
Unit 6.1 Dynamic Programming

Algorithms

EE3980

Apr. 29, 2019

Algorithms (EE3980) Unit 6.1 Dynamic Programming Apr. 29, 2019 1 / 28

Rod Cutting Problem

Rod cutting problem
Given a rod of n inches and a price table, pi, i = 1, . . . ,n, determine the
maximum revenue rn obtainable to cutting the rod and selling the pieces.
Example of the price table for rods.

Length, inches 1 2 3 4 5 6 7 8 9 10
Price, Dollars 1 5 8 9 10 17 17 20 24 30

Example of cutting a rod of length of 4 inches.
Eight different ways of cutting.
Maximum revenue is 10.

9

511

81

5 11

55

5 1 1

8 1

1 111

Algorithms (EE3980) Unit 6.1 Dynamic Programming Apr. 29, 2019 2 / 28

Rod Cutting Problem, Formulation

Given a rod of length n inches, there are totally 2n−1 ways of cutting.
In brute-force approach, the maximum revenue of all these cutting is the
optimal solution.
Using recursive function, we can formulate the solution as

rn = max{pn, p1 + rn−1, p2 + rn−2, . . . , pn−1 + r1}, (6.1.1)

where rk is the maximum revenue of cutting the rod of length k,
and pk is the price of length k rod.
This is a recursive formula and it evaluates all possible rod-cutting solutions
and finds the maximum revenue.

Algorithms (EE3980) Unit 6.1 Dynamic Programming Apr. 29, 2019 3 / 28

Rod Cutting Problem, Recursive Algorithm
Rod_R 6.1.1. Recursive Rod-cutting

// Find the maximum revenue for cutting rod of length n. p[1 : n] is the price table.
// Input: int n, price table p[1 : n] ; Output: max revenue.

1 Algorithm rod_R(p,n)
2 {
3 if (n = 0) return 0 ;
4 max := p[n] ; // no cut.
5 for i := 1 to n− 1 do { // check all possible cutting using recursion.
6 if (p[i]+ rod_R(p,n− i) > max) then max := p[i]+ rod_R(p,n− i) ;
7 }
8 return max ;
9 }

Example of Rod_R(p, 4) unrolling
Rod_R(p, 4)⇒ p[1]+Rod_R(p, 3) p[2]+Rod_R(p, 2) p[3]+Rod_R(p, 1) p[4]
Rod_R(p, 3)⇒ p[1]+Rod_R(p, 2) p[2]+Rod_R(p, 1) p[3]
Rod_R(p, 2)⇒ p[1]+Rod_R(p, 1) p[2]
Rod_R(p, 1)⇒ p[1]

As it is, rod_R(p,n) may be called many times for i, 1 <= i < n.
This inefficiency can be improved using dynamic programming method.

Algorithms (EE3980) Unit 6.1 Dynamic Programming Apr. 29, 2019 4 / 28

Rod Cutting Problem, Top-Down Dynamic Programming
The efficiency of the recursive rod-cutting algorithm can be improved
significantly using a revenue array, r[0 : n].
Before calling this rod_TD(p,n, r) function, the revenue array should be
initialized as

r[i] =
{

0, if i = 0,
−∞, otherwise.

Rod_TD 6.1.2. Rod-cutting top-down dynamic programming
// Find the maximum revenue for cutting rod of length n.
// Input: int n, price table p[1 : n] ; Output: max revenue and array r[1 : n].

1 Algorithm rod_TD(p,n, r)
2 {
3 if (r[n] > 0) return r[n] ; // if prior evaluation is done, return value.
4 max := p[n] ; // no cut.
5 for i := 1 to n− 1 do { // check all possible cutting using recursion.
6 if (p[i]+ rod_TD(p,n− i, r) > max) then
7 max := p[i]+ rod_TD(p,n− i, r) ;
8 }
9 r[n] := max ; // record max revenue in r array.

10 return max ;
11 }

Algorithms (EE3980) Unit 6.1 Dynamic Programming Apr. 29, 2019 5 / 28

Rod Cutting Problem, Bottom-Up Dynamic Programming
For the top-down dynamic function, in addition to the proper initialization of
the revenue, r[0 : n], table, the function should be called as
rod_TD(p,n, r);
A corresponding bottom-up dynamic programming algorithm is as the
following.

Rod_BU 6.1.3. Rod-cutting bottom-up dynamic programming
// Find the maximum revenue for cutting rod of length n.
// Input: int n, price table p[1 : n] ; Output: max revenue and array r[1 : n].

