Unit 5.3 The Greedy Method, III

Algorithms

EE3980

Apr. 25, 2019

Algorithms (EE3980)

Unit 5.3 The Greedy Method, III

Apr. 25, 2019

1/2!

Optimal Storage on Tapes

- ullet Given a sequentially accessed magnetic tape and n programs
 - These n programs, $1, 2, \cdots, n$, are to be stored on the tape
 - Each program has the length ℓ_i , $1 \le i \le n$.
 - The tape is always accessed from the beginning.
 - ullet Thus, if the kth program is accessed it needs $t_k = \sum_{j=1}^n \ell_j$ amount of time.
 - The objective is to determined the order of the n program such that the mean retrieval time (MRT), defined as $\frac{1}{n}\sum_{k=1}^n t_k$, is minimum.
 - Since n is given, the minimizing MRT is equivalent to minimizing $\sum_{k=1}^n \sum_{j=1}^k \ell_{i_j}$, where i_j , $1 \leq j \leq n$ is a permutation of $\{1, 2, \cdots, n\}$.

Algorithms (EE3980)

Unit 5.3 The Greedy Method, III

Optimal Storage on Tapes — Example

- Example
 - n=3 and $\{\ell_1,\ell_2,\ell_3\}=\{5,10,3\}$.
 - There are 6 permutations all of which are feasible solutions.

		7
Ordering	$\sum_{k=1}^n \sum_{j=1}^k \ell_{i_j}$	3
1,2,3	5+(5+10)+(5+10+3)	= 38
1,3,2	5+(5+3)+(5+3+10)	= 31
2,1,3	10+(10+5)+(10+5+3)	= 43
2,3,1	10+(10+3)+(10+3+5)	$^{2} = 41$
3,1,2	3+(3+5)+(3+5+10)	= 29
3,2,1	3+(3+10)+(3+10+5)	= 34

• The optimal ordering is $\{3, 1, 2\}$.

Algorithms (EE3980)

Unit 5.3 The Greedy Method, III

Apr. 25, 2019

3/2

Optimal Storage on Tapes — Optimality and Complexity

Note that the objective function can be written as

$$\sum_{k=1}^{n} \sum_{j=1}^{k} \ell_{i_{j}} = (\ell_{i_{1}}) + (\ell_{i_{1}} + \ell_{i_{2}}) + (\ell_{i_{1}} + \ell_{i_{2}} + \ell_{i_{3}}) + \cdots$$
$$= n\ell_{i_{1}} + (n-1)\ell_{i_{2}} + (n-2)\ell_{i_{3}} + \cdots$$

- ullet Thus ℓ_{i_1} should be the smallest possible to reduce MRT
- Once i_1 is determined, ℓ_{i_2} should be the smallest among the remaining programs.

Theorem 5.3.1.

If $\ell_1 \leq \ell_2 \leq \cdots \leq \ell_n$, then the ordering i_j , $1 \leq j \leq n$, minimizes

$$\sum_{k=1}^{n} \sum_{j=1}^{k} \ell_{i_j} \tag{5.3.1}$$

over all possible permutation of i_j .

• Thus, the optimal storage on tape problem reduces to the ordering of the n programs by their lengths — $\mathcal{O}(n \lg n)$.

Algorithms (EE3980)

Unit 5.3 The Greedy Method, III

Optimal Storage on Tapes — Multi-tape Case

- The number of tapes can be $m, m \ge 1$
- ullet The program should be distributed over the m tapes
- ullet The following algorithm assigns the n programs to m tapes that achieves minimum MRT.

Algorithm 5.3.2. Multi-tape Storage

```
// Store n programs, each has length \ell \, [1:n], onto m tapes.

// Input: int n, \, m, \, \ell [1:n]; Output: Program storage assignments.

1 Algorithm store(n, l, m)

2 {

3    Sort(l) in non-decreasing order ;

4    j:=1; // Next tape to store on

5    for i:=1 to n do {

6        Append program i to tape j;

7    j:=(j+1) \bmod m;

8    }

9 }
```

Algorithms (EE3980)

Unit 5.3 The Greedy Method, III

Apr. 25, 2019

5/2

Multi-tape Storage — Complexity and Optimality

• Note that the time complexity of Algorithm (5.3.2) is dominated by line 3 Sort function, which has time complexity of $\mathcal{O}(n \lg n)$.

Theorem 5.3.3.

