Unit 6.1 Dynamic Programming

Algorithms
EE3980

Apr. 29, 2019

Algorithms (EE3980) Unit 6.1 Dynamic Programming Apr. 29, 2019

Rod Cutting Problem

@ Rod cutting problem
Given a rod of n inches and a price table, p;, i=1,...,n, determine the
maximum revenue 7, obtainable to cutting the rod and selling the pieces.

@ Example of the price table for rods.

Length, inches |
Price, Dollars ‘

1
1

2 3 4 5 6 7 8 9 10
5 8 9 10 17 17 20 24 30

@ Example of cutting a rod of length of 4 inches.

e Eight different ways of cutting.
e Maximum revenue is 10.

9 18 BN 5 8 1
Q11 Qa1 1) Qo) Q7110
1 1 5 1 5 1 5 1 1 1 1 1 1
M@dED D@D e® D@ M@

Algorithms (EE3980) Unit 6.1 Dynamic Programming Apr. 29, 2019 2/28

Rod Cutting Problem, Formulation

@ Given a rod of length n inches, there are totally 2"~ ways of cutting.

@ In brute-force approach, the maximum revenue of all these cutting is the
optimal solution.

@ Using recursive function, we can formulate the solution as

T, = MaX{ Pp, P1 + Tne1,P2 + Tn—2,.. -y Pn—1 + 711}, (6.1.1)

where 1 is the maximum revenue of cutting the rod of length £,
and py is the price of length £ rod.

@ This is a recursive formula and it evaluates all possible rod-cutting solutions
and finds the maximum revenue.

Algorithms (EE3980) Unit 6.1 Dynamic Programming Apr. 29, 2019 3/28

Rod Cutting Problem, Recursive Algorithm

Rod_R 6.1.1. Recursive Rod-cutting

// Find the maximum revenue for cutting rod of length n. p[l : n] is the price table.
// Input: int n, price table p[l : n]; Output: max revenue.

1 Algorithm rod_R(p, n)

2 {

3 if (n=10) return 0;

4 maz := p[n]; // no cut.

5 for i:=1to n—1do { // check all possible cutting using recursion.

6 if (p[i]4+ rod_R(p,n — i) > mazx) then max := p[i]+ rod_R(p,n — 7);

7 }

8 return max;

9}

e Example of Rod_R(p,4) unrolling

Rod_R(p,4) = p[l]4+Rod_R(p,3) p[2]+Rod_R(p,2) p[3]+Rod_R(p,1) p[4]
Rod_R(p,3) = p[l]4+Rod_R(p,2) p[2]+Rod_R(p,1) p[3]

Rod_R(p,2) = p[l]+Rod_R(p,1) p[2]

Rod_R(p,1) = p[1]

@ As itis, rod_R(p, n) may be called many times for i, 1 <=7 < n.

@ This inefficiency can be improved using dynamic programming method.
Algorithms (EE3980) Unit 6.1 Dynamic Programming Apr. 29, 2019

Rod Cutting Problem, Top-Down Dynamic Programming

@ The efficiency of the recursive rod-cutting algorithm can be improved
significantly using a revenue array, {0 : n.
@ Before calling this rod_TD(p, n, r) function, the revenue array should be

initialized as
g [0 if i =0,
=00, otherwise.

// Find the maximum revenue for cutting rod of length n.
// Input: int n, price table p[l : n]; Output: max revenue and array 7l : nj.
1 Algorithm rod_TD(p, n, r)

3 if (r{n] > 0) return r{n]; // if prior evaluation is done, return value.
4 maz := p[n]; // no cut.

5 for i:=1to n—1do { // check all possible cutting using recursion.
6 if (p[¢]+ rod_TD(p, n — i,7) > max) then

7 maz = pli]+ rod_TD(p,n — 4, 7);

8

9

}
r[n] := mazx; // record max revenue in 7 array.
10 return max;

Algorithms (EE3980) Unit 6.1 Dynamic Programming Apr. 29, 2019 5/28

Rod Cutting Problem, Bottom-Up Dynamic Programming

@ For the top-down dynamic function, in addition to the proper initialization of
the revenue, {0 : nJ, table, the function should be called as
rod_TD(p, n, r);

@ A corresponding bottom-up dynamic programming algorithm is as the
following.

