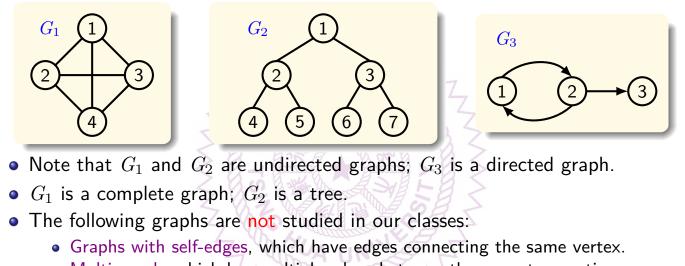
Unit 2.3 Sets and Graphs

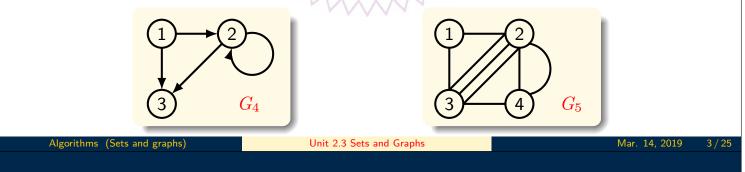
- A graph, G, consists of two sets V and E.
 - The set V is a finite, nonempty set of vertices.
 - The set E is a set of pairs of vertices; these pairs are called edges.
 - They are also denoted by V(G) and E(G).
 - And the graph is also denoted by G(V, E).
- In an undirected graph the pair of vertices representing any edge is unordered.
 - Thus, the pairs (u, v) and (v, u) represent the same edge.
- In a directed graph each edge is represented by a direct pair $\langle u, v \rangle$; u is the tail and v is the head.
 - And, $\langle u, v \rangle$ and $\langle v, u \rangle$ represent two different edges.
 - In a direct graph the edges are drawn as arrows and they are drawn from tail to head.

Graph Examples

Examples



• Multi-graph, which has multiple edges between the same two vertices.



Adjacency

- The number of distinct unordered pairs (u, v) with $u \neq v$ in a graph with n vertices is n(n-1)/2.
 - This is the maximum number of edges in any *n*-vertex, undirected graph.
 - An *n*-vertex, undirected graph with exactly n(n-1)/2 edges is said to be complete.
 - In case of a direct graph with n vertices, the maximum number of edges n(n-1).
- If (u, v) is an edge in E(G), the we say vertices u and v are adjacent and edge (u, v) is incident on vertices u and v.
- If $\langle u, v \rangle$ is a directed edge, the vertex u is adjacent to v and v is adjacent from u.
 - The edge $\langle u,v
 angle$ is incident to u and v.
- A subgraph of G = (V, E) is a graph G' = (V', E') such that $V'(G') \subseteq V(G)$ and $E'(G') \subseteq E(G)$.

Paths and Cycles

- A path from vertex u to vertex v in a graph G = (V, E) is a sequence of vertices $u, i_1, i_2, \cdots, i_k, v$, such that $(u, i_1), (i_1, i_2), \cdots, (i_k, v)$ are edges in E(G).
 - If G = (V, E) is directed, then the path consists of the edges $\langle u, i_1 \rangle$, $\langle i_1, i_2 \rangle$, ..., $\langle i_k, v \rangle$ in E(G).
- The length of a path is the number of edges on it.
- A simple path is a path in which all vertices except possibly the first and the last are distinct.
- A cycle is a simple path in which the first and the last vertices are the same.
 A directed cycle is a cycle in a directed graph.
- In an undirected graph G = (V, E), two vertices u and v are said to be connected if and only if there is a path in G from u to v.
- An undirected graph is said to be connected if and only if for every pair of distinct vertices u and v in V(G), there is a path from u to v.
- A connected component or simply a component *H* of an undirected graph is a maximal connected subgraph.
 - By $\underline{\text{maximal}}$ we mean that G contains no other subgraph that is both connected and properly contains H.

Unit 2.3 Sets and Graphs

Graph Degrees

- A tree is a connected acyclic (contain no cycles) graph.
- A directed graph G = (V, E) is said to be strongly connected if and only if for every pair of distinct vertices u and v in V(G), there is a directed path from u to v and also from v to u.
- A strongly connected component is a maximal subgraph that is strongly connected.
- The degree of a vertex is the number of edges incident to that vertex.
- If G = (V, E) is a directed graph, we define the in-degree of a vertex v to be the number of edges for which v is the head.
 - The out-degree is defined to be the number of edges for which v is the tail.
- If d_i is the degree of vertex i in a graph G = (V, E) with n vertices, then the number of edge is