If $\ell_1 \leq \ell_2 \leq \cdots \leq \ell_n$, then Algorithm (5.3.2) generates an optimal storage pattern for m tapes.

- Proof see textbook [Horowitz], pp. 251 252.
- Note that there can be more than one optimal assignment if some program lengths are equal.

Algorithms (EE3980)

Unit 5.3 The Greedy Method, III

Merging Multi-Files

- Merging two files containing n and m records need to move n+m data.
- Let's consider two-way merge pattern only, i.e., merge two files each time.
- Given multiple files with different number of records, what is the order of binary merge to achieve minimum number of moves.
- Example
- 3 sorted files x_1 , x_2 and x_3 with 30, 20 and 10 data each.
 - 1. Merge x_1 and x_2 first requires 50 moves; Then merge with x_3 requires another 60 moves; Total number of moves is 110.
 - 2. Merge x_2 and x_3 first in 30 moves; Then merge with x_1 in 60 moves; Total number of moves is 90.
- Observation: to merge smaller files first.

Algorithms (EE3980)

Unit 5.3 The Greedy Method, III

Apr. 25, 2019

7/2!

Merging Multi-Files — Algorithm

Using the node structure as

```
1 struct node {
2         struct node *lchild, *rchild;
3         integer w;
4 }
```

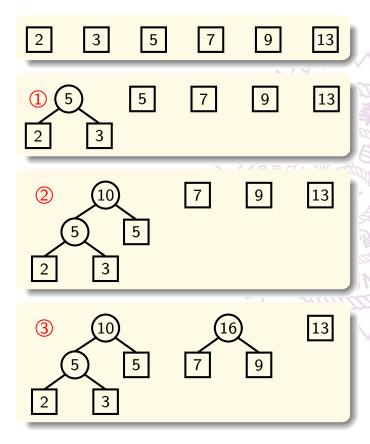
Algorithm 5.3.4. Binary Merge Tree

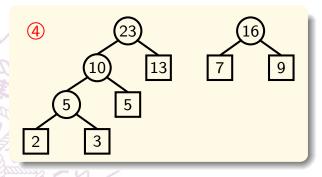
```
// Generate binary merge tree from list of n files.
   // Input: int n, list of files; Output: optimal merge order.
 1 Algorithm Tree(n, list)
 2 {
 3
         for i := 1 to (n-1) do {
              pt := new \ node;
 4
              pt \rightarrow lchild := Least(list); // Find and remove min from list.
 5
              pt \rightarrow rchild := Least(list);
 6
              pt \to w := (pt \to lchild) \to w + (pt \to rchild) \to w;
 7
              Insert(list, pt);
 8
 9
10
         return Least(list);
11 }
```

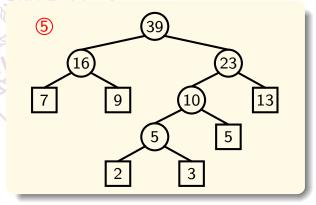
Algorithms (EE3980)

Unit 5.3 The Greedy Method, III

Merging Multi-Files — Example







Algorithms (EE3980)

Unit 5.3 The Greedy Method, III

Apr. 25, 2019

9/2

Merging Multi-Files — Properties

- Two functions are used the Tree algorithm
 - Least finds and removes the smallest data item from list,
 - Insert inserts the tree pt to the list.
- In the preceding example
 - Data files are sorted by their sizes and arranged in a simple list initially.
 - A two-way merge is then applied for the first two data files.
 - A tree is created with the data files as leaves also called external nodes, shown in squares.
 - A new node, an internal node, is created with sum of its children as its weight, shown in a circle.
 - At the end, a binary tree is obtained.
 - ullet For an external node with size q_i at level i of the binary tree
 - Its distance to the root is $d_i = i 1$.
 - ullet And it contributes $d_i q_i$ moves to the total number of moves.
 - And the total number of moves of the merge operations is

$$\sum_{i=1}^{n} d_i q_i \tag{5.3.2}$$

This sum is called the weighted external path length of the tree.

Algorithms (EE3980)

Unit 5.3 The Greedy Method, III

Merging Multi-Files — Complexity and Optimality

- In Algorithm (5.3.4), the while loop is executed n-1 times.
- If the *list* is kept in non-decreasing order, then
 - Least takes $\mathcal{O}(1)$ time,
 - And Insert takes $\mathcal{O}(n)$ time,
 - Thus, the overall time complexity is $\mathcal{O}(n^2)$.
- If the *list* is represented by a minheap then
 - Both Least and Insert can be done in $O(\lg n)$ time,
 - The overall time complexity is $\mathcal{O}(n \lg n)$.

