
Unit 5.2 The Greedy Method, II

Algorithms

EE3980

Apr. 22, 2019

Algorithms (EE3980) Unit 5.2 The Greedy Method, II Apr. 22, 2019 1 / 31

Minimum-Cost Spanning Trees

Definition 5.2.1.
Let G = (V,E) be an undirected connected graph. A sub-graph T = (V,E ′) with
E ′ ⊆ E is a spanning tree of G if and only if T is a tree.

Undirected graph
G.

Spanning tree
T1.

Spanning tree
T2.

Spanning tree
T3.

Notes
Spanning tree is not unique.
Spanning trees have n − 1 edges (n = |V |.)

Algorithms (EE3980) Unit 5.2 The Greedy Method, II Apr. 22, 2019 2 / 31

Minimum-Cost Spanning Tree, Example
In addition, there is a cost function associated with each edge, w : E → R.
The cost of a tree is the sum of the costs of the tree edges.
A feasible solution of the minimum-cost spanning tree of a undirected graph
G is any spanning tree T of G.
The optimal solution is a spanning tree with the minimum cost.

1 2

3

45

6 7

28

16

12

22

25

10 14

24 18

An undirected graph, G.

1 2

3

45

6 7

16

12

22

25

10 14

Minimum-cost spanning tree, T.

Algorithms (EE3980) Unit 5.2 The Greedy Method, II Apr. 22, 2019 3 / 31

Minimum-Cost Spanning Tree, Generic Algorithm
Using the greedy methodology, let T be a subset of a spanning tree, at each
step an edge (u, v) is added to T to maintain the feasibility of the solution.
An edge, (u, v), is safe to a set of edges T if T ∪ {(u, v)} is still a subset of a
spanning tree.
The generic algorithm for the minimum-cost spanning tree then is:

Algorithm 5.2.2. Generic minimum-cost spanning tree
// Given a graph G(V,E) with cost function w find minimum cost spanning tree.
// Input: V, E, n, w ; Output: minimum cost tree T.

1 Algorithm MCST(V,E,n,w,T)
2 {
3 T := ∅ ;
4 while (|T | < n − 1) do {
5 select an edge (u, v) ∈ E {
6 if (u, v) is safe to T then T := T ∪ (u, v) ;
7 E := E − {(u, v)} ;
8 }
9 }

10 }

The key is in line 5, how to select an edge.
Algorithms (EE3980) Unit 5.2 The Greedy Method, II Apr. 22, 2019 4 / 31

Minimum-Cost Spanning Tree, Prim’s Algorithm
Algorithm 5.2.3. Prim

// Given a graph G(V,E) with cost function w find minimum cost spanning tree.
// Input: V, E, n, w ; Output: minimum cost tree T and mincost.

1 Algorithm Prim(V,E,n,w,T)
2 {
3 Find edge (k, ℓ) ∈ E with the minimum cost ;
4 mincost := w[k, ℓ] ; // mincost set to minimum edge cost.
5 T [1, 1] := k ; T [1, 2] := ℓ ; // Add (k, ℓ) to spanning tree.
6 for i := 1 to n do // Init near array for every vertices.
7 if (w[i, ℓ] < w[i, k]) then near[i] := ℓ ; else near[i] := k ;
8 near[k] := near[ℓ] := 0 ; // Vertices already in the spanning tree.
9 for i := 2 to (n − 1) do {

10 Find j such that near[j] ̸= 0 and w[j ,near[j]] is minimum ;
11 T [i, 1] := j ; T [i, 2] := near[j] ; // Add minimum cost near edge to tree.
12 mincost := mincost + w[j ,near[j]] ; // Update mincost.
13 near[j] := 0 ; // Reset near array for selected vertex.
14 for k := 1 to n do // update near array for the other unselected vertices.
15 if ((near[k] ̸= 0) and (w[k ,near[k]] > w[k, j])) then near[k] := j ;
16 }
17 return mincost ;
18 }

Algorithms (EE3980) Unit 5.2 The Greedy Method, II Apr. 22, 2019 5 / 31

Minimum-Cost Spanning Tree, Prim’s Algorithm II

In Algorithm Prim
1. The edge with the minimum cost is first selected as the initial tree
2. The array near keeps the node already selected in the tree with the smallest

single-edge cost for each node
3. Among the all the near edges, the minimum is selected and the node added

to the tree
4. Array near is then updated and go back to step 3 until all nodes have been

selected
The time complexity is dominated by

Finding the minimum-cost edge on line 3, O(|E |) ≈ O(n2)
Loop on lines 6-7, O(n)
Loop on lines 9-16