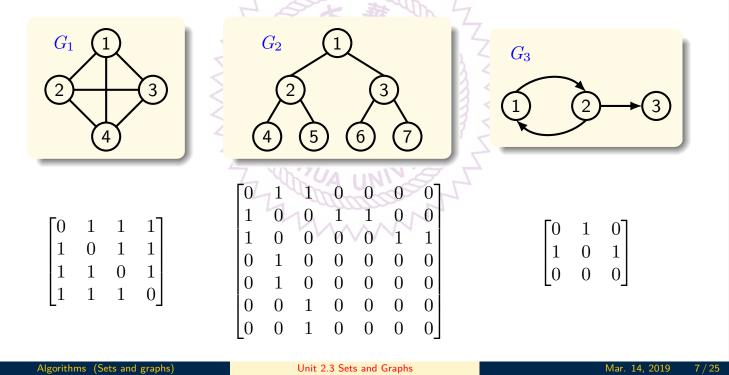
$$e = \left(\sum_{i=1}^{n} d_i\right)/2. \tag{2.3.1}$$

Mar. 14, 2019 6 / 25

Mar. 14, 2019

Graph Representation – Adjacency Matrix

• Let G = (V, E) be a graph with n vertices, $n \ge 1$. The adjacency matrix A is a two-dimensional $n \times n$ matrix with the property that A[i, j] = 1 if and only if the edge (i,j) ($\langle i,j \rangle$ for a directed graph) is in E(G). A[i,j] = 0 if there is no such edge in E(G).



Graph Representation – Adjacency Matrix, II

- The adjacency matrix for a undirected graph is symmetric.
 - This is due to that if the edge (i, j) is in E(G) then the edge (j, i) is also in E(G).
- The adjacency matrix for an directed graph may not be symmetric.
- The space needed to represent for a adjacency matrix is n^2 bits.
 - The undirected graph needs only half of this space.
- For an undirected graph the degree of any vertex *i* is its row sum:

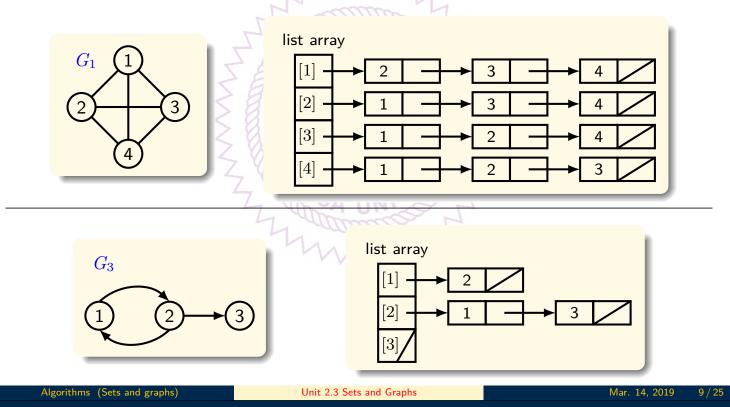
$$\sum_{i=1}^{n} A[i][j].$$
 (2.3.2)

- For a directed graph the row sum if the out-degree and the column sum is the in-degree.
- The adjacency matrix approach to represent the graph is not the most efficient way in both space and execution time.
 - It does not take advantage of the sparsity of the graph.
 - For example, the time complexity to find the number of edges of a graph, with *n* vertices, represented by a adjacency matrix is $\mathcal{O}(n^2)$.

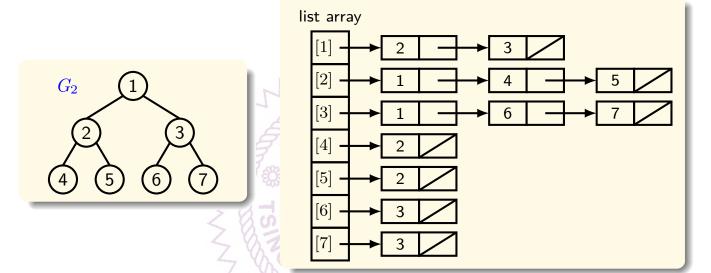
14, 2019

Graph Representation – Adjacency Lists

- A graph, G = (V, E), of n vertices, can also be represented by n linked lists.
 Each vertex has a linked list to represent the adjacent vertices.
- Examples



