Unit 5.1 The Greedy Method

Knapsack Problem – Example

• An example of knapsack problem

• $n = 3, m = 20, \{p_1, p_2, p_3\} = \{25, 24, 15\}, \text{ and } \{w_1, w_2, w_3\} = \{18, 15, 10\}.$

 $\frac{1}{2}$

• Four feasible solutions

- Note that $\sum w_i x_i \leq m$ for all 4 feasible solutions.
- Solution 4 yields the maximum profit among these 4 feasible solutions.

Knapsack Problem – Algorithm 1

A general greedy algorithm for knapsack program is shown below.

Algorithm 5.1.3. Knapsack by Profit

// Solve knapsack problem using max profit greedy method. // Input: *n*, $w[1:n], p[1:n], m$; Output: $x[1:n], 0 \le x[i] \le 1$. 1 Algorithm Knapsack_ $P(m, n, w, p, x)$ 2 { 3 $A[1:n] := \text{Objects sorted by decreasing } p[1:n] ; // p[A[i]] \geq p[A[j]] \text{ if } i < j.$ 4 for $i := 1$ to *n* do $x[i] := 0$; // Initialize solution vector. 5 $i := 1$; 6 while $(i \le n$ and $w[A[i]] \le m)$ do $\{ \text{ // Selecting max profit object. } \}$
7 $x[A[i]] := 1: m := m - w[A[i]]: i := i + 1:$ $x[A[i]] := 1$; $m := m - w[A[i]]$; $i := i + 1$; 8 } 9 if $(i \leq n)$ then $x[A[i]] := m/w[A[i]]$; // Partial selection. 10 }

Algorithms (EE3980) **Unit 5.1 The Greedy Method** Apr. 18, 2019 5/17

- Note that line 3 sort A into *decreasing order* by p
- Applying this algorithm we get solution 2 for the example.

Knapsack Problem – Algorithm 2

• The greedy algorithm can be modified as below.

Algorithm 5.1.4. Knapsack by Weight

// Solve knapsack problem using min weight greedy method. // Input: *n*, $w[1:n]$, $p[1:n]$, *m*; Output: $x[1:n]$, $0 \le x[i] \le 1$. 1 Algorithm Knapsack_W (m, n, w, p, x) 2 { 3 $A[1:n] := \text{Objects sorted by increasing } w[1:n]$; $\text{/} / w[A[i]] \leq w[A[j]]$ if $i < j$.
4 for $i := 1$ to *n* do $x[i] := 0$; $\text{/} /$ Initialize solution vector. for $i := 1$ to *n* do $x[i] := 0$; // Initialize solution vector. 5 $i := 1$; 6 while $(i \le n$ and $w[A[i]] \le m)$ do $\{ \text{ // Selecting min weight object. } 7 \text{ } x[A[i]] := 1: m := m - w[A[i]] : i := i + 1:$ $x[A[i]] := 1$; $m := m - w[A[i]]$; $i := i + 1$; 8 } 9 if $(i \leq n)$ then $x[A[i]] := m/w[A[i]]$; // Partial selection. 10 }

- Note that line 3 sort *A* into *increasing order* by *w*
- Applying this algorithm we get solution 3 for the example.

Knapsack Problem – Algorithm 3

• Another version of greedy algorithm is shown below.

Algorithm 5.1.5. Knapsack

// Solve knapsack problem using max profit/weight ratio greedy method. // Input: *n*, $w[1:n]$, $p[1:n]$, *m*; Output: $x[1:n]$, $0 \le x[i] \le 1$. 1 Algorithm Knapsack(*m*, *n*, *w*, *p*, *x*) 2 { 3 $A[1:n] :=$ Objects sorted by decreasing $p[i]/w[i]$; 4 $// p[A[i]]/w[A[i]] \geq p[A[j]]/w[A[j]]$ if $i < j$.
5 for $i := 1$ to *n* do $x[i] := 0$: for $i := 1$ to *n* do $x[i] := 0$; 6 $i := 1$; 7 while $(i \leq n$ and $w[A[i]] \leq m)$ do {
8 $x[A[i]] := 1 : m := m - w[A[i]]$: 8 $x[A[i]] := 1$; $m := m - w[A[i]]$; $i := i + 1$; $\}$ 10 if $(i < n)$ then $x[A[i]] := m/w[A[i]]$; 11 } Note that line 3 sort *A* into *decreasing order* by *p*[*i*]/*w*[*i*] Applying this algorithm we get solution 4 for the example.

