
Unit 5.1 The Greedy Method

Algorithms

EE3980

Apr. 18, 2019

Algorithms (EE3980) Unit 5.1 The Greedy Method Apr. 18, 2019 1 / 17

Knapsack Problem

Knapsack problem
Given n objects, each object i, 1 ≤ i ≤ n, has

Weight wi,
Profit pi · xi, if xi fraction is placed into the bag (0 ≤ xi ≤ 1).

A bag with capacity m.
The objective is to maximize the profit.

maximize
n∑

i=1

pixi, (5.1.1)

subject to
n∑

i=1

wixi ≤ m, (5.1.2)

and 0 ≤ xi ≤ 1, 1 ≤ i ≤ n. (5.1.3)

A feasible solution is any set {x1, · · · , xn} that satisfies Eqs. (5.1.2) and
(5.1.3).
An optimal solution is a feasible solution for which Eq. (5.1.1) is maximized.

Algorithms (EE3980) Unit 5.1 The Greedy Method Apr. 18, 2019 2 / 17



Knapsack Problem – Example

An example of knapsack problem
n = 3, m = 20, {p1, p2, p3} = {25, 24, 15}, and {w1,w2,w3} = {18, 15, 10}.
Four feasible solutions

Solution {x1, x2, x3}
∑

wixi
∑

pixi
1 {1/2, 1/3, 1/4} 16.5 24.25
2 {1, 2/15, 0} 20 28.2
3 {0, 2/3, 1} 20 31
4 {0, 1, 1/2} 20 31.5

Note that
∑

wixi ≤ m for all 4 feasible solutions.
Solution 4 yields the maximum profit among these 4 feasible solutions.

Algorithms (EE3980) Unit 5.1 The Greedy Method Apr. 18, 2019 3 / 17

Knapsack Problem – Properties

Lemma 5.1.1.

In case the sum of all the weights is less than or equal to m, i.e.,
n∑

i=1

wi ≤ m, then

xi = 1, 1 ≤ i ≤ n, is an optimal solution.

Lemma 5.1.2.

In case
n∑

i=1

wi ≥ m, then all optimal solutions will fill the knapsack exactly, i.e.,
n∑

i=1

wixi = m.

Algorithms (EE3980) Unit 5.1 The Greedy Method Apr. 18, 2019 4 / 17



Knapsack Problem – Algorithm 1

A general greedy algorithm for knapsack program is shown below.

Algorithm 5.1.3. Knapsack by Profit
// Solve knapsack problem using max profit greedy method.
// Input: n, w[1 : n], p[1 : n], m ; Output: x[1 : n], 0 ≤ x[i ] ≤ 1.

1 Algorithm Knapsack_P(m,n,w, p, x)
2 {
3 A[1 : n] := Objects sorted by decreasing p[1 : n] ; // p[A[i ]] ≥ p[A[j ]] if i < j.
4 for i := 1 to n do x[i ] := 0 ; // Initialize solution vector.
5 i := 1 ;
6 while (i ≤ n and w[A[i ]] ≤ m) do { // Selecting max profit object.
7 x[A[i ]] := 1 ; m := m − w[A[i ]] ; i := i + 1 ;
8 }
9 if (i ≤ n) then x[A[i ]] := m/w[A[i ]] ; // Partial selection.

10 }

Note that line 3 sort A into decreasing order by p
Applying this algorithm we get solution 2 for the example.

Algorithms (EE3980) Unit 5.1 The Greedy Method Apr. 18, 2019 5 / 17

Knapsack Problem – Algorithm 2

The greedy algorithm can be modified as below.

Algorithm 5.1.4. Knapsack by Weight
// Solve knapsack problem using min weight greedy method.
// Input: n, w[1 : n], p[1 : n], m ; Output: x[1 : n], 0 ≤ x[i ] ≤ 1.

1 Algorithm Knapsack_W(m,n,w, p, x)
2 {
3 A[1 : n] := Objects sorted by increasing w[1 : n] ; // w[A[i ]] ≤ w[A[j ]] if i < j.
4 for i := 1 to n do x[i ] := 0 ; // Initialize solution vector.
5 i := 1 ;
6 while (i ≤ n and w[A[i ]] ≤ m) do { // Selecting min weight object.
7 x[A[i ]] := 1 ; m := m − w[A[i ]] ; i := i + 1 ;
8 }
9 if (i ≤ n) then x[A[i ]] := m/w[A[i ]] ; // Partial selection.

10 }

Note that line 3 sort A into increasing order by w
Applying this algorithm we get solution 3 for the example.

