
Unit 4.1 Breadth First Search

Algorithms

EE3980

Mar. 28, 2019

Algorithms (EE3980) Unit 4.1 Breadth First Search Mar. 28, 2019 1 / 20

Binary Tree Traversal
Given a binary tree, some applications need to visit every node of the tree.
It is assumed that each node of the tree has the underlying structure as

1 struct node {
2 Type data ; // store data of specified Type
3 node ∗lchild, ∗rchild ;
4 }

Example

A

B C

D E

F G

H I

Three ways to traverse a binary tree
Algorithms (EE3980) Unit 4.1 Breadth First Search Mar. 28, 2019 2 / 20

Binary Tree — In-order Traversal
Algorithm 4.1.1. In Order Traversal

// To visit every node of the binary tree in–order.
// Input: tree T ; Output: none.

1 Algorithm InOrder(T)
2 {
3 if (T ̸= NULL) then {
4 InOrder(T → lchild) ; Visit(T) ; InOrder(T → rchild) ;
5 }
6 }

A

B C

D E

F G

H I

Execution sequence
InOrder A visit G
InOrder B InOrder I
InOrder D visit I
InOrder F visit B
visit F InOrder E
visit D visit E
InOrder G visit A
InOrder H InOrder C
visit H visit C

Algorithms (EE3980) Unit 4.1 Breadth First Search Mar. 28, 2019 3 / 20

Binary Tree — Pre-order Traversal
Algorithm 4.1.2. Pre-Order Traversal

// To visit every node of the binary tree pre–order.
// Input: tree T ; Output: none.

1 Algorithm PreOrder(T)
2 {
3 if (T ̸= NULL) then {
4 Visit(T) ; PreOrder(T → lchild) ; PreOrder(T → rchild) ;
5 }
6 }

A

B C

D E

F G

H I

Execution sequence
PreOrder A visit G
visit A PreOrder H
PreOrder B visit H
visit B PreOrder I
PreOrder D visit I
visit D PreOrder E
PreOrder F visit E
visit F PreOrder C
PreOrder G visit C

Algorithms (EE3980) Unit 4.1 Breadth First Search Mar. 28, 2019 4 / 20

Binary Tree — Post-order Traversal
Algorithm 4.1.3. Post-Order Traversal

// To visit every node of the binary tree post–order.
// Input: tree T ; Output: none.

1 Algorithm PostOrder(T)
2 {
3 if (T ̸= NULL) then {
4 PostOrder(T → lchild) ; PostOrder(T → rchild) ; Visit(T) ;
5 }
6 }

A

B C

D E

F G

H I

Execution sequence
PostOrder A visit I
PostOrder B visit G
PostOrder D visit D
PostOrder F PostOrder E
visit F visit E
PostOrder G visit B
PostOrder H PostOrder C
visit H visit C
PostOrder I visit A

Algorithms (EE3980) Unit 4.1 Breadth First Search Mar. 28, 2019 5 / 20

Binary Tree Traversal — Complexities

In traversing the tree, each node is reached three times
From its root; when returning from lchild and rchild

Thus, the time complexity is T(n) = Θ(n) for an n-node binary tree.
The space needed for an n-node binary tree is Θ(n).
Traversing the tree using recursive calls would need a heap space proportional
to the depth, d, of the tree.
Since d ≤ n, the space complexity is O(n).

Theorem 4.1.4. Binary Tree Traversal
Let T(n) and S(n) be the time and space complexities of any of the binary
traversing algorithms above, then T(n) = Θ(n) and S(n) = O(n).

Proof, please see textbood [Horowitz], pp. 335-337.

Algorithms (EE3980) Unit 4.1 Breadth First Search Mar. 28, 2019 6 / 20

Graph Traversal
Given a graph G = (V,E) with vertex set V and edge set E, a typical graph
traversal problem is to find all vertices that is reachable from a particular
vertex, for example v ∈ V.

Note that G can be either a directed graph or undirected graph.

1

2 3

4 5 6 7

8

An undirected graph.

1

2

3

4

A directed graph.

Algorithms (EE3980) Unit 4.1 Breadth First Search Mar. 28, 2019 7 / 20

Graph and Adjacency Lists
One way to represent the adjacency information of a graph G = (V,E) is the
adjacency list.

Both directed and undirected graphs can be represented.
In a undirected graph, each edge should appear twice.
More efficient if the graph is sparse, |E| ≪ |V|2.
Weighted graphs can also be represented with more space for each edge.