This is the optimal solution since *p*/*w* is the real objective.

Knapsack Problem – Complexity and Optimality

 $3 \, \mathrm{m} \, \mathrm{\%}$

• Knapsack Algorithm (Algorithm 5.1.5) has the time complexity of $\mathcal{O}(n \lg n)$.

Algorithms (EE3980) **Unit 5.1 The Greedy Method** Apr. 18, 2019 7/17

- Dominated by the Sort function on line 3
- The while loop (lines 7-9) and for (line 5) loop are both $\mathcal{O}(n)$.

Lemma 5.1.6.

In case that the capacity is smaller than the weight of any object, $m < w_i$, $\forall i$, then the optimal solution is $x_i = m/w_i$, where p_i is the maximum, and $x_i = 0$, $j \neq i$.

Theorem 5.1.7.

If *A* is sorted by $\{p_i/w_i\}$ in non-increasing order, then the Knapsack algorithm (Algorithm 5.1.5) generates an optimal solution to the instance of the knapsack problem.

- Proof please see textbook [Horowitz], pp. 221-222.
- From Lemma $(5.1.6)$, to fill a unit capacity the object with the maximum profit is the best choice, thus, the order should should be selected by *pi*/*wⁱ* .

Container Loading

- **Container loading problems**
	- Input: *n* containers with w_i , $1 \leq i \leq n$, weight each.
	- A ship with cargo capacity of *c*.
	- Load the maximum number of containers to the ship.
- Let $x_i \in \{0, 1\}$ such that $x_i = 1$ if container *i* is loaded onto the ship.
	- The constraint is

$$
\sum_{i=1}^{n} x_i w_i \leq c. \tag{5.1.4}
$$

i=1 • The objective function to be maximized is

 $(5.1.5)$

Example: Suppose there are 8 containers with weights $[w_1, w_2, \cdots w_8] = [100, 200, 50, 90, 150, 50, 20, 80]$ and ship capacity $c = 400$.

 $\sum x_i$.

i=1

Algorithms (EE3980) Unit 5.1 The Greedy Method Apr. 18, 2019 9/17

- Then the solution is $[x_1, x_2, \dots, x_8] = [1, 0, 1, 1, 0, 1, 1, 1].$
	- \sum *i*=1 $w_i x_i = 390$ that satisfies the constraint.
		- \sum $x_i = 6$ is the maximum number of containers loaded.

Container Loading – Algorithm

i=1

Algorithm 5.1.8. Container Loading

```
// Load maximum containers (weights w[1 : n]) with capacity c.
   // Input: c, n, w(1:n); Output: solution vector x(1:n), x(i) = 0 or 1.
 1 Algorithm ContainerLoading(c, n, w, x)
 2 {
 3 A[1:n] := Containers sorted by increasing w[1:n];
 4 // w[A[i]] \leq w[A[j]] if i < j.<br>5 for i := 1 to n do x[i] := 0:
         for i := 1 to n do x[i] := 0;
 6 i := 1;
 7 while (i \leq n and w[A[i]] \leq c) do {<br>8 x[A[i]] := 1 : c := c - w[A[i]]:
 8 x[A[i]] := 1; c := c - w[A[i]]; i := i + 1;\}10 }
```
• Note that $w[A[i]]$ is sorted into non-decreasing order.

• Using the last example, $w[1:8] = \{100, 200, 50, 90, 150, 50, 20, 80\}$, then $A[1:8] = \{7, 3, 6, 8, 4, 1, 5, 2\}$ such that $w[A[i]]$ is in non-decreasing order.

Container Loading – Complexity and Optimality

- The time complexity of the ContainerLoading algorithm is dominated by the Sort function (line 3), which is $O(n \lg n)$.
- The while loop (lines $7-9$) is $\mathcal{O}(n)$.
- \bullet Overall complexity $\mathcal{O}(n \lg n)$.

Theorem 5.1.9.

The Container Loading Algorithm (Algorithm 5.1.8) generates optimal loading.

- Proof see textbook [Horowitz], pp. 215-217.
- Note that selecting the object with the least weight maximizes the capacity of loading the remaining objects.