1 Algorithm rod_BU(p,n, r)
2 {
3 r[0] := 0 ;
4 for i := 1 to n do {
5 max := −∞ ;
6 for j := 1 to i do {
7 if (p[j] + r[i− j] > max) then max := p[j] + r[i− j] ;
8 }
9 r[i] := max ;

10 }
11 return r[n] ;
12 }

Algorithms (EE3980) Unit 6.1 Dynamic Programming Apr. 29, 2019 6 / 28

Rod Cutting Problem, Complexities

For the rod_BU(p,n, r) algorithm, for loop on lines 4-10 executes n times.

The inner for loop on lines 6-8 executes n(n + 1)

2
times overall.

Thus the computational complexity is Θ(n2).
The space complexity is Θ(n) due to the r[0 : n] and p[1 : n] arrays.

For the rod_TD(p,n, r) algorithm, both time and space complexities are the
same of the rod_BU(p,n, r) algorithm asymptotically.

In both rod_BU(p,n, r) and rod_TD(p,n, r) algorithms, the maximum
revenue array, r[1 : n], is found. But, not the actual cutting solution. By
adding a solution table, s[1 : n], the following algorithm finds the cutting
solution as well.

Algorithms (EE3980) Unit 6.1 Dynamic Programming Apr. 29, 2019 7 / 28

Rod Cutting Problem, Maximum Revenue and Cutting

Rod_R 6.1.4. Rod-cutting with solution
// Find the maximum revenue for cutting rod of length n.
// Input: int n, price table p[1 : n] ; Output: max revenue and array r[1 : n].

1 Algorithm rod_SBU(p,n, r, s)
2 {
3 r[0] := 0 ;
4 for i := 1 to n do {
5 max := −∞ ;
6 for j := 1 to i do {
7 if (p[j] + r[i− j] > max) then {
8 max := p[j] + r[i− j] ;
9 s[i] := j ;

10 }
11 }
12 r[i] := max ;
13 }
14 return r[n] ;
15 }

Algorithms (EE3980) Unit 6.1 Dynamic Programming Apr. 29, 2019 8 / 28

Rod Cutting Problem, Maximum Revenue and Cutting

Once the cutting solution is found by the rod_SBU(p,n, r, s) algorithm, the
following algorithm can be used to print out the cutting solution.

Rod_PS 6.1.5. Rod-cutting printing solutions
// Printing the cutting solution store in the solution table, s[1 : n].
// Input: int n, solution array s[1 : n] ; Output: cutting solution.

1 Algorithm rod_PS(n, s)
2 {
3 while (n > 0) do {
4 write s[n] ;
5 n := n− s[n] ;
6 }
7 }

Algorithms (EE3980) Unit 6.1 Dynamic Programming Apr. 29, 2019 9 / 28

Rod Cutting Problem, Solution Example

The algorithm rod_SBU(p,n, r, s) has the same complexities as the
rod_BU(p,n, r) algorithm.

Time complexity: Θ(n2),
Space complexity: Θ(n).

Solution example:
Assuming n = 10, the following table lists the price table p, maximum
revenue table r, solution table s, and the cutting solutions for various rod
lengths, 1 ≤ i ≤ 10.

i 1 2 3 4 5 6 7 8 9 10
p[i] 1 5 8 9 10 17 17 20 24 30
r[i] 1 5 8 10 13 17 18 22 25 30
s[i] 1 2 3 2 2 6 1 2 3 10

Cuts: 1 2 3 2 2 6 1 2 3 10
2 3 6 6 6

Algorithms (EE3980) Unit 6.1 Dynamic Programming Apr. 29, 2019 10 / 28

Matrix Multiplication

Given two matrices, A and B, each of dimensions p × q and q × r,
respectively, i.e., A[1 : p, 1 : q] and B[1 : q, 1 : r]. The product C = A × B
has the dimension of p × r, C[1 : p, 1 : r], and it can be found by

C [i, j] =
q∑

k=1

A[i, k] · B[k, j], 1 ≤ i ≤ p, 1 ≤ j ≤ r. (6.1.2)

There are p × r elements in C and each takes q multiplications. Thus, the
total number of multiplications to form the resultant matrix is p · q · r.
Given thee matrices A1[1 : 10, 1 : 100], A2[1 : 100, 1 : 5], and A3[1 : 5, 1 : 50],
the product of these three matrices, B = A1 · A2 · A3, can be formed in two
different ways.

