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Depth First Search

Another popular graph traversal algorithm is

Algorithm 4.2.1. Depth First Search
// Depth first search starting from vertex v of graph G.
// Input: starting node v ; Output: none.

1 Algorithm DFS(v)
2 {
3 visited[v ] := 1 ; // The rest of v array initialized to 0.
4 for each vertex w adjacent to v do {
5 if (visited[w ] = 0) then DFS(w) ;
6 }
7 }

Note shorter codes than BFS algorithm.
No queue is needed.
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DFS Example

1

2 3

4 5 6 7

8

DFS calling sequence
DFS 1

DFS 2
DFS 4

DFS 8
DFS 5
DFS 6

DFS 3
DFS 7

Larger recursion depth than Breadth first search
Larger path lengths than BFS as well
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Depth First Search – Properties

Theorem 4.2.2. DFS Reachability
Algorithm DFS visits all vertices of G reachable from v.

Theorem 4.2.3. DFS Complexities
Let T(n, e) and S(n, e) be the maximum time and maximum additional space
taken by algorithm DFS on any graph G wit n vertices and e edges.

1. T(n, e) = Θ(n + e) and S(n, e) = Θ(n) if G is represented by its adjacency
lists,

2. T(n, e) = Θ(n2) and S(n, e) = Θ(n) if G is represented by its adjacency
matrix.

The depth first search can be applied to both undirected and directed graphs.
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Spanning Trees of Connected Graphs

The DFS algorithm can be modified to find the spanning tree of a connected
graph.

Algorithm 4.2.4. DFS to find a spanning tree
// Depth first search to find the spanning tree from vertex v.
// Input: starting node v ; Output: spanning tree t.

1 Algorithm DFS*(v, t)
2 {
3 visited [v ] := 1 ; t := ∅ ; // t initialized to ∅.
4 for each vertex w adjacent to v do {
5 if (visited [w ] = 0) then {
6 t := t ∪ {(v,w)} ; // add to spanning tree.
7 DFS*(w) ;
8 }
9 }
10 }

On termination, t is the set of edges that forms a spanning tree of G.
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DFS Spanning Tree

The spanning tree found by Algorithm DFS* can be called DFS spanning tree.
Example
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8
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2 3

4 5 6 7

8

The time and space complexity of DFS* is the same as DFS.

Algorithms (EE3980) Unit 4.2 Depth First Search Apr. 1, 2019 6 / 35



Depth First Search Forest
In some applications, depth-first search is applied to graphs that the results
are not a single tree but forests.
Thus, the initial calling sequence of the depth-first search should be as
following.

Algorithm 4.2.5. Calling DFS
// Initialization and recursive DFS function call.
// Input: graph G ; Output: p, d, f arrays.

1 Algorithm DFS_Call(G)
2 {
3 for v := 1 to n do { // Initialize to not visited and no predecessor.
4 visited [v ] := 0 ; p[v ] := 0 ;
5 d[v ] := 0 ; f[v ] := 0 ;
6 }
7 time := 0 ; // Global variable to track time.
8 for v := 1 to n do { // To handle forest case.
9 if (visited [v ] = 0) then DFS_d(v) ;
10 }
11 }
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Depth First Search Structure

The execution of the depth-first search yields a special structure as shown in
the example in the preceding page.
To more explicitly recording the structure of the depth-first search tree, the
DFS(v) algorithm is modified as the following.
Assuming G = (V,E ) and |V | = n and |E | = e.
The visited [1 : n] array, which is initialized to 0, has three values

visited [u ] = 0 if vertex u has not been visited.
visited [u ] = 1 if vertex u is being visited (visiting its successors).
visited [u ] = 2 if vertex u has been visited already.

Array d [1 : n] and f [1 : n] are added. Each d [u ] records the discover time,
when vertex u is first being visited; And each f [u ] records the time when
visiting vertex u is completed.
Array p[1 : n] still records the predecessor of vertex u in p[u ].
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More Sophisticated Depth-first Search

Algorithm 4.2.6. More sophisticated depth-first search
// More sophisticated Depth first search starting from vertex v of graph G.
// Input: starting node v ; Output: arrays p, d, f.