Inner loops line 10 and lines 14-15
Complexity O(n2)

Overall complexity is O(n2)

The time complexity can be improved to O((n + |E |) lg n)
If the non-selected vertices are stored in a red-black tree

Algorithms (EE3980) Unit 5.2 The Greedy Method, II Apr. 22, 2019 6 / 31

Minimum-Cost Spanning Tree, Prim’s Algorithm Example

1 2

3

45

6 7

28

16

12

22

25

10 14

24 18

1 2

3

45

6 7

28

16

12

22

25

10 14

24 18

1 2

3

45

6 7

28

16

12

22

25

10 14

24 18

1 2

3

45

6 7

28

16

12

22

25

10 14

24 18

1 2

3

45

6 7

28

16

12

22

25

10 14

24 18

1 2

3

45

6 7

28

16

12

22

25

10 14

24 18

Algorithms (EE3980) Unit 5.2 The Greedy Method, II Apr. 22, 2019 7 / 31

Kruskal’s Algorithm – High Level

A different approach to finding the minimum-cost spanning tree
High level description of the algorithm

Algorithm 5.2.4. Kruskal’s Algorithm
// Given a graph G(V,E) with cost function w find minimum cost spanning tree.
// Input: V, E, n, w ; Output: minimum cost tree T.

1 Algorithm KruskalH(V,E,n,w,T)
2 {
3 T := ∅ ;
4 while ((T has less than (n − 1) edges) and (E ̸= ∅)) do {
5 Find the edge (u, v) ∈ E with the minimum cost ;
6 Delete(u, v) from E ;
7 if (u, v) does not create a cycle in T then T := T∪ (u, v) ;
8 else discard (u, v) ;
9 }

10 }

Algorithms (EE3980) Unit 5.2 The Greedy Method, II Apr. 22, 2019 8 / 31

Kruskal’s Algorithm – Example

1 2

3

45

6 7

28

16

12

22

25

10 14

24 18

1 2

3

45

6 7

28

16

12

22

25

10 14

24 18

1 2

3

45

6 7

28

16

12

22

25

10 14

24 18

1 2

3

45

6 7

28

16

12

22

25

10 14

24 18

1 2

3

45

6 7

28

16

12

22

25

10 14

24 18

1 2

3

45

6 7

28

16

12

22

25

10 14

24 18

Algorithms (EE3980) Unit 5.2 The Greedy Method, II Apr. 22, 2019 9 / 31

Kruskal’s Algorithm
Algorithm 5.2.5. Kruskal’s Algorithm

// Given a graph G(V,E) with cost function w find minimum cost spanning tree.
// Input: V, E, n, w ; Output: minimum cost tree T and mincost.

1 Algorithm Kruskal(V,E,n,w,T)
2 {
3 Construct a min heap from the edge costs using Heapity ;
4 for i := 1 to n do parent[i] := −1 ; // Enable cycle checking
5 i := 0 ; mincost := 0 ;
6 while ((i < n − 1) and (heap not empty)) do {
7 delete a minimum cost edge (u, v) from the heap ;
8 Adjust the heap ;
9 j := Find(u) ; k := Find(v) ; // using parent array

10 if (j ̸= k) then {
11 i := i + 1 ; T [i, 1] := u ; T [i, 2] := v ;
12 mincost := mincost + w[u, v] ;
13 Union(j, k) ; // modify parent array
14 }
15 }
16 if (i ̸= n − 1) then write(”No spanning tree”) ; else return mincost ;
17 }

Algorithms (EE3980) Unit 5.2 The Greedy Method, II Apr. 22, 2019 10 / 31

Kruskal’s Algorithm – Complexity and Optimality

The time complexity of Kruskal algorithm is dominated by the while loop,
lines 6-15, – O(|E|)

Line 7 finding minimum cost edge, O(1)
Line 8 Adjust the heap, O(lg |E |)
Overall complexity O(|E | lg |E |).

Theorem 5.2.6.
Kruskal’s algorithm (Algorithm 5.2.5) generates a minimum-cost spanning tree for
every undirected connected graph G.

Proof please see textbook [Horowitz], p. 244.

Algorithms (EE3980) Unit 5.2 The Greedy Method, II Apr. 22, 2019 11 / 31

Minimum-Cost Spanning Tree, Properties

A different approach to prove Kruskal’s algorithm.
We define the following terms.