B = (A1 ·A2) ·A3 (6.1.3)
= A1 · (A2 ·A3) (6.1.4)

Though the resulting matrix is identical, the number of operations to get
matrix B is different.

Algorithms (EE3980) Unit 6.1 Dynamic Programming Apr. 29, 2019 11 / 28

Matrix-Chain Multiplication Problem

Using Eq. (6.1.3),
A12 = A1[1 : 10, 1 : 100] · A2[1 : 100, 1 : 5] 10× 100× 5 = 5000 multiplications
B = A12[1 : 10, 1 : 5] · A3[1 : 5, 1 : 50] 10× 5× 50 = 2500 multiplications

Total 7500 multiplications
Using Eq. (6.1.4),

A23 = A2[1 : 100, 1 : 5] · A3[1 : 5, 1 : 50] 100× 5× 50 = 25000 multiplications
B = A1[1 : 10, 1 : 100] · A23[1 : 100, 1 : 50] 10× 100× 50 = 50000 multiplications

Total 75000 multiplications
The order of multiplications can make significant difference in computing the
resulting product.
The matrix-chain multiplication problem is to find the sequence of matrix
multiplications for a given matrix chain, A1 · A2 · · ·An, each with dimensions
pi−1 × pi, such that the number of scalar multiplications is minimum.

Algorithms (EE3980) Unit 6.1 Dynamic Programming Apr. 29, 2019 12 / 28

Matrix-Chain Multiplication Problem, Analysis
Given a chain of matrices, A1,A2, . . . ,An, the number of possible sequences,
P(n), can be shown to be

P(n) =





1 if n = 1,
n−1∑

k=1

P(k)P(n− k) if n ≥ 2.
(6.1.5)

It is shown that P(n) ≥ 2n−1. Thus, P(n) is Θ(2n).
Brute force approach is very inefficient.

Let the dimensions of the matrices Ai, 1 ≤ i ≤ n, be pi−1 × pi.
These dimensions can be stored in the array p[0 : n].

Let the minimum number of scalar products of performing matrix-chain,
Ai · Ai+1 · · ·Aj−1 · Aj be m(i, j), then

m(i, j) =
{

0 if i = j,
min

i≤k<j
{m(i, k) + m(k + 1, j)}+ pi−1 · pk · pj if i < j. (6.1.6)

This is to try all groupings, (Ai · · ·Ak) · (Ak+1 · · ·Aj), and find the minimum
recursively.

Algorithms (EE3980) Unit 6.1 Dynamic Programming Apr. 29, 2019 13 / 28

Matrix-Chain Multiplication Problem, Recursive Algorithm
Eq. (6.1.6) can be translated into a recursive algorithm as the following.

Algorithm 6.1.6. Recursive matrix-chain multiplication.
// To find the minimum scalar multiplications for a matrix chain multiplication.
// Input: int n, range: i, j, dim array p[1 : n] ; Output: min multiplication.

1 Algorithm MCM_R(i, j,n, p)
2 {
3 if (i = j) return 0 ;
4 u :=∞ ;
5 for k := i to j− 1 do {
6 v := MCM_R(i, k,n, p)+ MCM_R(k + 1, j,n, p) + p[i− 1] ∗ p[k] ∗ p[j] ;
7 if (v < u) u := v ;
8 }
9 return u ;

10 }

Again, this recursive algorithm is inefficient due to repeated evaluation of the
MCM_R function with the same arguments.
Using the top-down dynamic programming technique, this inefficiency can be
avoided by saving the value into an array, in this case, it needs to be a
two-dimensional matrix, m[i, j].

Algorithms (EE3980) Unit 6.1 Dynamic Programming Apr. 29, 2019 14 / 28

Matrix-Chain Multiplication, Top-Down Approach
The top-down dynamic programming approach to solve the matrix-chain
multiplication problem is shown below.

Algorithm 6.1.7. Top-down matrix-chain multiplication.
// To find the minimum scalar multiplications for a matrix chain multiplication.
// Input: int n, range: i, j, dim array p[1 : n] ; Output: min and m matrix.

1 Algorithm MCM_TD(i, j,n, p,m)
2 {
3 if (m[i, j] ≥ 0) return m[i, j] ;
4 u :=∞ ;
5 for k := i to j− 1 do {
6 v := MCM_TD(i, k,n, p)+ MCM_TD(k + 1, j,n, p) + p[i− 1]· p[k]· p[j] ;
7 if (v < u) u := v ;
8 }
9 m[i, j] := u ; return m[i, j] ;

10 }

Before MCM_TD(1,n,n, p,m) is called from the main function, initialization of
m[i][i] = 0, 1 ≤ i ≤ n, should be performed.
Also note that only the upper triangular matrix of m[1 : n, 1 : n] is used.

