be impractical for reasonable size sequences.

Theorem 6.1.12.

Given two sequences, $X_m = \langle x_1, x_2, \ldots, x_m \rangle$ and $Y_n = \langle y_1, y_2, \ldots, y_n \rangle$, if $Z_k = \langle z_1, z_2, \ldots, z_k \rangle$ is any LCS of X and Y , then

1. If $x_m = y_n$, then $z_k = x_m = y_n$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1} .

- 2. If $x_m \neq y_n$, then $x_m \neq z_k$ implies *Z* is an LCS of X_{m-1} and Y_n .
- 3. If $x_m \neq y_n$, then $y_n \neq z_k$ implies *Z* is an LCS of X_m and Y_{n-1} .

• Proof please see textbook [Cormen], p. 392.

Longest Common Subsequence – Properties, II

Let $c[i, j]$ be the length of an LCS of the sequences X_i and Y_j , then we have

$$
c[i,j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0, \\ c[i-1,j-1] + 1 & \text{if } i,j > 0 \text{ and } x_i = y_j, \\ \max\{c[i,j-1], c[i-1,j]\} & \text{if } i,j > 0 \text{ and } x_i \neq y_j. \end{cases}
$$
(6.1.7)

- Based on this equation, recursive algorithm can be derived to solve the LCS problem.
	- However, due to exponential number of subsequences the recursive algorithm is very inefficient to solve reasonable size problems.
- A bottom-up dynamic programming algorithm is shown next which is rather efficient.
	- **•** Inputs are two sequences: $X_m = \langle x_1, x_2, \ldots, x_m \rangle$, $Y_n = \langle y_1, y_2, \ldots, y_n \rangle$.
	- Two tables are built by the algorithm.
		- $c[0 : m, 0 : n]$: record the length of the LCS for X_i and Y_i at $c[i, j]$.
		- $b[1 : m, 1 : n]$: record the solution sequence of the LCS for X_i and Y_j at $b[i, j]$.

Algorithms (EE3980) Unit 6.1 Dynamic Programming Apr. 29, 2019 23/28

Longest Common Subsequence – Algorithm

Algorithm 6.1.13. Longest Common Subsequence

```
// To find a LCS of X = \langle x_1, \ldots, x_m \rangle and Y = \langle y_1, \ldots, y_n \rangle.
    // Input: int m, n; sequences X, Y; Output: matrices b, c.
 1 Algorithm LCS(X, Y)
 2 {
 3 for i := 1 to m do c[i, 0] := 0;
 4 for j := 0 to n do c[0, j] := 0;
 5 for i := 1 to m do {
 6 for j := 1 to n do {
 7 if (x_i = y_j) then {
 8 c[i, j] := c[i-1, j-1] + 1;9 b[i, j] := " \nwarrow " ;10  }
11 else if (c[i - 1, j] \ge c[i, j - 1]) then {<br>
c[i, j] := c[i - 1, j];
12 c[i, j] := c[i - 1, j];<br>
13 b[i, j] := " \uparrow ";
13 b[i, j] := " \uparrow " ;<br>14 }
14 }
15 else {
16 c[i, j] := c[i, j - 1];<br>
17 b[i, j] := " \leftarrow " ;17<br>
18<br>
b[i, j] := " \leftarrow " ;\left\{\n \begin{array}{ccc}\n 18 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 &19 }
20 }
21 }
```
Longest Common Subsequence – Print Solution

Longest Common Subsequence – Complexity

- The bottom-up dynamic algorithm to solve LCS problem, Algorithm (6.1.13), is dominated by the double loops, lines 5-6.
- **•** Thus, the time complexity is $\Theta(mn)$
- The LCS solution printing algorithm $(6.1.14)$ traces the $b[1 : m, 1 : n]$ table for the lower-right corner to the upper-left corner.
	- Thus, the time complexity is $\mathcal{O}(m + n)$.
- The overall space complexity is $\Theta(mn)$ due to those two tables, $c[0:m, 0:n]$ and $b[1 : m, 1 : n]$.
- It is possible to print out the LCS solution using table $c[0 : m, 0 : n]$ alone, thus save memory space requirement.
	- Starting from $c[m][n]$, each step it requires to compare x_m vs. y_n and $c[m-1][n]$ vs. $c[m][n-1]$.
- Note that in Algorithm $(6.1.13)$, in constructing $c[i]$ row it needs only the previous row $c[i-1]$.
	- Thus, if only the length of LCS is required, table *b*[1 : *m*, 1 : *n*] needs not be built. The space complexity can be reduced to $\mathcal{O}(m)$.

Algorithms (EE3980) Unit 6.1 Dynamic Programming Apr. 29, 2019 27/28

Summary

- Rod-cutting problem
- Matrix-chain multiplication problem
- **•** Dynamic programming
- Longest common subsequence problem