Algorithms (EE3980) **Drive Community Unit 5.1 The Greedy Method** Apr. 18, 2019 11/17

Optimization Problems

A special class of problems that has *n* inputs,

- Arrange the inputs to satisfy some constraints feasible solutions
- Find feasible solution that minimize or maximize an objective function optimal solution

The greedy method is a algorithm that takes one input at a time

- If a particular input results in infeasible solution, then it is rejected; otherwise it is included.
- The input is selected according to some measure
- The selection measure can be the objective functions or other functions that approximate the optimality
- However, this method usually generates a suboptimal solution.

Greedy Method

• The following is an abstraction of the greedy method in subset paradigm

Algorithm 5.1.10. Greedy Method

```
// Given n-element set A, find a subset that is an optimal solution.
  // Input: A[1 : n], int n ; Output: solution ⊂ A.
1 Algorithm Greedy(A, n)
2 {
3 solution := \emptyset;<br>4 for i := 1 tofor i := 1 to n do {
5 x := \text{Select}(A); A := A - \{x\};<br>6 if Feasible(solution \cup x) then
         if Feasible(solution \cup x) then solution := solution \cup x;<br>}
\overline{7}8 return solution ;
9 }
```
- In this subset paradigm the Select function selects an input from A and removes it.
- The Feasible function determines if it can be included into the solution vector.
- A variation of the greedy method is the ordering paradigm.
	- The inputs are ordered first and thus the Select function is not needed.

Algorithms (EE3980) Unit 5.1 The Greedy Method Apr. 18, 2019 13/17

Machine Scheduling Problem

- Machine schedule problem
	- \bullet Input: n tasks and infinite number of machines
	- Each task has a start time $s[1:n]$ and finish time, $f[1:n]$, $s[i] < f[i]$.
	- Two tasks *i* and *j* overlap if and only if their processing intervals overlap at a point other than the interval start or end times.
	- A feasible task-to-machine assignment is that no machine is assigned with overlapping tasks.
	- An optimal assignment is a feasible assignment that utilizes the fewest number of machines.

Machine Scheduling Problem – Algorithm

Algorithm 5.1.11. Machine Scheduling

// Schedule *n* tasks with minimum number of machines, *m*. // Input: *n*, start $s[1:n]$, finish $f[1:n]$; Output: *m*, assignment: $M[1:n]$. 1 Algorithm MachineSchedule(*n*, *s*, *t*, *m*, *M*) 2 { 3 $A[1 : n] :=$ sorted by increasing $s[1 : n]$; $// s[A[i]] \leq s[A[j]]$, if $i < j$.
4 $m := 1 : M[A[1]] := m$: $m := 1$; $M[A[1]] := m$; 5 for $i := 2$ to n do { 6 $j := \{j | f[A[j]] = \min_{1 \le k < i} f[A[k]]\};$ 7 // Minimum finish time among all scheduled tasks. 8 if $(f[A[j]] \le s[A[i]])$ then $//$ Machine processing $A[j]$ is available
9 $M[A[i]] := M[A[i]]) : //$ Assign task $A[i]$ to machine $M[A[i]]$ $M[A[i]] := M[A[j]])$; // Assign task $A[i]$ to machine $M[A[j]]$ 10 else { 11 $m := m + 1$; // Need more more machines 12 *M* $[M[i]] := m$; // Assign task $A[i]$ to machine *m*. 13 } 14 } 15 }

Algorithms (EE3980) **Unit 5.1 The Greedy Method** Apr. 18, 2019 15/17

Machine Scheduling Problem – Complexity

$$
\mathcal{M}^{\mathcal{M}}\mathcal{M}_{\mathcal{M}}
$$

Theorem 5.1.12.

The Machine Scheduling Algorithm (Algorithm 5.1.11) generates an optimal assignment.

- In Algorithm $(5.1.11)$, the time complexity is dominated by
	- Sort function on line 4: $\mathcal{O}(n \lg n)$
	- Min function on line $7:$ $\mathcal{O}(\lg n)$
		- \bullet In a for loop and thus $\mathcal{O}(n \lg n)$
	- Total complexity: $\mathcal{O}(n \lg n)$.

Summary

- Knapsack problem
- **.** Container loading problem
- **Greedy method**
- Machine scheduling problem

Algorithms (EE3980) **Unit 5.1 The Greedy Method** Apr. 18, 2019 17/17