Rod_BU 6.1.3. Rod-cutting bottom-up dynamic programming

// Find the maximum revenue for cutting rod of length n.
// Input: int n, price table p[l : n]; Output: max revenue and array 7l : n.
1 Algorithm rod_BU(p, n, r)
2 {
3 0] :=0;
4 for i:=1to ndo{
5 maxr := —0o0;
6 for j:=1 to ido {
7 if (p[j] + r[¢ — j] > max) then mazx := p[j| + rli — j];
8 1
9 ri] := max;
10 }
11 return r{n|;

Algorithms (EE3980) Unit 6.1 Dynamic Programming Apr. 29, 2019 6/28

Rod Cutting Problem, Complexities

@ For the rod_BU(p, n, r) algorithm, for loop on lines 4-10 executes n times.

n(n+1)
2

@ The inner for loop on lines 6-8 executes times overall.

@ Thus the computational complexity is ©(n?).

@ The space complexity is ©(n) due to the {0 : n] and p[l : n] arrays.

@ For the rod_TD(p, n, r) algorithm, both time and space complexities are the
same of the rod_BU(p, n, r) algorithm asymptotically.

@ In both rod_BU(p, n,7) and rod_TD(p, n, r) algorithms, the maximum
revenue array, 11 : n], is found. But, not the actual cutting solution. By
adding a solution table, s[1 : n], the following algorithm finds the cutting
solution as well.

Algorithms (EE3980) Unit 6.1 Dynamic Programming Apr. 29, 2019 7/28

Rod Cutting Problem, Maximum Revenue and Cutting

Rod_R 6.1.4. Rod-cutting with solution
// Find the maximum revenue for cutting rod of length n.
// Input: int n, price table p[l : n]; Output: max revenue and array 7l : n.
1 Algorithm rod_SBU(p, n, T, S)
2 {
3 0] :=0;
4 for i:=1to ndo {
5 maxr := —0o0;
6 for j:=1 to ido {
7 if (p[j] + r{¢ — j] > max) then {
8 maz := plj] + r[i = jl;
9 si] := j;
10 }
11 }
12 ri] :== max;
13 }
14 return r{n|;
15 }
v

Algorithms (EE3980) Unit 6.1 Dynamic Programming Apr. 29, 2019 8/28

Rod Cutting Problem, Maximum Revenue and Cutting

@ Once the cutting solution is found by the rod_SBU(p, n, r, s) algorithm, the
following algorithm can be used to print out the cutting solution.

Rod_PS 6.1.5. Rod-cutting printing solutions

// Printing the cutting solution store in the solution table, s[1 : n.
// Input: int n, solution array s[1 : n]; Output: cutting solution.
1 Algorithm rod_PS(n, s)

2 {
3 while (n > 0) do {
4 write s[n];

5 n:=mn—sn;
6 }

7}

Algorithms (EE3980) Unit 6.1 Dynamic Programming Apr. 29, 2019 9/28

Rod Cutting Problem, Solution Example

@ The algorithm rod_SBU(p, n, r, s) has the same complexities as the
rod_BU(p, n, r) algorithm.
o Time complexity: ©(n?),
e Space complexity: O(n).

@ Solution example:
Assuming n = 10, the following table lists the price table p, maximum
revenue table r, solution table s, and the cutting solutions for various rod
lengths, 1 < 7 < 10.

i |1 2 3 4 5 6 7 8 9 10
pli] |1 5 8 O 10 17 17 20 24 30
fi] |1 5 8 10 13 17 18 22 25 30
sfi] |1 2 3 2 2 6 1 2 3 10

Cutss [1 2 3 2 2 6 1 2 3 10
2 3 6 6 6

Algorithms (EE3980) Unit 6.1 Dynamic Programming Apr. 29, 2019 10/28

Matrix Multiplication

@ Given two matrices, A and B, each of dimensions p X g and ¢ x r,
respectively, i.e., A[1:p,1:¢] and B[1:¢q,1: 7. The product C= A x B
has the dimension of p x r, C[1: p,1: 1], and it can be found by

q
Cli,j]=> Ali,k]-Blkj], 1<i<pl<j<r (6.1.2)
k=1

There are p x r elements in C' and each takes ¢ multiplications. Thus, the
total number of multiplications to form the resultant matrix is p- g - 1.