1 Algorithm DFS_d(v)
2 {
3 visited [v ] := 1 ; time := time + 1 ; d [v ] := time ;
4 for each vertex w adjacent to v do {
5 if (visited [w ] = 0) then {
6 p[w ] := u ; DFS_d(w) ;
7 }
8 }
9 visited [v ] := 2 ; t := time + 1 ; f [v ] := time ;
10 }

Array visited has three states: 0, unvisited; 1, visiting; 2, visited.
Array d records discover time and array f records finish time.
Array p records the preceding vertex in the DFS path.
time is a global variable to keep track of discovery and finish times.
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DFS Example Revisit
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2 3

4 5 6 7

8
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2 8
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16

15 11

14 6 12 10

13

DFS_d calling sequence
DFS_d 1 d [1] = 1

DFS_d 2 d [2] = 2
DFS_d 4 d [4] = 3
DFS_d 8 d [8] = 4
DFS_d 5 d [5] = 5
DFS_d 5 f [5] = 6
DFS_d 6 d [6] = 7
DFS_d 3 d [3] = 8
DFS_d 7 d [7] = 9
DFS_d 7 f [7] = 10

DFS_d 3 f [3] = 11
DFS_d 6 f [6] = 12

DFS_d 8 f [8] = 13
DFS_d 4 f [4] = 14

DFS_d 2 f [2] = 15
DFS_d 1 f [1] = 16
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Properties of Depth First Search Structure

Theorem 4.2.7. Parenthesis theorem
After applying depth-first search to a graph G = (V,E ), for any two vertices
u, v ∈ V, exactly one of the following three conditions holds:

1. The intervals [d [u ], f [u ]] and [d [v ], f [v ]] are entirely disjoint, and neither u
nor v is a descendant of the other in the depth-first forest,

2. The interval [d [u ], f [u ]] is contained entirely with the interval [d [v ], f [v ]]
and u is a descent of v is a depth-first tree, or

3. The interval [d [v ], f [v ]] is contained entirely with the interval [d [u ], f [u ]]
and v is a descendant of u is a depth-first tree.

Proof please see textbook [Cormen], p. 608.

Corollary 4.2.8. Nesting of descendants’ intervals
Vertex v is a proper descendant of vertex u if a depth-first forest for a graph
G = (V,E ) if and only if d [u ] < d [v ] < f [v ] < f [u ].
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Properties of Depth First Search Structure, II

Theorem 4.2.9. White-path theorem
In a depth-first forest of a graph G = (V,E ), vertex v is a descendant of vertex u
if and only if at the time d [u ] that u is discovered, there is a path from u to v
consisting entirely of vertices with zero visited array values.

Proof please see textbook [Cormen], pp. 608-609.

Four types of edges can be found in a graph G = (V,E ) after the depth-first
forest is found.

1. Tree edges are those edges (u, v) where v is a immediate descendant of u.
2. Back edges are those edges (u, v) connecting a vertex u to an ancestor v.
3. Forward edges are those edges (u, v) connecting a vertex u to a descendant v.
4. Cross edges are all other edges. They connect vertices of the same DFS tree

as long as one vertex is not an ancestor of the other, or they connect vertices
of different DFS trees.
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Properties of Depth First Search Structure, III

At line 4 of the DFS_d(v) algorithm (4.2.6) when an edge (v,w) is checked
If visited [w ] = 0 then (v,w) is a tree edge.
If visited [w ] = 1 then (v,w) is a back edge.
If visited [w ] = 2 then (v,w) is a forward or cross edge.

In an undirected graph, if (u, v) is a forward edge, then (v, u) is a back edge.
But these two are the same edge.

The type of the edge (u, v) is defined by whichever of (u, v) or (v, u) is
checked first in the DFS(̣v) algorithm.