Adjacency Lists – Examples



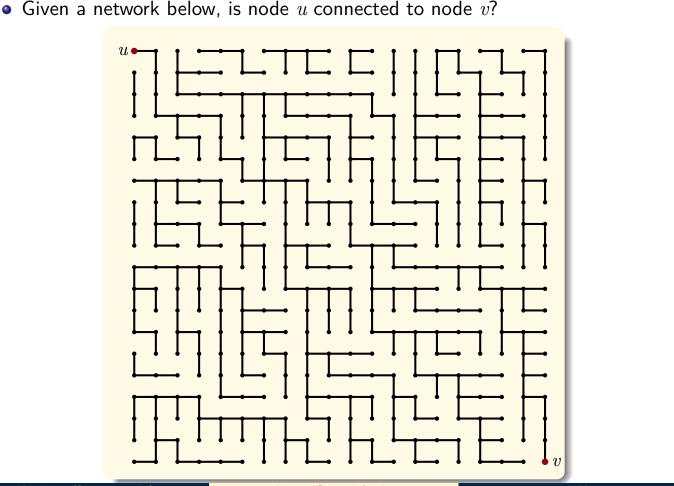
- For an undirected graph with n vertices and e edges, the adjacency list representation requires n head nodes and 2e list nodes.
- The degree of any vertex in an undirected graph can be determined by counting the number of nodes in the adjacency list.
 - Hence the total number of edges can be determined in $\mathcal{O}(n+e)$ time.
- For a directed graph, the out-degree of any vertex is again the number of nodes of its adjacency list.
- The in-degree may need to have another inverse adjacency list.

- In many applications, the edges of a graph have weights assigned to them. Thus, the adjacency matrix and adjacency lists need to accommodate these weights information.
- The adjacency matrix can store the weight of edge $\langle i, j \rangle$ to A[i][j] directly.
 - No extra storage is required.
 - Space complexity is $\mathcal{O}(n^2)$.
- For the adjacency lists, each node of the list needs to have an additional field to store the weight.
 - In terms of space complexity, it is still the same as $\Theta(e)$, where e is the number of edges in G = (V, E), Or, in worst-case $\mathcal{O}(n^2)$.

Unit 2.3 Sets and Graphs

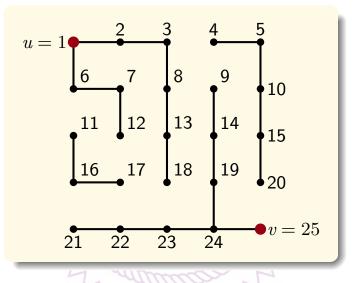
Network Connectivity Problem

Algorithms (Sets and graphs)



Mar. 14, 2019

Network Connectivity Problem, II



- A smaller instance is shown above.
- One solution approach is to form sets of connected nodes, S_i .
- If there is a S_k such that $u, v \in S_k$, then u is connected to v.

Algorithms (Sets and graphs)

Unit 2.3 Sets and Graphs

• A generic algorithm for network connectivity problem is shown below.

Algorithm 2.3.1. Connectivity – Generic.

Network Connectivity Problem, Algorithm

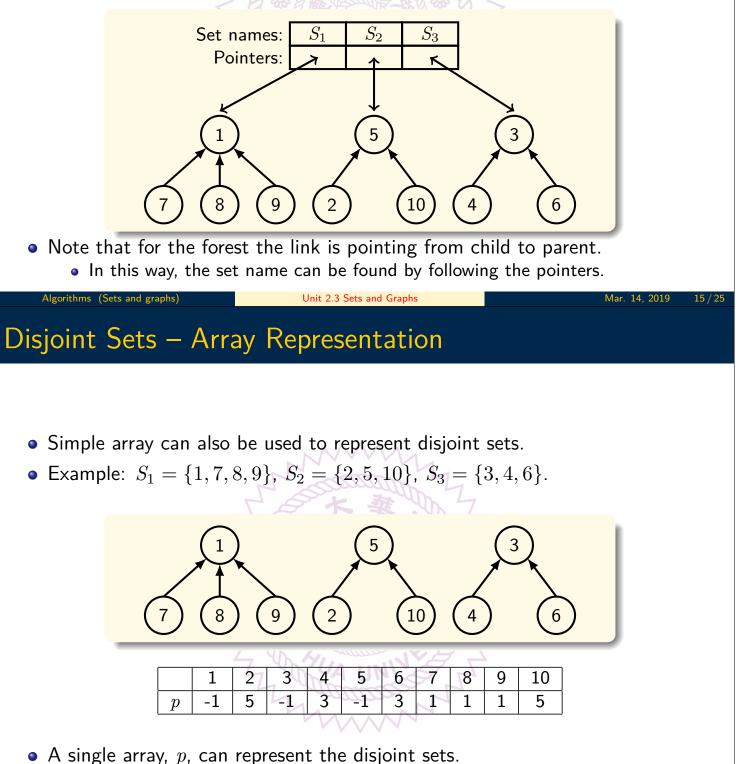
```
// Given G(V, E) and u, v \in V, find if u and v are connected.
   // Input: G, u, v; Output: true if connected, false otherwise.
 1 Algorithm Connected(G, u, v)
 2 {
         for each v_i \in V do S_i := \{v_i\}; // One element for each set.
 3
         for each e = (v_i, v_j) do { // Connected vertices
 4
              S_i := \texttt{SetFind}(v_i); S_j := \texttt{SetFind}(v_j);
 5
              S_i := S_i \cup S_j; // Set union.
 6
 7
         if SetFind(u) = SetFind(v) then return true ;
 8
 9
         return false ;
10 }
```