Algorithms (EE3980) Unit 5.1 The Greedy Method Apr. 18, 2019 6 / 17



Knapsack Problem – Algorithm 3
Another version of greedy algorithm is shown below.

Algorithm 5.1.5. Knapsack
// Solve knapsack problem using max profit/weight ratio greedy method.
// Input: n, w[1 : n], p[1 : n], m ; Output: x[1 : n], 0 ≤ x[i ] ≤ 1.

1 Algorithm Knapsack(m,n,w, p, x)
2 {
3 A[1 : n] := Objects sorted by decreasing p[i ]/w[i ] ;
4 // p[A[i ]]/w[A[i ]] ≥ p[A[j ]]/w[A[j ]] if i < j.
5 for i := 1 to n do x[i ] := 0 ;
6 i := 1 ;
7 while (i ≤ n and w[A[i ]] ≤ m) do {
8 x[A[i ]] := 1 ; m := m − w[A[i ]] ; i := i + 1 ;
9 }

10 if (i ≤ n) then x[A[i ]] := m/w[A[i ]] ;
11 }

Note that line 3 sort A into decreasing order by p[i ]/w[i ]
Applying this algorithm we get solution 4 for the example.

This is the optimal solution since p/w is the real objective.
Algorithms (EE3980) Unit 5.1 The Greedy Method Apr. 18, 2019 7 / 17

Knapsack Problem – Complexity and Optimality

Knapsack Algorithm (Algorithm 5.1.5) has the time complexity of O(n lg n).
Dominated by the Sort function on line 3
The while loop (lines 7-9) and for (line 5) loop are both O(n).

Lemma 5.1.6.
In case that the capacity is smaller than the weight of any object, m < wi, ∀i, then the
optimal solution is xi = m/wi, where pi is the maximum, and xj = 0, j ̸= i.

Theorem 5.1.7.
If A is sorted by {pi/wi} in non-increasing order, then the Knapsack algorithm
(Algorithm 5.1.5) generates an optimal solution to the instance of the knapsack problem.

Proof please see textbook [Horowitz], pp. 221-222.

From Lemma (5.1.6), to fill a unit capacity the object with the maximum
profit is the best choice, thus, the order should should be selected by pi/wi.

Algorithms (EE3980) Unit 5.1 The Greedy Method Apr. 18, 2019 8 / 17



Container Loading
Container loading problems

Input: n containers with wi, 1 ≤ i ≤ n, weight each.
A ship with cargo capacity of c.
Load the maximum number of containers to the ship.

Let xi ∈ {0, 1} such that xi = 1 if container i is loaded onto the ship.
The constraint is

n∑

i=1

xiwi ≤ c. (5.1.4)

The objective function to be maximized is
n∑

i=1

xi. (5.1.5)

Example: Suppose there are 8 containers with weights
[w1,w2, · · ·w8] = [100, 200, 50, 90, 150, 50, 20, 80] and ship capacity c = 400.

Then the solution is [x1, x2, · · · , x8] = [1, 0, 1, 1, 0, 1, 1, 1].
8∑

i=1

wixi = 390 that satisfies the constraint.

8∑

i=1

xi = 6 is the maximum number of containers loaded.

Algorithms (EE3980) Unit 5.1 The Greedy Method Apr. 18, 2019 9 / 17

Container Loading – Algorithm

Algorithm 5.1.8. Container Loading
// Load maximum containers (weights w[1 : n]) with capacity c.
// Input: c, n, w[1 : n] ; Output: solution vector x[1 : n], x[i ] = 0 or 1.

1 Algorithm ContainerLoading(c,n,w, x)
2 {
3 A[1 : n] := Containers sorted by increasing w[1 : n] ;
4 // w[A[i ]] ≤ w[A[j ]] if i < j.
5 for i := 1 to n do x[i ] := 0 ;
6 i := 1 ;
7 while (i ≤ n and w[A[i ]] ≤ c) do {
8 x[A[i ]] := 1 ; c := c − w[A[i ]] ; i := i + 1 ;
9 }

10 }

Note that w[A[i ]] is sorted into non-decreasing order.
Using the last example, w[1 : 8] = {100, 200, 50, 90, 150, 50, 20, 80}, then
A[1 : 8] = {7, 3, 6, 8, 4, 1, 5, 2} such that w[A[i ]] is in non-decreasing order.

Algorithms (EE3980) Unit 5.1 The Greedy Method Apr. 18, 2019 10 / 17



Container Loading – Complexity and Optimality

The time complexity of the ContainerLoading algorithm is dominated by
the Sort function (line 3), which is O(n lg n).
The while loop (lines 7-9) is O(n).
Overall complexity O(n lg n).