Theorem 4.2.10.
In a depth-first search of an undirected graph G = (V,E ), every edge of G is either a
tree edge or a back edge.

Proof please see textbook [Cormen], p. 610.
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Topological Sort

Given a directed acyclic graph (dag), G = (V,E ), a topological sort is a
linear order of all the vertices such that if ⟨u, v⟩ ∈ E then u appears before v
in the ordering.

A B

C D

EF

G

A B C DEFG
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Topological Sort – Algorithm
The depth-first search algorithm is ideal to solve the topological sort problem.

Algorithm 4.2.11. Topological sort
// Topological sort using depth-first search algorithm.
// Input: v starting vertex ; Output: slist sorting result.

1 Algorithm top_sort(v, slist)
2 {
3 visited [v ] := 1 ;
4 for each vertex w adjacent to v do {
5 if (visited [w ] = 0) then top_sort(w) ;
6 }
7 add v to the head of slist ;
8 }

The modifications to the depth-first algorithm is to add the current vertex to
the ordered linked list at the final time.
After completion of the algorithm, the ordered list slist is the answer.
As in the case of the recursive depth-first search algorithm, this algorithm
should be called by the following algorithm.

Algorithms (EE3980) Unit 4.2 Depth First Search Apr. 1, 2019 15 / 35

Topological Sort – Algorithm, II

Algorithm 4.2.12. Topological sort call
// Initialization and recursive top_sort function call.
// Input: graph G ; Output: slist sorted result.

1 Algorithm topsort_Call(G, slist)
2 {
3 for v := 1 to n do visited [v ] := 0 ;
4 slist := NULL ;
5 for v := 1 to n do
6 if (visited [v ] = 0) then top_sort(v, slist) ;
7 }

The top_sort(v, slist) algorithm visits every vertex of G once and each edge
is checked on line 4 of Algorithm (4.2.11) once.
Inserting a node to the head of a linked list takes O(1) time.
Thus, the computational complexity of top_sort(v, slist) is Θ(n + e), where
n = |V | and e = |E |.
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Topological Sort – Correctness

The following lemma and theorem show the correctness of the topological
sort algorithm.

Lemma 4.2.13.
A directed graph G is acyclic if and only if a depth-first search of G yields no back
edges.

Proof please see textbook [Cormen], p. 614.

Theorem 4.2.14.
The top_sort algorithm (4.2.11) produces a topological sort of the directed
acyclic graph given as its input.

Proof please see textbook [Cormen], p. 614.
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Strongly Connected Components

Definition 4.2.15.
Given a directed graph G = (V,E ) a strongly connected component is a maximal
set of vertices C ⊆ V such that for every pair of vertices u and v they are mutual
reachable; that is, vertex u is reachable from v and vice versa.

Example. There are three strongly connected components in the graph
below: {A,B,C,D}, {E,F,G}, and {H}.

A

BC

D

E

F

G

H
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Strongly Connected Components – Transpose Graph

The algorithm to find the strongly connect graph uses the transpose graph
GT of G = (V,E ). GT = (V,ET ) where ET = {⟨u, v⟩|⟨v, u⟩ ∈ E}.
ET is E with the directions of all edges reversed.
Given G = (V,E ), with n = |V | and e = |E | then GT can be constructed in
O(n + e) if G is represented using adjacency-list representation.
G and GT have the same strongly connected components since if ⟨u, v⟩ are
reachable from each other in G then they are reachable from each other in
GT.
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Strongly Connected Components – Algorithm

Algorithm 4.2.16. Strongly Connected Components
// To find the strongly connected components of the graph G = (V,E ).
// Input: graph G ; Output: strongly connected components.