@ Given thee matrices A;[1 : 10,1 : 100], Ax[1:100,1 : 5], and A3[1:5,1:50],
the product of these three matrices, B= A; - A5 - A3, can be formed in two
different ways.

B= (A - As) - As (6.1.3)
= Ay - (A2 - As) (6.1.4)

Though the resulting matrix is identical, the number of operations to get
matrix B is different,

Algorithms (EE3980) Unit 6.1 Dynamic Programming Apr. 29, 2019 11/28

Matrix-Chain Multiplication Problem

e Using Eq. (6.1.3),

Ajg = A1[1:10,1:100] - A2[1:100,1:5] 10 x 100 x 5 = 5000 multiplications
B = Ai2[1:10,1:5]-As[l:5,1:50] 10 x 5 x 50 = 2500 multiplications
Total 7500 multiplications

e Using Eq. (6.1.4),

Aoz = As[1:100,1: 5] - Az[1:5,1 : 50] 100 X 5 x 50 = 25000 multiplications
B= A1[1:10,1:100] - A23[1:100,1:50] 10 x 100 x 50 = 50000 multiplications
Total 75000 multiplications

@ The order of multiplications can make significant difference in computing the
resulting product.

@ The matrix-chain multiplication problem is to find the sequence of matrix
multiplications for a given matrix chain, Ay - A5 --- A, each with dimensions
Pi—1 X pi, such that the number of scalar multiplications is minimum.

Apr. 29, 2019 12 /28

Algorithms (EE3980) Unit 6.1 Dynamic Programming

Matrix-Chain Multiplication Problem, Analysis

@ Given a chain of matrices, A1, As, ..., A,, the number of possible sequences,
P(n), can be shown to be

—

if n=1,

P(n) = (6.1.5)

niP(k:)P(n—k) if n> 2.

o It is shown that P(n) > 2" '. Thus, P(n) is ©(2").
e Brute force approach is very inefficient.

@ Let the dimensions of the matrices 4;, 1 < i< n, be p;_1 X p;.
e These dimensions can be stored in the array p[0 : 7.

@ Let the minimum number of scalar products of performing matrix-chain,
Az’ . Ai_|_1 st Aj—l . Aj be m(z,]), then

L _Jo ifi=
WMJ):{ min {m(i, k) + m(k+1,j)} + pios - pe-p; fi<j (016)

1<k<j

e This is to try all groupings, (A;--- Ax) - (Ak+1 -+ Aj), and find the minimum
recursively.

Algorithms (EE3980) Unit 6.1 Dynamic Programming Apr. 29, 2019 13/28

Matrix-Chain Multiplication Problem, Recursive Algorithm

@ Eq. (6.1.6) can be translated into a recursive algorithm as the following.

Algorithm 6.1.6. Recursive matrix-chain multiplication.

// To find the minimum scalar multiplications for a matrix chain multiplication.
// Input: int n, range: ¢, j, dim array p[l : n]; Output: min multiplication.
1 Algorithm MCM_R(4, j, n, p)
2 {
3 if (7= j) return O;
4 U= 00;
5 for k:=1ito j—1do {
6 v := MCM_R(4, k, n, p)+ MCM_R(k + 1, j, n, p) + p[i — 1] * p[k] * p[j];
7 if (v < u) u:=v;
8 ¥
9 return u;
10 }

v

@ Again, this recursive algorithm is inefficient due to repeated evaluation of the
MCM_R function with the same arguments.

@ Using the top-down dynamic programming technique, this inefficiency can be
avoided by saving the value into an array, in this case, it needs to be a

two-dimensional matrix, m[3, j].
Algorithms (EE3980) Unit 6.1 Dynamic Programming

Apr. 29, 2019 14 /28

Matrix-Chain Multiplication, Top-Down Approach

@ The top-down dynamic programming approach to solve the matrix-chain
multiplication problem is shown below.

Algorithm 6.1.7. Top-down matrix-chain multiplication.

// To find the minimum scalar multiplications for a matrix chain multiplication.
// Input: int n, range: ¢, j, dim array p[l : n]; Output: min and m matrix.
1 Algorithm MCM_TD(%, j, n, p, m)
24
3 if (m[i,j] > 0) return m[i, j] ;
4 U= 00;
5 for k:=1ito j—1do {
6 v := MCM_TD(i, k, n, p)+ MCM_TD(k + 1,4, n, p) + p[é — 1]- p[k]- p[j];
7 if (v < u) u:= v;
8 ¥
9 mli, j] := w; return mli, j];
10 }

v

e Before MCM_TD(1, n, n, p, m) is called from the main function, initialization of
m[i][i] = 0, 1 < ¢ < n, should be performed.
@ Also note that only the upper triangular matrix of m[1 : n, 1 : n] is used.