Algorithms (EE3980) Unit 6.1 Dynamic Programming Apr. 29, 2019 15 / 28

Matrix-Chain Multiplication, Bottom-Up Approach
The bottom-up dynamic programming algorithm is as following.

Algorithm 6.1.8. Bottom-up matrix-chain multiplication.
// To find the minimum scalar multiplications for a matrix chain multiplication.
// Input: int n, range: i, j, dim array p[1 : n] ; Output: min and m, s matrices

1 Algorithm MCM_BU(i, j,n, p,m, s)
2 {
3 for i := 1 to n do m[i, i] := 0 ;
4 for l := 2 to n do { // l is the chain length.
5 for i := 1 to n− l + 1 do { // all possible i
6 j := i + l− 1 ; // j− i = l− 1.
7 u :=∞ ;
8 for k := i to j− 1 do { // all possible groupings.
9 v := m[i, k] + m[k + 1, j] + p[i− 1]· p[k]· p[j] ;

10 if (v < u) {
11 u := v ; s[i, j] := k ; // record for solution
12 }
13 }
14 }
15 }
16 }

Algorithms (EE3980) Unit 6.1 Dynamic Programming Apr. 29, 2019 16 / 28

Matrix-Chain Multiplication, Print Solution

In this bottom-up dynamic programming algorithm, again, the solution is
recorded in the s[1 : n, 1 : n] matrix.
To print out the multiplication sequence after calling MCM_BU algorithm, the
following algorithm should be called to print out the solution.

Algorithm 6.1.9. Matrix-chain multiplication print solution.
// To print the matrix multiplication sequence.
// Input: range: i, j ; Output: multiplication sequence.

1 Algorithm MCM_PS(i, j, s)
2 {
3 if (i = j) write (”A” i) ;
4 else {
5 write (”(”) ;
6 MCM_PS(i, s[i, j], s) ; // (Ai · · ·Ak)
7 MCM_PS(s[i, j] + 1, j, s) ; // (Ak+1 · · ·Aj)
8 write (”)”) ;
9 }

10 }

Algorithms (EE3980) Unit 6.1 Dynamic Programming Apr. 29, 2019 17 / 28

Matrix-Chain Multiplication, Example

A chain of 6 matrices and their dimensions are shown below.

matrix A1 A2 A3 A4 A5 A6

dimension 30× 35 35× 15 15× 5 5× 10 10× 20 20× 25

The optimal solution is
(A1(A2A3))((A4A5)A6)

with 15125 scalar multiplications.
The m and s tables are also shown below.

m table
0 15750 7875 9375 11875 15125

0 2625 4375 7125 10500
0 750 2500 5375

0 1000 3500
0 5000

0

s table
- 1 1 3 3 3

- 2 3 3 3
- 3 3 3

- 4 5
- 5

-

Algorithms (EE3980) Unit 6.1 Dynamic Programming Apr. 29, 2019 18 / 28

Matrix-Chain Multiplication, Complexities

The bottom-up matrix-chain multiplication algorithm (6.1.8) has three nested
loops, each executed at most n times.

Total time complexity is O(n3).
The space complexity is Θ(n2) due to m and s tables.

The top-down algorithm (6.1.7) has essentially the same complexities.
Time complexity: O(n3)
Space complexity: Θ(n2)

Note that the m and s tables need only the upper triangular matrix only, but
the space complexity is still Θ(n2).

For the recursive algorithm (6.1.6), however, the time complexity is O(2n).
It’s space complexity is O(n).

Algorithms (EE3980) Unit 6.1 Dynamic Programming Apr. 29, 2019 19 / 28

Dynamic Programming
For the rod-cutting problem, the solution is found by solving Eq. (6.1.1),
which is repeated below.

rn = max{pn, p1 + rn−1, p2 + rn−2, . . . , pn−1 + r1}.
Time complexity is O(n2).
For the matrix-chain multiplication problem, the solution is found by solving
Eq. (6.1.6).

m(i, j) = min
i≤k≤j

{m(i, k) + m(k + 1, j)}+ pi−1 · pk · pj.

This requires O(n3) time complexity.
To apply dynamic programming method, the problem can be formulated to
the overall optimal solution is constructed using the optimal solutions of its
subproblems.