Theorem 5.3.5.

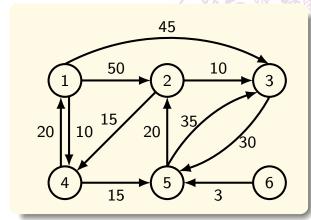
If the *list* initially contains $n \ge 1$ single node trees with weight values $\{q_1, q_2, \cdots, q_n\}$, then the Tree algorithm (5.3.4) generates an optimal two-way merge tree for n files with these lengths.

- Proof see textbook [Horowitz], p. 257.
- The two-way merge can be generalized to k-way merge problems.
- Huffman code is an application of two-way merge method.

Unit 5.3 The Greedy Method, III

Single-Source Shortest Paths

- Given a directed graph G = (V, E), a weight function on the edges in E, $w: E \to \mathbb{R}$, and source vertex v_0 , the single-source shortest path problem is to determine the shortest paths from v_0 to all remaining vertices.
- The weight of a path $P = \langle v_1, v_2, \dots, v_k \rangle$ is the sum of the weights of the edges, $w(P) = \sum_{k=1}^{k-1} w(v_k, v_{k+1}).$
- Define $\delta(s, v) = \min\{w(P)|P \text{ is a path from } s \text{ to } v\}, s, v \in V.$
- The problem is to find $\delta(s, v)$ for all $v \in V$.
- Example



	$v_0 = 1$							
•		Path	Length					
	1	1,4	10					
	2	1,4,5	25					
	3	1,4,5,2	45					
	4	1,3	45					

Single-Source Shortest Paths – Properties

Lemma 5.3.6. Subpaths of shortest paths are shortest paths

Given a weighted, directed graph G=(V,E) with weight function $w:E\to\mathbb{R}$, if $p=\langle v_0,v_1,\ldots,v_k\rangle$ is a shortest path from vertex v_0 to vertex v_k and, for any i and j such that $0\leq i< j\leq k$, $p_{ij}=\langle v_i,v_{i+1},\ldots,v_j\rangle$ is a subpath from vertex i to vertex j, then p_{ij} is a shortest path from v_i to v_j .

- Proof please see textbook [Cormen], p. 645.
- In this section, the weight of an edge is assumed to be non-negative.
- Thus, the weight of any cycle is also non-negative.
- A shortest path should not include any cycle, since the cycle can be removed to obtain a shorter path.
- Therefore, any shortest paths has at most n-1 edges, n=|V|.

Algorithms (EE3980)

Unit 5.3 The Greedy Method, III

Apr. 25, 2019

13 / 2

Single-Source Shortest Paths – Algorithm

Algorithm 5.3.7. Dijkstra's Algorithm

```
// Find the shortest paths from v and fill the path lengths to d[1:n] array.
   // Input: int n, node v, weight w[1:n]; Output: distance array d[1:n].
 1 Algorithm ShortestPaths(n, v, w, d)
 2 {
        for i := 1 to n do {
 3
              S[i] := false ; d[i] := w[v, i];
 4
 5
         S[v] := \texttt{true} \; ; \; d[v] := 0 \; ;
 6
 7
        for k := 2 to n do {
              Find i such that S[i] = false and d[i] is minimum ;
 8
              S[i] := true ;
 9
             for (each j adjacent to i and S[j] = false) do {
10
                   if (d[j] > d[i] + w[i,j]) then
11
12
                       d[j] := d[i] + w[i, j];
13
14
15 }
```

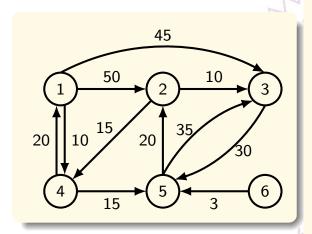
• S[1:n] is an array to indicate if the shortest path for a vertex has been found or not.

Algorithms (EE3980)

Unit 5.3 The Greedy Method, III

Single-Source Shortest Paths – Example

• Given the graph on the left, the shortest paths to all other vertices are found.