A cut (S,V − S) of an undirected graph G = (V,E) is a partition of V, i.e.,
S ∈ V.
An edge (u, v) ∈ E is said to cross the cut (S,V− S) if one of its end points is
in S and the other in V − S.
A cut is said to respect a set T of edges if no edges in T crosses the cut.
An edge is said to be a light edge crossing a cut if its cost is the minimum of
any edge crossing the cut.

Theorem 5.2.7.
Let G = (V,E) be a connected, undirected graph with a cost function w defined on E.
Let T be a subset of E that is subset of a spanning tree of G, let (S,V − S) be any cut
of G that respects T, and let (u, v) be a light edge crossing (S,V − S). Then, edge
(u, v) is safe for T.

Proof please see textbook [Cormen], pp. 627-628.

Algorithms (EE3980) Unit 5.2 The Greedy Method, II Apr. 22, 2019 12 / 31

Minimum-Cost Spanning Tree, Properties, II

Corollary 5.2.8.
Let G = (V,E) be a connect, undirected graph with cost function w defined on
E. Let T be a subset of E that is included in a minimum spanning tree of G, and
let C = (VC,EC) be a connected component (tree) in the forest GT = (V,T). If
(u, v) is a light edge connecting C to some other component in GT, then (u, v) is
safe for T.

Proof please see textbook [Cormen], pp. 629.

Algorithm Prim can be shown to be a special case of Theorem (5.2.7), and it
also returns an optimal solution.

Algorithms (EE3980) Unit 5.2 The Greedy Method, II Apr. 22, 2019 13 / 31

The Matroid

Definition 5.2.9. Matroid
A matroid is an ordered pair M = (S, I) satisfying the following conditions.

1. S is a finite set.
2. I is a nonempty family of subsets of S, called the independent subsets of S,

such that if B ∈ I and A ⊆ B, then A ∈ I. We say that I is hereditary if it
satisfies this property. Note that the empty set ∅ is necessary is a member of
I.

3. if A ∈ I, B ∈ I and |A| < |B|, then there exists some element x ∈ B − A
such that A ∪ {x} ∈ I. We say that M satisfies the exchange property.

References
– Textbook [Cormen], pp. 437 - 442.
– Bernhard Korte and Jens Vygen, Combinatorial Optimization – theory and
algorithms, 4th edition, Springer, 2008.

Chapter 13. Matroids
Example: Given a matrix, S is the set of columns of the matrix, I is the set
formed by independent columns.

All three conditions are met.
Algorithms (EE3980) Unit 5.2 The Greedy Method, II Apr. 22, 2019 14 / 31

Graph Matroid
Graphic matroid MG = (SG, IG) defined in terms of a given undirected
graph G = (V,E) as follows:

The set SG is defined to be E, the set of edges of G.
If A is a subset of E, the A ∈ IG if and only if A is acyclic. That is, a set of
edges A is independent if and only if the subgraph GA = (V,A) forms a forest.

Theorem 5.2.10. Graph matroid.
If G = (V,E) is an undirected graph, then MG = (SG, IG) is a matroid.

Proof please see textbook [Cormen], p. 438.
Exchange property of MG can be shown as: if no such x can be found then
|B| ≤ |A| that contradicts to the assumption.

Definition 5.2.11. Extension.
Given a matroid M = (S, I), we call an element x /∈ A an extension of A ∈ I if
we can add x to A while preserving the independence; that is, x is an extension of
A if A ∪ {x} ∈ I.

Graphic matroid: if A ∈ I, then an edge e is an extension of A if e /∈ A and
there is no cycle in A ∪ {e}.

Algorithms (EE3980) Unit 5.2 The Greedy Method, II Apr. 22, 2019 15 / 31

Graph Matroid – Spanning Trees

Definition 5.2.12. Maximal independent set.
If A is an independent set in a matroid M, we cay that A is maximal if is has no
extensions. That is, A is maximal if it is not contained in any larger independent
subset of M.

Theorem 5.2.13.
All maximal independent subsets in a matroid have the same size.

Proof please see textbook [Cormen], p. 439.
Note that

There can be more than one maximal independent subset.
All of them are of the same size.

Example
For a graphic matroid MG for a connected, undirected graph G, every maximal
independent subset of MG must be a free tree with exactly |V | − 1 edges that
connects all the vertices of G.
These trees are the spanning tree of G.