1

2 3

4 5 6 7

8

Adj[]
[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

2 3
1 4 5
1 6 7
2 8
2 8
3 8
3 8
4 5 6 7

Algorithms (EE3980) Unit 4.1 Breadth First Search Mar. 28, 2019 8 / 20

Graph and Adjacency Matrix
The other way to keep the adjacent information of a graph G = (V,E) is the
adjacency matrix.

For undirected graphs, symmetric matrices are obtained.
Asymmetric matrices for directed graphs.
Weighted graphs can also be represented.
More applicable when the graph is dense, |E| ≈ |V|2, or faster search of an
edge (i, j) is needed.

1

2 3

4 5 6 7

8

A[i, j] =
{

1 if (i, j) ∈ E,
0 otherwise. (4.1.1)

1 2 3 4 5 6 7 8
1 0 1 1 0 0 0 0 0
2 1 0 0 1 1 0 0 0
3 1 0 0 0 0 1 1 0
4 0 1 0 0 0 0 0 1
5 0 1 0 0 0 0 0 1
6 0 0 1 0 0 0 0 1
7 0 0 1 0 0 0 0 1
8 0 0 0 1 1 1 1 0

Algorithms (EE3980) Unit 4.1 Breadth First Search Mar. 28, 2019 9 / 20

Breadth First Search

A popular graph traversal algorithm for both directed and undirected graphs is

Algorithm 4.1.5. Breadth First Search
// Breadth first search starting from vertex v of graph G.
// Input: v starting node ; Output: none.

1 Algorithm BFS(v) // Queue Q is global; Array visited initialized to 0.
2 {
3 u := v ; visited[v] := 1 ; // Visit v first.
4 repeat {
5 for all vertices w adjacent to u do { // Visit and enqueue adj. nodes.
6 if (visited[w] = 0) then {
7 Enqueue(w) ; visited[w] := 1 ;
8 }
9 }
10 if not Qempty() then u := Dequeue() ; // get the next vertex.
11 } until (Qempty()) ;
12 }

Algorithms (EE3980) Unit 4.1 Breadth First Search Mar. 28, 2019 10 / 20

BFS Example

1

2 3

4 5 6 7

8

BFS calling sequence

visit 1 Queue = {2, 3}
visit 2 Queue = {3, 4, 5}
visit 3 Queue = {4, 5, 6, 7}
visit 4 Queue = {5, 6, 7, 8}
visit 5 Queue = {6, 7, 8}
visit 6 Queue = {7, 8}
visit 7 Queue = {8}
visit 8 Queue = { }

Algorithms (EE3980) Unit 4.1 Breadth First Search Mar. 28, 2019 11 / 20

Breadth First Search – Properties

Theorem 4.1.6. BFS Complexities
Let T(n, e) and S(n, e) be the maximum time and maximum additional space
taken by algorithm BFS on any graph G with n vertices and e edges.

1. T(n, e) = Θ(n + e) and S(n, e) = Θ(n) if G is represented by its adjacency
lists,

2. T(n, e) = Θ(n2) and S(n, e) = Θ(n) if G is represented by its adjacency
matrix.

Proof please see textbook [Horowitz], pp. 341-343.
The additional space refers to array visited[1 : n], Θ(n), and memory needed
for the queue, O(n).

Theorem 4.1.7. BFS Reachability
Algorithm BFS visits all vertices of G reachable from v.

Proof please see textbook [Horowitz], p. 340.

Algorithms (EE3980) Unit 4.1 Breadth First Search Mar. 28, 2019 12 / 20

Shortest Path

Definition 4.1.8. Shortest Path.
Given a graph G = (V,E), the shortest-path distance, δ(s, v), between any two
vertices, s, v ∈ V, is the minimum number of edges in any path from s to v. If
there is no path from s to v then δ(s, v) = ∞. A path of length δ(s, v) from s to
v is a shortest path from s to v.

Lemma 4.1.9.
Given a directed or undirected graph G = (V,E) and an arbitrary vertex s ∈ V,
then for any edge (u, v) ∈ E we have

δ(s, v) ≤ δ(s, u) + 1. (4.1.2)

Proof please see textbook [Cormen], p. 598.

Algorithms (EE3980) Unit 4.1 Breadth First Search Mar. 28, 2019 13 / 20

Shortest Path and Breadth First Search
The breadth first search algorithm can be modified to find the shortest
distance to other vertices.

Algorithm 4.1.10. Shortest path – Breadth First Search
// Breadth first search starting from v to find all shortest path length.
// Input: v ; Output: array d, distance from v, p predecessor on the path.