Algorithms (EE3980) Unit 6.1 Dynamic Programming Apr. 29, 2019 15/28

Matrix-Chain Multiplication, Bottom-Up Approach

@ The bottom-up dynamic programming algorithm is as following.

Algorithm 6.1.8. Bottom-up matrix-chain multiplication.
// To find the minimum scalar multiplications for a matrix chain multiplication.
// Input: int n, range: i, j, dim array p[l : n]; Output: min and m, s matrices

1 Algorithm MCM_BU(4, j, n, p, m, s)

2 {

3 for ¢:=1 to ndo m[i,] :==0;

4 for [: =2 to ndo { // lis the chain length.

5 for i:=1ton—1I0+1do {// all possible i

6 ji=i+1l—1;//j—i=1—1.

7 U= 00;

8 for k:=ito j—1do { // all possible groupings.

9 v:=m[i, k] + mk+ 1, 5] + p[i — 1]- p[k]- p[j];

10 if (v< u) {

11 u:=v; s[4,j] := k; // record for solution

12 }

13 }

14 }

15 }

16 }

o

Algorithms (EE3980) Unit 6.1 Dynamic Programming Apr. 29, 2019 16 /28

Matrix-Chain Multiplication, Print Solution

@ In this bottom-up dynamic programming algorithm, again, the solution is
recorded in the s[1 : n, 1 : n| matrix.

@ To print out the multiplication sequence after calling MCM_BU algorithm, the
following algorithm should be called to print out the solution.

Algorithm 6.1.9. Matrix-chain multiplication print solution.

// To print the matrix multiplication sequence.
// Input: range: 4, j; Output: multiplication sequence.

1 Algorithm MCM_PS(4, j, s)

2 {

3 if (i =j) write ("A" 9);

4 else {

5 write ("(") ;

6 MCM_PS(4, s[4, j],s); // (Ai--- Ay)

7 MCM_PS(s[4, 1] + 1,5,)5 // (Axs1--- Aj)

8 write (")") ;

9 }

10 }

Algorithms (EE3980) Unit 6.1 Dynamic Programming Apr. 29, 2019 17 /28

Matrix-Chain Multiplication, Example

@ A chain of 6 matrices and their dimensions are shown below.

matrix | Aq Ao As Ay As Ag
dimension | 30x35 35 x15 156 x5 Hx10 10x20 20X 25

@ The optimal solution is
(A1(A243))((A145)As)

with 15125 scalar multiplications.

@ The m and s tables are also shown below.

s table
m table

0 | 15750 | 7875 | 9375 | 11875 | 15125 -1]1]3]3]3

0 2625 | 4375 | 7125 | 10500 - 12131313

0 750 2500 5375 - 313]|3

0 1000 3500 - 4 5

0 5000 5

O -

_4
_4

Algorithms (EE3980) Unit 6.1 Dynamic Programming

Matrix-Chain Multiplication, Complexities

@ The bottom-up matrix-chain multiplication algorithm (6.1.8) has three nested
loops, each executed at most n times.

o Total time complexity is O(n?).
o The space complexity is ©(n?) due to m and s tables.

@ The top-down algorithm (6.1.7) has essentially the same complexities.
o Time complexity: O(n?)
o Space complexity: ©(n?)

@ Note that the m and s tables need only the upper triangular matrix only, but
the space complexity is still ©(n?).

@ For the recursive algorithm (6.1.6), however, the time complexity is O(2").
It's space complexity is O(n).

Algorithms (EE3980) Unit 6.1 Dynamic Programming Apr. 29, 2019 19/28

Dynamic Programming

@ For the rod-cutting problem, the solution is found by solving Eq. (6.1.1),
which is repeated below.

T = MaxX{Pn, 1 + Tn-1,P2 + Tn-2,. .., Pn—1 + 11}

Time complexity is O(n?).
@ For the matrix-chain multiplication problem, the solution is found by solving
Eq. (6.1.6).

m(4,7) = min {m(é, k) + m(k+1,5)} + pi—1 - P& - ;-
i<k<j
This requires O(n?) time complexity.