Algorithms (EE3980) Unit 5.2 The Greedy Method, II Apr. 22, 2019 16 / 31

Weighted Graph Matroid

Definition 5.2.14. Weighted matroid
A matroid M = (S, I) is weighted if it is associated with a weight function w that
assigns a strictly positive weight w(x) for each element x ∈ S. The weight
function w extends to subsets of S by summation:

w(A) =
∑

x∈A
w(x) for any A ∈ S. (5.2.1)

For example, if w(e) is the weight of an edge e in a graphic matroid MG,
then w(A) is the total weights of the edges in A.
The minimum-spanning-tree problem can be formulated using weighted graph
matroid.
Given a connect undirected graph G = (V,E) and a weight function w such
that w(e) is the weight of an edge e ∈ E. The minimum-spanning-tree
problem is to find a subset of the edges that connects all of the vertices
together and has the minimum total weight.

Algorithms (EE3980) Unit 5.2 The Greedy Method, II Apr. 22, 2019 17 / 31

Greedy MST Algorithm

Given a undirected graph G = (V,E) and weight function w. Let
MG = (S, I) where S is the set of all edges and I is the set of all acyclic
edges in G.

Algorithm 5.2.15. Greedy Minimum Spanning Tree
// Given a graph G(V,E) and the matroid MG(S, I) find minimum spanning tree.
// Input: S, I, w ; Output: minimum spanning tree T.

1 Algorithm GreedyMST(S, I,w)
2 {
3 T := ∅ ; // Initialize empty tree.
4 Sort S into monotonically increasing order by w ;
5 for each minimum x ∈ S do { // Try all edges.
6 if (T ∪ {x} ∈ I) then { // Maintain independency then add.
7 T := T ∪ {x} ;
8 }
9 S := S − {x} ; // Delete x from S

10 }
11 return T ;
12 }

Algorithms (EE3980) Unit 5.2 The Greedy Method, II Apr. 22, 2019 18 / 31

Greedy MST Algorithm, II

Let n be the number of edges in G, i.e., n = |S|.
Line 4 takes O(n lg n) time to execute.
Lines 5-10 execute n times.
Let f (n) be the time that line 6 takes to check the condition
The execution time for the GreedyMST is then O(n lg n + n · f(n)).

The optimality of the algorithm comes from the following theorems.

Lemma 5.2.16.
Suppose that M = (S, I) is a weighted matroid with weight function w and that
S is sorted into monotonically increasing order by weight. Let x be the first
element of S such that {x} is acyclic. If x exists the there exists an optimal subset
A ⊆ S and x ∈ A.

Proof uses maximum size Theorem (5.2.13) and the exchange property.
Please see textbook [Cormen], p. 441.

Algorithms (EE3980) Unit 5.2 The Greedy Method, II Apr. 22, 2019 19 / 31

Greedy MST Algorithm, III

Lemma 5.2.17.
Let M = (S, I) be any matroid. If x is an element of S that is an extension of
some independent subset A of S, then x is also an extension of ∅.

Proof please see textbook [Cormen], p. 441.

Corollary 5.2.18.
Let M = (S, I) be any matroid. If x is an element of S such that x is not an
extension of ∅, then x is not an extension of any independent subset A of S.

Proof please see textbook [Cormen], p. 441.

This corollary says that if x is discarded by line 9 it should not be included in
the optimal solution.

Algorithms (EE3980) Unit 5.2 The Greedy Method, II Apr. 22, 2019 20 / 31

Greedy MST Algorithm, IV

Lemma 5.2.19.
Let x be the first element of S chosen by Algorithm GreedyMST for the weighted
matroid M = (S, I). The remaining problem of finding a minimum-weight
independent subset containing x reduces to finding a minimum-weight
independent subset of weighted matroid M ′ = (S ′, I ′), where

S ′ = {y ∈ S|{x, y} ∈ I}, (5.2.2)
I ′ = {B ⊆ S − {x}|B ∪ {x} ∈ I}. (5.2.3)

and the weight function for M ′ is the weight function for M restricted to S ′. (M ′

is called the contraction of M by the element x.)

Proof please see textbook [Cormen], p. 442.

Theorem 5.2.20.
If M = (S, I) is a weighted matroid with weight function w, then GreedyMST
returns an optimal subset.

Proof please see textbook [Cormen], p. 442.
Algorithms (EE3980) Unit 5.2 The Greedy Method, II Apr. 22, 2019 21 / 31

Job Sequencing with Deadlines

Given a set of n jobs to be
processed on one machine.