- The time complexity is dominated by the loop on lines 4-7
 - Iterations: $\mathcal{O}(|E|)$.
 - Two SetFind and one SetUnion per iteration.

Mar. 14, 2019

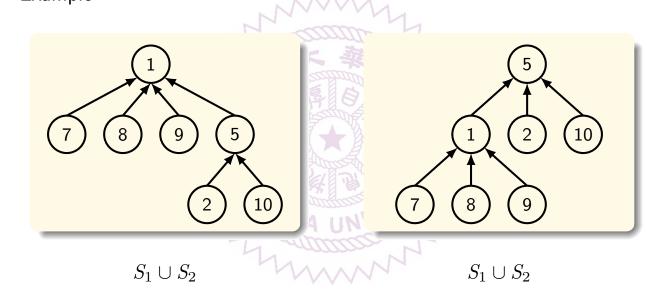
Disjoint Sets

- Disjoint sets
 - Assume the elements are numbered 1, 2, ..., n.
 - Disjoint sets S_i , S_j such that $S_i \cap S_j = \emptyset$, $i \neq j$.
 - Forest can be used to represent disjoint sets
- Operations important to set manipulations
 - Union: Merge two disjoint sets into one.
 - Find(i): Given an element *i* find the set that contains *i*.
- Example: $S_1 = \{1, 7, 8, 9\}$, $S_2 = \{2, 5, 10\}$, $S_3 = \{3, 4, 6\}$.



Disjoints Sets – Union

- Two disjoint sets can be united easily.
- Example



- Both scenarios are legal and efficient.
- Union of two sets are done by setting one of the roots to be the parent of another root.

Unit 2.3 Sets and Graphs

Algorithms (Sets and graphs)

Disjoint Sets – Algorithms

• Using the array p to represent the disjoint sets, then the following algorithms perform the desired operations.

Algorithm 2.3.2. Set Union.

```
// Form union of two sets with roots, i and j.
// Input: roots, i and j; Output: none.
1 Algorithm SetUnion(i, j)
2 {
3         p[i] := j;
4 }
```

Algorithm 2.3.3. Set Find.

```
// Find the set that element i is in.
// Input: element i; Output: root element of the set.
1 Algorithm SetFind(i)
2 {
3 while (p[i] \ge 0) do i := p[i];
4 return i;
5 }
```

Algorithms (Sets and graphs)

Mar. 14, 2019

Disjoint Sets – Weighting Rule

 Algorithm SetFind(i) has the complexity O(h), where h is the height of the tree the element i is in. Algorithm SetUnion(i, j) has the time complexity O(1). However, each union operation increases the height of the tree by 1. Thus, after some union operations the tree might become skewed and the execution time of SetFind increases. This issue can be alleviated by using the weighting rule.
Definition 2.3.4. Weighting rule for set union.
If the number of nodes in the tree with root i is less than the number of nodes in the tree with root j , then make j the parent of i ; otherwise make i the parent of j .
 In order to implement the weighting rule, we need to know the number of elements in each set. This can be done using the root location in the p array. Set it to -count(i), count(i) is the number of elements in set i. Example: the disjoint sets can be represented as 1 2 3 4 5 6 7 8 9 10 p -4 5 -3 3 -3 3 1 1 1 5
Algorithms (Sets and graphs)Unit 2.3 Sets and GraphsMar. 14, 201919/25
Disjoint Sets – Weighted Set Union
<pre>Algorithm 2.3.5. Weighted Set Union. // Form union of two sets with roots, i and j, using the weighting rule. // Input: roots of two sets i, j; Output: none. 1 Algorithm WeightedUnion(i, j) 2 { 3 temp := p[i] + p[j]; // Note that temp < 0. 4 if (p[i] > p[j]) then { // i has fewer elements. 5 p[i] := j; p[j] := temp; 6 } </pre>
7 else { // j has fewer elements. 8 $p[j] := i; p[i] := temp;$ 9 } 10 }

• Using this algorithm, the depth of the union tree can be controlled.