Theorem 5.1.9.
The Container Loading Algorithm (Algorithm 5.1.8) generates optimal loading.

Proof see textbook [Horowitz], pp. 215-217.

Note that selecting the object with the least weight maximizes the capacity
of loading the remaining objects.

Algorithms (EE3980) Unit 5.1 The Greedy Method Apr. 18, 2019 11 / 17

Optimization Problems

A special class of problems that has n inputs,
Arrange the inputs to satisfy some constraints – feasible solutions
Find feasible solution that minimize or maximize an objective function –
optimal solution

The greedy method is a algorithm that takes one input at a time
If a particular input results in infeasible solution, then it is rejected; otherwise
it is included.
The input is selected according to some measure
The selection measure can be the objective functions or other functions that
approximate the optimality
However, this method usually generates a suboptimal solution.

Algorithms (EE3980) Unit 5.1 The Greedy Method Apr. 18, 2019 12 / 17



Greedy Method
The following is an abstraction of the greedy method in subset paradigm

Algorithm 5.1.10. Greedy Method
// Given n-element set A, find a subset that is an optimal solution.
// Input: A[1 : n], int n ; Output: solution ⊂ A.

1 Algorithm Greedy(A,n)
2 {
3 solution := ∅ ;
4 for i := 1 to n do {
5 x := Select(A) ; A := A − {x} ;
6 if Feasible(solution ∪ x) then solution := solution ∪ x ;
7 }
8 return solution ;
9 }

In this subset paradigm the Select function selects an input from A and
removes it.
The Feasible function determines if it can be included into the solution
vector.

A variation of the greedy method is the ordering paradigm.
The inputs are ordered first and thus the Select function is not needed.

Algorithms (EE3980) Unit 5.1 The Greedy Method Apr. 18, 2019 13 / 17

Machine Scheduling Problem
Machine schedule problem

Input: n tasks and infinite number of machines
Each task has a start time s[1 : n] and finish time, f [1 : n], s[i ] < f [i ].
Two tasks i and j overlap if and only if their processing intervals overlap at a
point other than the interval start or end times.
A feasible task-to-machine assignment is that no machine is assigned with
overlapping tasks.
An optimal assignment is a feasible assignment that utilizes the fewest number
of machines.

Example Task a b c d e f g
Start time 0 3 4 9 7 1 6
Finish time 2 7 7 11 10 5 8

0 1 2 3 4 5 6 7 8 9 10 11

M1

M2

M3

a b e

f g

c d

Time

Algorithms (EE3980) Unit 5.1 The Greedy Method Apr. 18, 2019 14 / 17



Machine Scheduling Problem – Algorithm

Algorithm 5.1.11. Machine Scheduling
// Schedule n tasks with minimum number of machines, m.
// Input: n, start s[1 : n], finish f[1 : n] ; Output: m, assignment: M[1 : n].

1 Algorithm MachineSchedule(n, s, t,m,M)
2 {
3 A[1 : n] := sorted by increasing s[1 : n] ; // s[A[i ]] ≤ s[A[j ]], if i < j.
4 m := 1 ; M [A[1]] := m ;
5 for i := 2 to n do {
6 j := {j | f [A[j ]] = min

1≤k<i
f [A[k ]]} ;

7 // Minimum finish time among all scheduled tasks.
8 if (f [A[j ]] ≤ s[A[i ]]) then // Machine processing A[j ] is available
9 M [A[i ]] := M [A[j ]]) ; // Assign task A[i ] to machine M [A[j ]]

10 else {
11 m := m + 1 ; // Need more more machines
12 M [A[i ]] := m ; // Assign task A[i ] to machine m.
13 }
14 }
15 }

Algorithms (EE3980) Unit 5.1 The Greedy Method Apr. 18, 2019 15 / 17

Machine Scheduling Problem – Complexity

Theorem 5.1.12.
The Machine Scheduling Algorithm (Algorithm 5.1.11) generates an optimal
assignment.

In Algorithm (5.1.11), the time complexity is dominated by
Sort function on line 4: O(n lg n)
Min function on line 7: O(lg n)

In a for loop and thus O(n lg n)
Total complexity: O(n lg n).

Algorithms (EE3980) Unit 5.1 The Greedy Method Apr. 18, 2019 16 / 17



Summary

Knapsack problem
Container loading problem
Greedy method
Machine scheduling problem

Algorithms (EE3980) Unit 5.1 The Greedy Method Apr. 18, 2019 17 / 17