Vertex		1	2	3	4	5	6
k=1	S	1	0	0	0	0	0
K—1	d	0	50	45	10	∞	∞
k=2	S	1	0	0	1	0	0
K—2	d	0	50	45	10	25	∞
k=3	\overline{S}	1	0	0	1	1	0
K=3	d	0	45	45	10	25	∞
 c_1	\overline{S}	1	1	0	1	1	0
k=4	d	0	45	45	10	25	∞
k=5	\overline{S}	1	1	1	1	1	0
	d	0	45	45	10	25	∞
k=6	S	1	1	1	1	1	0
K=0	d	0	45	45	10	25	∞

• Note that to print out the shortest path for each vertex, an additional array, p[1:n], to record the predecessor of the path is needed and line 12 should be modified to add p[j] := i.

Algorithms (EE3980)

Unit 5.3 The Greedy Method, III

Apr. 25, 2019

15 / 2

Single-Source Shortest Paths – Complexity

- Algorithm (5.3.7) is dominated by the for loop in lines 7-14.
 - This loop executes (n-1) times.
 - Line 8 takes $\mathcal{O}(n)$ time,
 - ullet The for loop on Lines 10-13 takes $\mathcal{O}(n)$ time,
 - The overall complexity is $\mathcal{O}(n^2)$.
- The time complexity of the algorithm can be improved to $\mathcal{O}((n+|E|)\lg n)$ with proper data structures.
- Algorithm (5.3.7) generates the shortest paths from vertex v to all other vertices in G.
- ullet The edges of the shortest paths from a vertex v to all other vertices in a connected undirected graph G form a spanning tree shortest-path spanning tree.
 - Different source vertex can have different spanning tree.
 - This tree can also be different from the minimum-cost spanning tree.

Algorithms (EE3980)

Unit 5.3 The Greedy Method, III

Single-Source Shortest Paths – Correctness

Theorem 5.3.8.

Given a weighted, directed graph G=(V,E) with non-negative weight function w and a source vertex v, Algorithm (5.3.7) produces $d[u]=\delta(s,u)$ for all vertices $u\in V$.

- Proof please see textbook [Cormen], p. 660-661.
- As a corollary of the above theorem, if the predecessor array p[1:n] is also implemented in Algorithm (5.3.7) then the solutions printed using array p are the shortest paths from vertex v.

Algorithms (EE3980)

Unit 5.3 The Greedy Method, III

Apr. 25, 2019

17 / 2

Single-Source Shortest Paths – Directed Acyclic Graphs

- \bullet A directed acyclic graph (DAG) ${\it G}=({\it V},{\it E})$ is a directed graph without any cycles.
- Since no cycle exists, the non-negative weight function constraint can be relaxed no negative cycle possible.
- In this case, the following algorithm is effective in finding the shortest path

Algorithm 5.3.9. Shortest path for DAG

```
// Find the shortest paths from v and fill the path lengths to d[1:n] array.
   // Input: int n, node v, weight w[1:n]; Output: distance array d[1:n].
 1 Algorithm ShortestPaths_DAG(n, v, w, d)
 2 {
         Let slist[1:n] be the topological sort of the directed acyclic graph;
 3
         d[v] := 0;
 4
 5
        for i := 1 to n do {
             for ( each j adjacent to slist[i]) do {
 6
                  if (d[j] > d[i] + w[i,j]) then
 7
                       d[j] := d[i] + w[i, j];
 8
 9
             }
10
11 }
```

DAG Single-Source Shortest Paths

- The complexity of the algorithm
 - ullet The topological sort, line 3, has the complexity $\mathcal{O}(n+e)$
 - n = |V|, e = |E|
 - The if statement, lines 7-8, executes e times
 - The overall complexity is $\mathcal{O}(n+e)$.

Theorem 5.3.10.

Given a directed acyclic graph G=(V,E), algorithm (5.3.9) produces $d[v]=\delta(s,v)$, $v\in V$.

- Proof please see textbook [Cormen], pp. 656-657.
- The shortest path can be printed if the predecessor array is also kept.

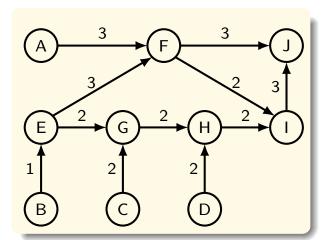
Algorithms (EE3980)

Unit 5.3 The Greedy Method, III

Apr. 25, 2019

19 / 2

DAG Single-Source Shortest Paths – Example



ullet Given a weighted DAG above, if vertex B is the source we have the shortest path length for each vertex below.