1 Algorithm SCC(G )
2 {
3 Construct the transpose graph GT ;
4 DFS_Call(G ) ; // Perform DFS to get array f [1 : n].
5 Sort V of GT in order of decreasing value of f [v ], v ∈ V.
6 DFS_Call(GT ) ; // Perform DFS on GT.
7 Each tree of the resulting DFS forest is a strongly connected component.
8 }

Note that lines 4 and 5 are essentially performing topological sort on the
vertices, V.
Two depth-first searches are performed in this algorithm, thus the
computational complexity is Θ(n + e) assuming adjacency-list is used.
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Strongly Connected Components – Example
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H

Topological sort after the first depth-first search.

A B CD EF GH
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Strongly Connected Components – Example, II
The second depth-first search is applied to GT as the following.
Thus, SCC1 = {A,B,C,D }, SCC2 = {H }, and SCC3 = {E,F,G }.
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A B CD EF GH
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Strongly Connected Components – Properties

Lemma 4.2.17.
Let C and C ′ be two distinct strongly connect components in a directed graph
G = (V,E ). If u, v ∈ C, u ′, v ′ ∈ C ′ and there is a path from u to u ′ then G
cannot contain a path from v ′ to v.

Proof. If G contains a path from v ′ to v. Since u, v are reachable from each
other, v ′ can then reach u; while u can already reach u ′ and hence v ′, u and v ′

are then in the same strongly connected component. This contradicts to the
assume that they are in distinct strongly connect components. □

Definition 4.2.18.
Given a directed graph G = (V,E ), then after applying the depth-first search on
G, we have 1 ≤ f (v) ≤ 2× |V|, which is the finish time for each vertex, v, if
C ⊆ V define

f (C ) = max
v∈C

f (v ), (4.2.1)

f (C ) is the largest finish time for all the vertices in C.
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Strongly Connected Components – Properties, II

Lemma 4.2.19.
Let C and C ′ be two distinct strongly connect components in a directed graph
G = (V,E ). Suppose there is an edge ⟨u, v ⟩ ∈ E, where u ∈ C and v ∈ C ′.
Then, f (C ) > f (C ′).

Proof please see textbook [Cormen], p. 618.
Topological sort uses this property.

Lemma 4.2.20.
Let C and C ′ be two distinct strongly connect components in a directed graph
G = (V,E ). Suppose there is an edge ⟨u, v ⟩ ∈ ET, where u ∈ C and v ∈ C ′.
Then, f (C ) < f (C ′).

Proof. Since ⟨u, v⟩ ∈ ET, ⟨v, u⟩ ∈ E. Because the strongly connect components
of G and GT are the same, from Lemma (4.2.19) we have f (C ) < f (C ′). □
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Strongly Connected Components – Properties, III

Theorem 4.2.21.
The Algorithm (4.2.16) correctly computes the strongly connected components of
the directed graph G given as an input.

Proof please see textbook [Cormen], pp. 619-620.
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H

E,F,G

Vertices of a strongly connected components can be collapsed into a single
node to form a component graph, GSCC, as shown.
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Biconnected Graphs

In this subsection, only undirected graphs are studied.

Definition 4.2.22.
A vertex v of a connected graph G is an articulation point if and only if the
deletion of vertex v together with all edges connecting to v disconnects G into two
or more nonempty components.

Definition 4.2.23.
A graph G is biconnected if and only if it contains no articulation points.

Definition 4.2.24.
G ′ = (V ′,E ′) is a maximal biconnected components of G = (V,E) if there is no
biconnected subgraph G ′′ = (V ′′,E ′′) such that V ′ ⊆ V ′′ and E ′ ⊂ E ′′.

A communication network is more robust if the underlying graph is
biconnected.
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Biconnected Graphs — Examples
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A biconnected graph.
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Biconnected Components

Lemma 4.2.25.
Two biconnected components can have at most one vertex in common and this
vertex is an articulation point.

There is no edge between two biconnected components.
For the graph G1,

Adding edges (4, 10) and (10, 9), eliminates articulation point 3.
Adding edge (1, 5) eliminates articulation point 2.
Adding edge (6, 7) eliminates articulation point 5.