Each job takes 1 time unit to
process.
Associated with job i, 1 ≤ i ≤ n,
there is a deadline di and profit
pi.
If job i is completed by di then pi
is earned.

A feasible solution is a subset J of
jobs that each job in J can be
completed by its deadline.

The value of the subset J is∑

i∈J
pi.

An optimal solution is a feasible
solution with the maximum value.

Example, n = 4,
{p1, p2, p3, p4} = {100, 10, 15, 27},
{d1, d2, d3, d4} = {2, 1, 2, 1}.
Feasible solutions are

Feasible Processing
solution sequence Value

1 {1, 2} 2,1 110
2 {1, 3} 1,3 or 3,1 115
3 {1, 4} 4,1 127
4 {2, 3} 2,3 25
5 {3, 4} 4,3 42
6 {1} 1 100
7 {2} 2 10
8 {3} 3 15
9 {4} 4 27

Solution 3 is optimal.

Algorithms (EE3980) Unit 5.2 The Greedy Method, II Apr. 22, 2019 22 / 31

Job Sequencing with Deadlines – Algorithm

Alrogithm 5.2.21. Job Sequencing
// Solve job scheduling problem with jobs sorted in non-increasing order.
// Input: int n, deadline d, profit p ; Output: Optimal sequence J[1 : k].

1 Algorithm JS(n, d, p, J)
2 {
3 d[0] := J[0] := 0 ; // initialize.
4 J[1] := 1 ;
5 k := 1 ;
6 for i := 2 to n do {
7 r := k ;
8 while ((d[J[r]] > d[i]) and (d[J[r]] ̸= r)) do r := r − 1 ;
9 if ((d[J[r]] ≤ d[i]) and (d[i] > r)) then { // insert i into J

10 for q := k to (r + 1) step −1 do J[q + 1] := J[q] ;
11 J[r + 1] := i ; k := k + 1 ;
12 }
13 }
14 }

The worst-case time complexity of JS algorithm is Θ(n2).
The space complexity of JS algorithm is O(n) for arrays J and d.

Algorithms (EE3980) Unit 5.2 The Greedy Method, II Apr. 22, 2019 23 / 31

Job Sequencing with Deadlines – Example

Example: n = 5, (p1, p2, p3, p4, p5) = (20, 15, 10, 5, 1), and
(d1, d2, d3, d4, d4) = (2, 2, 1, 3, 3). Then, the execution sequence of the
algorithm is as following.

i J d action profit
− {1, , , , } {2, , , , } accept 1 20
2 {1, 2, , , } {2, 1, , , } accept 2 35
3 {1, 2, , , } {2, 1, , , } reject 3 35
4 {1, 2, 4, , } {2, 1, 3, , } accept 4 40
5 {1, 2, 4, , } {2, 1, 3, , } reject 5 40

Theorem 5.2.22.
Let J be a set of k jobs and σ = i1, i2, · · · , ik a permutation of jobs in J such that
di1 ≤ di2 ≤ · · · ≤ dki . Then J is a feasible solution if and only if the jobs in J can
be processed in the order σ without violating any deadline.

Proof please see textbook [Horowitz], p. 229.

Algorithms (EE3980) Unit 5.2 The Greedy Method, II Apr. 22, 2019 24 / 31

Job Sequencing with Deadlines – Matroid Formulation
The job sequencing with deadline can be shown to be a matroid.
The set S contains all the jobs, and a set A of jobs are independent if there
is a schedule such that all jobs in A are done before their deadlines.

Lemma 5.2.23.
For any set of jobs A, the following statements are equivalent.

1. The set A is independent.
2. Let Nt(A) denote the number of jobs completed before time t, then for

t = 0, 1, 2, . . . ,n, we have Nt(A) ≤ t.
3. If the tasks in A are scheduled in order of monotonically increasing deadlines, the

all jobs in A are completed before their deadlines.

Theorem 5.2.24.
If S is a set of unit-time jobs with deadlines, and I is the set of all independent
sets of tasks, then the corresponding system (S, I) is a matroid.

Since the job sequencing problem is a matroid, the greedy algorithm can be
applied and it results in an optimal solution.

Algorithms (EE3980) Unit 5.2 The Greedy Method, II Apr. 22, 2019 25 / 31

Tree Vertex Splitting Problem

Original tree T

1

2 3

4 5 6

7 8 9 10

4

1

1

2

2

2

4

3

3

d(T) = 10.