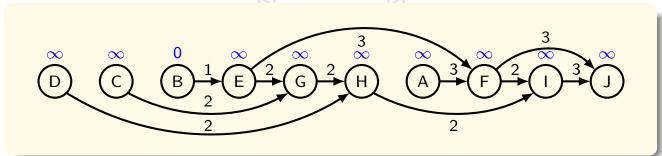
Vertex	Α	В	С	D	Е	F	G	Н	I	J
δ	∞	0	∞	∞	1	4	3	5	6	7

Algorithms (EE3980)

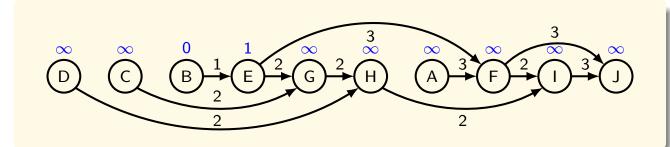
Unit 5.3 The Greedy Method, III

DAG Single-Source Shortest Paths – Example, II

- Execution sequences of Algorithm (5.3.9) is shown below
- After line 4:



ullet In the for loop, i=3



Algorithms (EE3980)

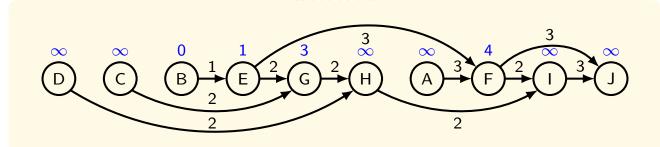
Unit 5.3 The Greedy Method, III

Apr. 25, 2019

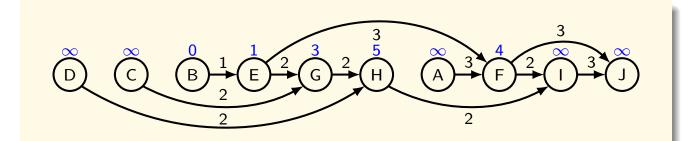
21/2

DAG Single-Source Shortest Paths – Example, III

• In the for loop, i=4

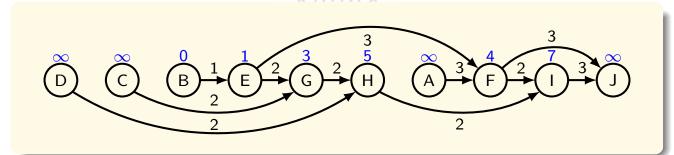


• In the for loop, i=5

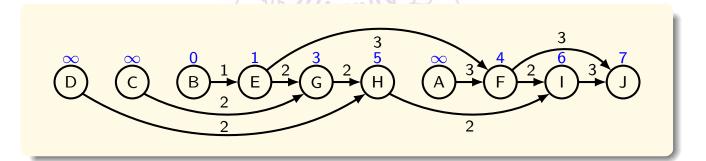


DAG Single-Source Shortest Paths – Example, IV

• In the for loop, i=6



• In the for loop, i = 8



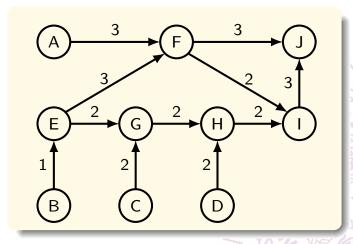
Algorithms (EE3980)

Unit 5.3 The Greedy Method, III

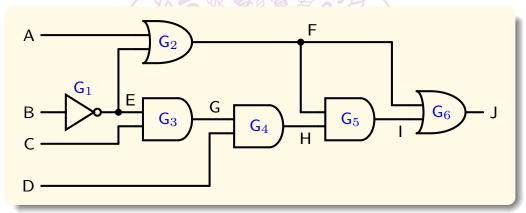
Apr. 25, 2019

23 / 25

DAG Single-Source Shortest Paths – Application



- The weighted direct graph is actually the digital circuit delay path, and the shortest path represent the delay from input B to various nodes.
- INV delay = 1, ND2 delay = 2, NR2 delay = 3.



Algorithms (EE3980)

Unit 5.3 The Greedy Method, III

Summary

- Optimal storage on tapes.
- Optimal merge patterns.
- Single-source shortest path.

Algorithms (EE3980

Unit 5.3 The Greedy Method, III