The problem should be divided into subproblems.
The optimal solutions for the subproblems need to be found.
Overall optimal solution is then constructed from those solutions.

Recursive algorithm can usually developed from the equation.
Using table to record solutions of subproblems improves the efficiency greatly.
Bottom-up approach, without recursion, usually improve the efficiency further.

Algorithms (EE3980) Unit 6.1 Dynamic Programming Apr. 29, 2019 20 / 28

Longest Common Subsequence Problem
Practical problem: Given two strands of DNA, such as

S1 = ACCGGTCGAGTGCGCGGAAGCCGGCCGAA
S2 = GTCGTTCGGAATGCCGTTGCTCTGTAAA

find the longest strand S3 such that S3 is a subsequence of both S1 and S2.

Definition 6.1.10. Subsequence
Given a sequence X = ⟨x1, x2, · · · , xm⟩, another sequence Z = ⟨z1, z2, · · · , zk⟩ is a
subsequence of X if there is a strictly increasing sequence ⟨i1, i2, · · · , ik⟩ of indices
of X such that for all j = 1, 2, . . . , k, xij = zj.

Example: Given X = ⟨A,B,C,B,D,A,B⟩, Z = ⟨B,C,D,B⟩ is a subsequence
of X.

Definition 6.1.11. Common subsequence
Given two sequences X and Y, sequence Z is a common subsequence of X abd Y
if Z is a subsequence of both X and Y.

Example: Given X = ⟨A,B,C,B,D,A,B⟩ and Y = ⟨B,D,C,A,B,A⟩, then
Z = ⟨B,C,B,A⟩ is a common subsequence of X and Y.

Algorithms (EE3980) Unit 6.1 Dynamic Programming Apr. 29, 2019 21 / 28

Longest Common Subsequence – Properties

Given a sequence Xm = ⟨x1, x2, . . . , xm⟩, then there are 2m subsequence for
Xm.
Brute-force approach to find a longest common subsequence (LCS) would be
impractical for reasonable size sequences.

Theorem 6.1.12.
Given two sequences, Xm = ⟨x1, x2, . . . , xm⟩ and Yn = ⟨y1, y2, . . . , yn⟩, if
Zk = ⟨z1, z2, . . . , zk⟩ is any LCS of X and Y, then

1. If xm = yn, then zk = xm = yn and Zk−1 is an LCS of Xm−1 and Yn−1.
2. If xm ̸= yn, then xm ̸= zk implies Z is an LCS of Xm−1 and Yn.
3. If xm ̸= yn, then yn ̸= zk implies Z is an LCS of Xm and Yn−1.

Proof please see textbook [Cormen], p. 392.

Algorithms (EE3980) Unit 6.1 Dynamic Programming Apr. 29, 2019 22 / 28

Longest Common Subsequence – Properties, II

Let c[i, j] be the length of an LCS of the sequences Xi and Yj, then we have

c[i, j] =





0 if i = 0 or j = 0,
c[i− 1, j− 1] + 1 if i, j > 0 and xi = yj,
max{c[i, j− 1], c[i− 1, j]} if i, j > 0 and xi ̸= yj.

(6.1.7)

Based on this equation, recursive algorithm can be derived to solve the LCS
problem.

However, due to exponential number of subsequences the recursive algorithm
is very inefficient to solve reasonable size problems.

A bottom-up dynamic programming algorithm is shown next which is rather
efficient.

Inputs are two sequences: Xm = ⟨x1, x2, . . . , xm⟩, Yn = ⟨y1, y2, . . . , yn⟩.
Two tables are built by the algorithm.
c[0 : m, 0 : n]: record the length of the LCS for Xi and Yj at c[i, j].
b[1 : m, 1 : n]: record the solution sequence of the LCS for Xi and Yj at b[i, j].

Algorithms (EE3980) Unit 6.1 Dynamic Programming Apr. 29, 2019 23 / 28

Longest Common Subsequence – Algorithm

Algorithm 6.1.13. Longest Common Subsequence
// To find a LCS of X = ⟨x1, . . . , xm⟩ and Y = ⟨y1, . . . , yn⟩.
// Input: int m, n; sequences X, Y ; Output: matrices b, c.