@ To apply dynamic programming method, the problem can be formulated to
the overall optimal solution is constructed using the optimal solutions of its
subproblems.

e The problem should be divided into subproblems.
e The optimal solutions for the subproblems need to be found.
e Overall optimal solution is then constructed from those solutions.

@ Recursive algorithm can usually developed from the equation.

e Using table to record solutions of subproblems improves the efficiency greatly.
e Bottom-up approach, without recursion, usually improve the efficiency further.

Algorithms (EE3980) Unit 6.1 Dynamic Programming Apr. 29, 2019 20/28

Longest Common Subsequence Problem

@ Practical problem: Given two strands of DNA, such as

S1 = ACCGGTCGAGTGCGCGGAAGCCGGCCGAA
Sy = GTCGTTCGGAATGCCGTTGCTCTGTAAA

find the longest strand S3 such that S3 is a subsequence of both 57 and 5.

Definition 6.1.10. Subsequence

Given a sequence X = (11, 22, - - , Zp,), another sequence Z = (2, 20, -+, 2x) is a
subsequence of X if there is a strictly increasing sequence (7, iz, - - - , i) of indices
of X such that for all j=1,2,...,k z;; = 2.

@ Example: Given X = (A, B, C,B,D, A, B), Z= (B, C, D, B) is a subsequence
of X.

Definition 6.1.11. Common subsequence

Given two sequences X and Y, sequence Z is a common subsequence of X abd Y
if Z is a subsequence of both X and Y.

e Example: Given X = (A, B, C,B,D, A, B) and Y= (B, D, C, A, B, A), then
Z = (B, C, B, A) is a common subsequence of X and Y.

Algorithms (EE3980) Unit 6.1 Dynamic Programming Apr. 29, 2019 21/28

Longest Common Subsequence — Properties

e Given a sequence X,, = (x1, T2, ..., Tm), then there are 2 subsequence for
X

@ Brute-force approach to find a longest common subsequence (LCS) would be
impractical for reasonable size sequences.

Theorem 6.1.12.

Given two sequences, X, = (21,22, ..., Zy) and Y, = (Y1, Y2, - ., Yn), if
Zr = (21, 22,...,2k) is any LCS of X and Y, then

1. If z,, = yn, then zx = z,, = ¥, and Zx_1 is an LCS of X,,—1 and Y, 1.
2. If z, # yn, then x,, # 2 implies Z is an LCS of X,,,—1 and Y.
3. If &, # yn, then y,, # 2 implies Z is an LCS of X,,, and Y,_1.

@ Proof please see textbook [Cormen], p. 392.

Apr. 29, 2019 22 /28

Algorithms (EE3980) Unit 6.1 Dynamic Programming

Longest Common Subsequence — Properties, Il

@ Let c[7,j] be the length of an LCS of the sequences X; and Y}, then we have

0 if i=0o0rj=0,
cli,jl=4¢ cli—1,j—1]+1 if 4,5> 0 and z; = y;, (6.1.7)
max{c[i,j— 1], c[i— 1, j]} if 7,7 >0 and x; # v;.

@ Based on this equation, recursive algorithm can be derived to solve the LCS
problem.

e However, due to exponential number of subsequences the recursive algorithm
is very inefficient to solve reasonable size problems.

@ A bottom-up dynamic programming algorithm is shown next which is rather
efficient.
o Inputs are two sequences: X, = (z1, %2, ..., Tm), Yo = (Y1, Y2, -, Yn)-
e Two tables are built by the algorithm.
c[0 : m,0 : n|: record the length of the LCS for X; and Y; at c[i, j].
b[1 : m,1: n]: record the solution sequence of the LCS for X; and Y; at b[7, j].