1 Algorithm BFS_d(v, d, p)
2 {
3 u := v ; visited[v] := 1 ;
4 d[v] := 0 ; p[v] := 0 ; // Both d, p initialized to 0.
5 repeat {
6 for all vertices w adjacent to u do { // Breadth first traversal.
7 if (visited[w] = 0) then {
8 Enqueue(w) ; visited[w] := 1 ;
9 d[w] := d[u] + 1 ; p[w] := u ; // update d and p arrays.
10 }
11 }
12 if not Qempty() then u := Dequeue() ; // Get the next vertex.
13 } until (Qempty()) ;
14 }

Algorithms (EE3980) Unit 4.1 Breadth First Search Mar. 28, 2019 14 / 20

Shortest Path and Breadth First Search, II

Lemma 4.1.11.
Given a graph G = (V,E), if the BFS_d(s, d) is called for a source vertex s ∈ V,
then upon the termination of the algorithm we have for any v ∈ V, d[v] ≥ δ(s, v).

Proof please see textbook [Cormen], p. 598.

Lemma 4.1.12.
Suppose that during the execution of the BFS_d(s, d) algorithm on a graph
G = (V,E), the queue Q contains the vertices ⟨v1, v2, . . . , vr⟩, where v1 is the
head of the queue and vr is the tail. Then, we have

d[vr] ≤ d[v1] + 1, (4.1.3)
d[vi] ≤ d[vi+1] for i = 1, 2, . . . , r − 1. (4.1.4)

Proof please see textbook [Cormen], p. 599.

Algorithms (EE3980) Unit 4.1 Breadth First Search Mar. 28, 2019 15 / 20

Shortest Path and Breadth First Search, III

Corollary 4.1.13.
Suppose that during the execution of the BFS_d(s, d) algorithm on a graph
G = (V,E), both vertices vi and vj are enqueue and vi is enqueued before vj,
then d[vi] ≤ d[vj].

Proof please see textbook [Cormen], p. 599.

Theorem 4.1.14.
Given a graph G = (V,E) and a source vertex s ∈ V, if the algorithm BFS_d(s, d)
is called, then for every vertex v ∈ V reachable from s, upon termination we have
d[v] = δ(s, v).

Proof please see textbook [Cormen], p. 600.

Algorithms (EE3980) Unit 4.1 Breadth First Search Mar. 28, 2019 16 / 20

Shortest Path and Breadth First Search – Print Path

A shortest path from source s to any vertex v ∈ V can be printed using the
array p.

Note that array p records the predecessor information.
p[w] is the vertex preceding vertex w in the shortest path.
For source vertex v, p[v] = 0.

Algorithm 4.1.15. Print Shortest Path
// To print the shortest path that ends at w using array p.
// Input: vertex w, path array p ; Output: shortest path that ends at w.

1 Algorithm BFSpath(w, p)
2 {
3 if (p[w] ̸= 0) BFSpath(p[w]) ;
4 write (” w ”) ;
5 }

Algorithms (EE3980) Unit 4.1 Breadth First Search Mar. 28, 2019 17 / 20

Spanning Trees of Connected Graphs
The BFS algorithm can be modified to find the spanning tree of a connected
graph.

Algorithm 4.1.16. BFS to find a spanning tree
// Breadth first search to find the spanning tree from vertex v.
// Input: source node v ; Output: spanning tree t.

1 Algorithm BFS*(v, t)
2 {
3 u := v ; visited[v] := 1 ; t := ∅ ; // t initialized to empty set.
4 repeat {
5 for all vertices w adjacent to u do {
6 if (visited[w] = 0) then {
7 Enqueue(w) ; visited[w] := 1 ;
8 t := t ∪ {(u,w)} ; // Add edge to spanning tree.
9 }
10 }
11 if not Qempty() then u := Dequeue(u) ; // Get the next vertex.
12 } until (Qempty()) ;
13 }

On termination, t is the set of edges that forms a spanning tree of G.
Algorithms (EE3980) Unit 4.1 Breadth First Search Mar. 28, 2019 18 / 20

BFS Spanning Tree
The spanning tree found by Algorithm BFS* can be called BFS spanning tree.
This tree has the property that the path from the root s to any vertex v ∈ V
is a shortest path.
Example

1

2 3

4 5 6 7

8

1

2 3

4 5 6 7

8

The time and space complexity of BFS* is the same as BFS.
Algorithms (EE3980) Unit 4.1 Breadth First Search Mar. 28, 2019 19 / 20

Summary

Binary tree traversal
Graph traversal
Breadth first search
Spanning tree

Algorithms (EE3980) Unit 4.1 Breadth First Search Mar. 28, 2019 20 / 20