The following algorithm eliminates all articulation points

1 for each articulation point a do {
2 Let B1, B2, · · · ,Bk be the biconnected components containing vertex a ;
3 Let vi, vi ̸= a, be a vertex in Bi, 1 ≤ i ≤ k ;
4 Add to G edges (vi, vi+1), 1 ≤ i < k ;
5 }
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DFS and Biconnected Components

Depth first search is useful in identifying the articulation points in a graph.
Perform a depth first search on G and let dfn of a vertex be the number
corresponds to the order of the depth first tree visits the vertex.
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Tree edges are shown in black; and back edges in green.
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DFS and Biconnected Components — Properties
Lemma 4.2.26.
If (u, v) is any edge in G, then relative to the depth first spanning tree t, either u
is an ancestor of v or v is an ancestor of u. So, there are no cross edges relative to
a depth first spanning tree. (Note that (u, v) is a cross edge relative to t if and
only if u is not an ancestor of v and v is not an ancestor of u).

Lemma 4.2.27.
The root node of a depth first spanning tree is an articulation point if and only if
it has at least two children. Furthermore, if u is any other vertex, then it is not an
articulation point if and only if from any child w of u it is possible to reach an
ancestor of u using only a path made up of descendants of w and a back edge.

Define
L(u) = min

{
dfn(u), min {L(w)|w is a child of u} ,

min {dfn(w)|(u,w)is a back edge}
}
. (4.2.2)

then if u is not a root then u is an articulation point if and only if u has
child w such that L(w) ≥ dfn(u).
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Articulation Point Algorithm

The following algorithm calculates L(u).
Array dfn is initialized to 0, and global variable num initialized to 1.

Algorithm 4.2.28. Calculate L(u)
// Given a graph to calculate L(u).
// Input: u and its parent v Output: L(u).

1 Algorithm Art(u, v)
2 {
3 dfn[u ] := num ; L[u ] := num ; num := num + 1 ;
4 for each vertex w adjacent to u do {
5 if (dfn[w ] = 0) then {
6 Art(w, u) ;
7 L[u ] := min(L[u ],L[w ]) ;
8 }
9 else if (w ̸= v) then L[u ] := min(L[u ], dfn[w ]) ;
10 }
11 }
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Articulation Point Example
Once array L is found, the articulation points can be identified in O(e) time,
where e is the number of edges in G.
The algorithm Art has the time complexity of O(n + e), where n is the
number of vertices in G.
The time complexity of find all the articulation points is O(n + e).
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Finding All Biconnected Components
Algorithm 4.2.29. Finding all biconnected components

// Given a graph G find all biconnected components.
// Input: u and its parent v Output: All biconnected components.

1 Algorithm BiComp(u, v)
2 {
3 dfn[u ] := num ; L[u ] := num ; num := num + 1 ;
4 for each vertex w adjacent to u do {
5 if ((w ̸= v) and (dfn[w ] < dfn[u ])) then Enqueue((u,w)) to stack S ;
6 if (dfn[w ] = 0) then {
7 if (L[w ] ≥ dfn[u ]) then {
8 write (”New bicomponent : ”) ;
9 repeat {
10 (x, y) := Dequeue() ; write (x, y) ;
11 } until (((x, y) = (u,w)) or ((x, y) = (w, u))) ;
12 }
13 BiComp(w, u) ; L[u ] := min(L[u ],L[w ]) ;
14 }
15 else if (w ̸= v) then L[u ] := min(L[u ], dfn[w ]) ;
16 }
17 }
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Finding All Biconnected Components — Correctness

Theorem 4.2.30.
Algorithm (4.2.29) correctly generates the biconnected components of the
connected graph G when G has at least two vertices.

Proof please see textbook [Horowitz], pp. 355-356.

In discussing articulation points and biconnected graphs, it is assumed no
cross edges in the spanning tree. However, since breadth first spanning trees
can have cross edges, thus algorithm Art cannot be adapted to BFS.
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Summary

Depth first search
Topological sort
Strongly connected components
Biconnected graphs
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