Algorithms (EE3980) Unit 6.1 Dynamic Programming Apr. 29, 2019 23/28

Longest Common Subsequence — Algorithm

Algorithm 6.1.13. Longest Common Subsequence

// Tofind a LCS of X = (z1,...,2m) and Y = (y1,..., Yn).
// Input: int m, m; sequences X, Y; Output: matrices b, c.
1 Algorithm LCS(X, Y)
2 {
3 for ¢:= 1 to mdo ¢c[{,0] :=0;
4 for j:= 0 to ndo ¢[0,j] :=0;
5 for ¢:=1 to mdo {
6 for j:=1 to ndo {
7 if (x; = y;) then {
8 C[i,j] = C[i—l,j—1]+1;

5 bli, 5] =" <"
10

11 else if (c[t — 1,j] > c[%,j— 1]) then {
12 cli, jl == cli —1,4];

13 bla] = "1 " ;

14 }

15 else {

16 C[Zaj] 5= C[’i,j— 1]7

17 bli,j] :=" « " ;

18 }

19 }

20 }

21}

v

Algorithms (EE3980) Unit 6.1 Dynamic Programming Apr. 29, 2019 24 /28

Longest Common Subsequence — Print Solution

@ After the LCS(X, Y) algorithm is called, tables b[1 : m, 1 : n] and
[0 : m,0 : n| are built,

@ The length of the LCS is in ¢[m, n.

@ And the following recursive algorithm can print out the LCS using X and
table b[1: m,1: n)].

@ It should be invoked by LCS_PS(b, X, m, n).

Algorithm 6.1.14. Print Longest Common Subsequence

// Use X, and b[1 : m, 1 : n] to print the LCS found recursively.
// Input: int m, n, 4, j; array X; matrix b; Output: solution found.

1 Algorithm LCS_PS(b, X, 4, j)

24

3 if (=0 or j=0) return ;

Z if (b[¢,j] ="\ ") then {

5 LCS_PS(b, X,i—1,j—1);

6 write (" x; ");

7 ¥

8 else if (b[7,5] =" 1") then LCS_PS(b, X,i—1,j);

9 else LCS_PS(b, X,4,j—1);

0

Algorithms (EE3980) Unit 6.1 Dynamic Programming Apr. 29, 2019 25/28

Longest Common Subsequence — Example

e Given two sequences
X;=(A,B,C,B,D,A,B), Ys =(B,D,C, A, B, A).
After LCS(X, Y) call, we have the following tables.

Uele ebe 1,086 Table b[1: 7,1 : 6]
.j01123456 i 1 2 3 4 5 6
' y B D C A B A F B D C A B A
O | O0O|O0O|]O0O|O0O]O0|0]O0

I AT | T 1T N[N
1 A|J]O0|]O0O|O0O]O0O]|1T |11

2 BN |« |« | T [N |«
2 B |0 1 1 (1]12]2

S O I I N I I
3 C|O0 1 112|222

4 BN [T[T 1T IN |«
4 B|lO|1]|1|2]2|3]|3

5 Dt [N| Pt |t |1 |7
5 D] O 11212123]|3

6 AT TP INT TN
6 A|0|1]2]|2 3|3]| 4 7 B[R 7 7 TR 7
7 B | O 1 1223|414)
@ The length of the LCS found is ¢[7, 6] = 4.
@ And the LCS is (B, C, B, A).

Algorithms (EE3980) Unit 6.1 Dynamic Programming

Longest Common Subsequence — Complexity

@ The bottom-up dynamic algorithm to solve LCS problem, Algorithm (6.1.13),
is dominated by the double loops, lines 5-6.
@ Thus, the time complexity is ©(mn).

@ The LCS solution printing algorithm (6.1.14) traces the b[1 : m, 1 : n] table
for the lower-right corner to the upper-left corner.

e Thus, the time complexity is O(m + n).

@ The overall space complexity is ©(mn) due to those two tables, ¢[0 : m,0 : n]
and b[1: m,1: n.

@ It is possible to print out the LCS solution using table ¢[0 : m,0 : n] alone,
thus save memory space requirement.

e Starting from c[m]|[n], each step it requires to compare z,, vs. y, and
c[m — 1][n] vs. ¢[m][n — 1].

@ Note that in Algorithm (6.1.13), in constructing c[¢] row it needs only the
previous row c[i — 1].
e Thus, if only the length of LCS is required, table b[1 : m, 1 : n] needs not be
built. The space complexity can be reduced to O(m).

Algorithms (EE3980) Unit 6.1 Dynamic Programming Apr. 29, 2019 27 /28

Summary

Rod-cutting problem
Matrix-chain multiplication problem
Dynamic programming

Longest common subsequence problem

Algorithms (EE3980) Unit 6.1 Dynamic Programming

Apr. 29, 2019 28 /28