1 Algorithm LCS(X,Y)
2 {
3 for i := 1 to m do c[i, 0] := 0 ;
4 for j := 0 to n do c[0, j] := 0 ;
5 for i := 1 to m do {
6 for j := 1 to n do {
7 if (xi = yj) then {
8 c[i, j] := c[i− 1, j− 1] + 1 ;
9 b[i, j] := ” ↖ ” ;

10 }
11 else if (c[i− 1, j] ≥ c[i, j− 1]) then {
12 c[i, j] := c[i− 1, j] ;
13 b[i, j] := ” ↑ ” ;
14 }
15 else {
16 c[i, j] := c[i, j− 1] ;
17 b[i, j] := ” ← ” ;
18 }
19 }
20 }
21 }

Algorithms (EE3980) Unit 6.1 Dynamic Programming Apr. 29, 2019 24 / 28

Longest Common Subsequence – Print Solution
After the LCS(X,Y) algorithm is called, tables b[1 : m, 1 : n] and
c[0 : m, 0 : n] are built.
The length of the LCS is in c[m,n].
And the following recursive algorithm can print out the LCS using X and
table b[1 : m, 1 : n].
It should be invoked by LCS_PS(b,X,m,n).

Algorithm 6.1.14. Print Longest Common Subsequence
// Use Xm and b[1 : m, 1 : n] to print the LCS found recursively.
// Input: int m, n, i, j; array X; matrix b ; Output: solution found.

1 Algorithm LCS_PS(b,X, i, j)
2 {
3 if (i = 0 or j = 0) return ;
4 if (b[i, j] = ” ↖ ”) then {
5 LCS_PS(b,X, i− 1, j− 1) ;
6 write (” xi ”) ;
7 }
8 else if (b[i, j] = ” ↑ ”) then LCS_PS(b,X, i− 1, j) ;
9 else LCS_PS(b,X, i, j− 1) ;

10 }
Algorithms (EE3980) Unit 6.1 Dynamic Programming Apr. 29, 2019 25 / 28

Longest Common Subsequence – Example
Given two sequences

X7 = ⟨A,B,C,B,D,A,B⟩, Y6 = ⟨B,D,C,A,B,A⟩.
After LCS(X,Y) call, we have the following tables.

Table c[0 : 7, 0 : 6]

j 0 1 2 3 4 5 6
i yj B D C A B A
0 xi 0 0 0 0 0 0 0
1 A 0 0 0 0 1 1 1
2 B 0 1 1 1 1 2 2
3 C 0 1 1 2 2 2 2
4 B 0 1 1 2 2 3 3
5 D 0 1 2 2 2 3 3
6 A 0 1 2 2 3 3 4
7 B 0 1 2 2 3 4 4

Table b[1 : 7, 1 : 6]

j 1 2 3 4 5 6
i B D C A B A
1 A ↑ ↑ ↑ ↖ ← ↖
2 B ↖ ← ← ↑ ↖ ←
3 C ↑ ↑ ↖ ← ↑ ↑
4 B ↖ ↑ ↑ ↑ ↖ ←
5 D ↑ ↖ ↑ ↑ ↑ ↑
6 A ↑ ↑ ↑ ↖ ↑ ↖
7 B ↖ ↑ ↑ ↑ ↖ ↑

The length of the LCS found is c[7, 6] = 4.
And the LCS is ⟨B,C,B,A⟩.

Algorithms (EE3980) Unit 6.1 Dynamic Programming Apr. 29, 2019 26 / 28

Longest Common Subsequence – Complexity

The bottom-up dynamic algorithm to solve LCS problem, Algorithm (6.1.13),
is dominated by the double loops, lines 5-6.
Thus, the time complexity is Θ(mn).
The LCS solution printing algorithm (6.1.14) traces the b[1 : m, 1 : n] table
for the lower-right corner to the upper-left corner.

Thus, the time complexity is O(m + n).
The overall space complexity is Θ(mn) due to those two tables, c[0 : m, 0 : n]
and b[1 : m, 1 : n].

It is possible to print out the LCS solution using table c[0 : m, 0 : n] alone,
thus save memory space requirement.

Starting from c[m][n], each step it requires to compare xm vs. yn and
c[m− 1][n] vs. c[m][n− 1].

Note that in Algorithm (6.1.13), in constructing c[i] row it needs only the
previous row c[i − 1].

Thus, if only the length of LCS is required, table b[1 : m, 1 : n] needs not be
built. The space complexity can be reduced to O(m).

Algorithms (EE3980) Unit 6.1 Dynamic Programming Apr. 29, 2019 27 / 28

Summary

Rod-cutting problem
Matrix-chain multiplication problem
Dynamic programming
Longest common subsequence problem

Algorithms (EE3980) Unit 6.1 Dynamic Programming Apr. 29, 2019 28 / 28