Tree with vertices splitted T/X

1

2i 2o 3

4i 4o 5 6i 6o

7 8 9 10

4

2

1

1

2

2

4

3

3

d(T/X) = 5.

Algorithms (EE3980) Unit 5.2 The Greedy Method, II Apr. 22, 2019 26 / 31

Tree Vertex Splitting Problem – Definition

T = (V,E,w) is weighted directed tree.
V is the vertex set, E is the edge set, and w is weight function for the edges.
w(i, j) is defined if the edge ⟨i, j ⟩ ∈ E; w(i, j) is undefined if ⟨i, j ⟩ /∈ E.
A source vertex is a vertex with in-degree 0.
A sink vertex is a vertex with out-degree 0.
For any path P in the tree, its delay, d(P), is defined to be the sum of the
weights on the path.
The delay of the tree, d(T), is the maximum of all the path delays.

T/X is the forest resulted from splitting every vertex u in X ⊆ V into two
nodes ui and uo such that all the edges ⟨i, u⟩ are replaced by ⟨i, ui⟩ and all
the edges ⟨u, j ⟩ are replaced by ⟨uo, j ⟩.
The Tree Vertex Splitting Problem (TVSP) is to find a set X ⊆ V with
minimum cardinality for which d(T/X) ≤ δ for some specified tolerance δ.

Note that a TVSP has solution only if the maximum edge weight is less than
or equal to δ.
Any X ⊆ V with d(T/X) ≤ δ is a feasible solution.
The optimal solution is the feasible X with the minimum number of vertices.

Algorithms (EE3980) Unit 5.2 The Greedy Method, II Apr. 22, 2019 27 / 31

Tree Vertex Splitting Problem – Algorithm

Algorithm 5.2.25. TVS
// Find the minimum set X for vertex splitting.
// Input: tree T, maximum edge weight δ ; Output: solution X.

1 Algorithm TVS(T, δ,X)
2 {
3 if (T ̸= ∅) then {
4 d[T] := 0 ;
5 for each child v of T do {
6 TVS(v, δ,X) ;
7 d[T] := max(d[T], d[v] + w(T, v)) ;
8 }
9 if ((T is not the root) and (d(T) + w(parent(T),T) > δ)) then {

10 X := X ∪ {T } ; d[T] := 0 ;
11 }
12 }
13 }

Note that d is a global array that stores the delay for each vertex.

Algorithms (EE3980) Unit 5.2 The Greedy Method, II Apr. 22, 2019 28 / 31

Tree Vertex Splitting Problem – Algorithm II
Algorithm 5.2.26. TVS1

// Tree vertex splitting with tree stored in an array tree[1 : n].
// Input: root i, maximum edge weight δ ; Output: solution X.

1 Algorithm TVS1(i, δ,X)
2 {
3 if (tree[i] ̸= 0) then {
4 if (2×i > N) then d[i] := 0 ; // i is a leaf.
5 else {
6 TVS1(2×i, δ,X) ;
7 d[i] := max(d[i], d[2×i] + w[2×i]) ;
8 if (2×i + 1 ≤ N) then {
9 TVS1(2×i + 1, δ,X) ;

10 d[i] := max(d[i], d[2×i + 1] + w[2×i + 1]) ;
11 }
12 }
13 if ((i ̸= 1) and (d[i] + w[i] > δ)) then {
14 X := X ∪ {i} ; d[i] := 0 ;
15 }
16 }
17 }

Algorithms (EE3980) Unit 5.2 The Greedy Method, II Apr. 22, 2019 29 / 31

Tree Vertex Splitting Problem – Complexity and Optimality

In this version the directed binary tree is stored in an array tree
The weight is stored in array w and w[i] is the weight of the parent of vertex
i to vertex i.
Array d is still the delay of each vertex.

The time complexity of Algorithm TVS is Θ(n).
Every vertex of T is traversed once.

Theorem 5.2.27.
Algorithm TVS finds a minimum cardinality set X such that d(T/X) ≤ δ on any
tree T, provided that no edge of T has weight greater than δ.

Proof please see textbook [Horowitz], pp. 225 - 226.

Algorithms (EE3980) Unit 5.2 The Greedy Method, II Apr. 22, 2019 30 / 31

Summary

Minimum-cost spanning tree problem.
The theory of Matroid.
Job sequencing with deadlines.
Tree vertex splitting problem.

Algorithms (EE3980) Unit 5.2 The Greedy Method, II Apr. 22, 2019 31 / 31