Weighted Set Union – Complexity

Lemma 2.3.6.

Assume that we start with a forest of trees, each having one element. Let T be a tree with m nodes created as a result of a sequence of unions each performed using WeightedUnion algorithm. The height of T is no greater than $|\lg m| + 1$.

Proof. The first step is true when two sets of one element are united. Assume the Lemma is true for the first m-1 operations, consider the last step of the union operations, WeightedUnion(k, j). If set j has a elements, then set k has m-a elements. And, $1 \le a \le m/2$. The height of T must be the same as that of k or one more than that of j. In the former case, the height of T is $\le \lfloor \lg (m-a) \rfloor + 1 \le \lfloor \lg m \rfloor + 1$. In the latter case, the height of T is $\le \lfloor \lg a \rfloor + 2 \le \lfloor \lg m/2 \rfloor + 2 \le \lfloor \lg m \rfloor + 1$.

- Thus, the union set created using Algorithm WeightedUnion has no more than $\lfloor \lg m \rfloor + 1$ levels.
- And the time complexity of Find algorithm on the resulting set is $\mathcal{O}(\lg m)$.

Unit 2.3 Sets and Graphs

Disjoint Sets – Collapsing Find

• The height of a set may still be improved using the collapsing rule.

Definition 2.3.7. Collapsing Rule.

Algorithms (Sets and graphs)

If j is an element on the path from i to its root and $p[i] \neq root(i)$, then set p[j] to root(i).

• The CollapsingFind algorithm below utilizes this rule.

Algorithm 2.3.8. Collapsing Find.

```
// Find the root of i, and collapsing the elements on the path.
  // Input: an element i; Output: root of the set containing i.
1 Algorithm CollapsingFind(i)
2 {
       r := i; // Initialized r to i.
3
       while (p[r] > 0) do r := p[r]; // Find the root.
4
       while (i \neq r) do { // Collapse the elements on the path.
5
            s := p[i]; p[i] := r; i := s;
6
7
       }
8
       return r;
9 }
```

Algorithms (Sets and graphs)

Mar. 14, 2019

Ackermann's Function

Definition 2.3.9. Ackermann's function.

The Ackermann's function is defined as

$$A(1,j) = 2^{j} for j \ge 1, A(i,1) = A(i-1,2) for i \ge 2, A(i,j) = A(i-1,A(i,j-1)) for i, j \ge 2.$$
(2.3.3)

Also define

$$\alpha(p,q) = \min\{z \ge 1 | A(z, \lfloor \frac{p}{q} \rfloor) > \lg q\}, p \ge q \ge 1.$$
(2.3.4)

- $\begin{array}{ll} A(1,1) = 2 & A(1,2) = 4 & A(1,3) = 8 & A(1,4) = 16 \\ A(2,1) = 4 & A(2,2) = 16 & A(2,3) = 2^{16} & A(2,4) = 2^{65536} \\ A(4,1) \gg 2^{65536} & A(3,2) \gg 2^{65536} \end{array}$
- A is very fast growing function and α is a very slow growing function.
- Note that A(3,1) = 16, $\alpha(p,q) \le 3$ for $q < 2^{16} = 65,536$ and p > q.
- Since A(4,1) is a very large number, $\alpha(p,q) \leq 4$ for all practical purposes.

Unit 2.3 Sets and Graphs

Tarjan and Van Leeuwen Bound

Algorithms (Sets and graphs)

Lemma 2.3.10. Tarjan and Van Leeuwen bounds.

Assume that we start with a forest of trees, each having one node. Let T(f, u) be the maximum time required to process any intermixed sequence of f finds and u unions. Assume that $u \ge n/2$, then

$$k_1\left(n+f\cdot\alpha(f+n,n)\right) \le T(f,u) \le k_2\left(n+f\cdot\alpha(f+n,n)\right)$$
(2.3.5)

for some positive constants k_1 and k_2 .

- Proof please see textbook [Cormen], pp. 575-581.
- Thus, manipulating disjoint sets are rather efficient.
- Though algorithms (2.3.2), (2.3.3), (2.3.5), and (2.3.8) assume the disjoint sets are represented using a simple array, they can be implemented if the disjoint sets are represented using linked lists as well.
- The complexities are the same with either data structure.

Mar. 14, 2019

Summary

Graphs

Definitions.
Adjacency matrix.
Adjacency lists.

Network connectivity problem
Disjoint sets.

Set union.
Set find.
<lu>
Weighted set union.

Algorithms (Sets and graphs)

• Collapsing set find.

Unit 2.3 Sets and Graphs

Mar. 14, 2019 25 / 25