
Unit 2.3 Sets and Graphs

Algorithms

EE/NTHU

Mar. 14, 2019

Algorithms (EE/NTHU) Unit 2.3 Sets and Graphs Mar. 14, 2019 1 / 25

Graphs

A graph, G, consists of two sets V and E.
The set V is a finite, nonempty set of vertices.
The set E is a set of pairs of vertices; these pairs are called edges.
They are also denoted by V(G) and E(G).
And the graph is also denoted by G(V,E).

In an undirected graph the pair of vertices representing any edge is
unordered.

Thus, the pairs (u, v) and (v, u) represent the same edge.
In a directed graph each edge is represented by a direct pair ⟨u, v⟩; u is the
tail and v is the head.

And, ⟨u, v⟩ and ⟨v, u⟩ represent two different edges.
In a direct graph the edges are drawn as arrows and they are drawn from tail
to head.

Algorithms (Sets and graphs) Unit 2.3 Sets and Graphs Mar. 14, 2019 2 / 25

Graph Examples
Examples

1

2 3

4

G1 1

2 3

4 5 6 7

G2

1 2 3

G3

Note that G1 and G2 are undirected graphs; G3 is a directed graph.
G1 is a complete graph; G2 is a tree.
The following graphs are not studied in our classes:

Graphs with self-edges, which have edges connecting the same vertex.
Multi-graph, which has multiple edges between the same two vertices.

1 2

3 G4

1 2

3 4 G5

Algorithms (Sets and graphs) Unit 2.3 Sets and Graphs Mar. 14, 2019 3 / 25

Adjacency

The number of distinct unordered pairs (u, v) with u ̸= v in a graph with n
vertices is n(n − 1)/2.

This is the maximum number of edges in any n-vertex, undirected graph.
An n-vertex, undirected graph with exactly n(n − 1)/2 edges is said to be
complete.
In case of a direct graph with n vertices, the maximum number of edges
n(n − 1).

If (u, v) is an edge in E(G), the we say vertices u and v are adjacent and
edge (u, v) is incident on vertices u and v.
If ⟨u, v⟩ is a directed edge, the vertex u is adjacent to v and v is adjacent
from u.

The edge ⟨u, v⟩ is incident to u and v.
A subgraph of G = (V,E) is a graph G ′ = (V ′,E ′) such that
V ′(G ′) ⊆ V(G) and E ′(G ′) ⊆ E(G).

Algorithms (Sets and graphs) Unit 2.3 Sets and Graphs Mar. 14, 2019 4 / 25

Paths and Cycles
A path from vertex u to vertex v in a graph G = (V,E) is a sequence of
vertices u, i1, i2, · · · , ik, v, such that (u, i1), (i1, i2), · · · , (ik, v) are edges in
E(G).

If G = (V,E) is directed, then the path consists of the edges ⟨u, i1⟩, ⟨i1, i2⟩,
· · · , ⟨ik, v⟩ in E(G).

The length of a path is the number of edges on it.
A simple path is a path in which all vertices except possibly the first and the
last are distinct.
A cycle is a simple path in which the first and the last vertices are the same.

A directed cycle is a cycle in a directed graph.
In an undirected graph G = (V,E), two vertices u and v are said to be
connected if and only if there is a path in G from u to v.
An undirected graph is said to be connected if and only if for every pair of
distinct vertices u and v in V(G), there is a path from u to v.
A connected component or simply a component H of an undirected graph is
a maximal connected subgraph.

By maximal we mean that G contains no other subgraph that is both
connected and properly contains H.

Algorithms (Sets and graphs) Unit 2.3 Sets and Graphs Mar. 14, 2019 5 / 25

Graph Degrees

A tree is a connected acyclic (contain no cycles) graph.
A directed graph G = (V,E) is said to be strongly connected if and only if
for every pair of distinct vertices u and v in V(G), there is a directed path
from u to v and also from v to u.
A strongly connected component is a maximal subgraph that is strongly
connected.
The degree of a vertex is the number of edges incident to that vertex.
If G = (V,E) is a directed graph, we define the in-degree of a vertex v to be
the number of edges for which v is the head.

The out-degree is defined to be the number of edges for which v is the tail.
If di is the degree of vertex i in a graph G = (V,E) with n vertices, then the
number of edge is

e =

(n∑

i=1

di

)
/2. (2.3.1)

Algorithms (Sets and graphs) Unit 2.3 Sets and Graphs Mar. 14, 2019 6 / 25

Graph Representation – Adjacency Matrix

Let G = (V,E) be a graph with n vertices, n ≥ 1. The adjacency matrix A
is a two-dimensional n × n matrix with the property that A[i, j] = 1 if and
only if the edge (i, j) (⟨i, j⟩ for a directed graph) is in E(G). A[i, j] = 0 if
there is no such edge in E(G).

1

2 3

4

G1 1

2 3

4 5 6 7

G2

1 2 3

G3

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

0 1 1 0 0 0 0
1 0 0 1 1 0 0
1 0 0 0 0 1 1
0 1 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 1 0 0 0 0

0 1 0
1 0 1
0 0 0

Algorithms (Sets and graphs) Unit 2.3 Sets and Graphs Mar. 14, 2019 7 / 25

Graph Representation – Adjacency Matrix, II

The adjacency matrix for a undirected graph is symmetric.
This is due to that if the edge (i, j) is in E(G) then the edge (j, i) is also in
E(G).

The adjacency matrix for an directed graph may not be symmetric.
The space needed to represent for a adjacency matrix is n2 bits.

The undirected graph needs only half of this space.
For an undirected graph the degree of any vertex i is its row sum:

n∑

j=1

A[i][j]. (2.3.2)

For a directed graph the row sum if the out-degree and the column sum is
the in-degree.
The adjacency matrix approach to represent the graph is not the most
efficient way in both space and execution time.

It does not take advantage of the sparsity of the graph.
For example, the time complexity to find the number of edges of a graph, with
n vertices, represented by a adjacency matrix is O(n2).

Algorithms (Sets and graphs) Unit 2.3 Sets and Graphs Mar. 14, 2019 8 / 25

Graph Representation – Adjacency Lists

A graph, G = (V,E), of n vertices, can also be represented by n linked lists.
Each vertex has a linked list to represent the adjacent vertices.

Examples

1

2 3

4

G1 [1]

[2]

[3]

[4]

2 3 4

1 3 4

1 2 4

1 2 3

list array

1 2 3

G3
[1]

[2]

[3]

2

1 3

list array

Algorithms (Sets and graphs) Unit 2.3 Sets and Graphs Mar. 14, 2019 9 / 25

Adjacency Lists – Examples

1

2 3

4 5 6 7

G2

[1]

[2]

[3]

[4]

[5]

[6]

[7]

2 3

1 4 5

1 6 7

2

2

3

3

list array

For an undirected graph with n vertices and e edges, the adjacency list
representation requires n head nodes and 2e list nodes.
The degree of any vertex in an undirected graph can be determined by
counting the number of nodes in the adjacency list.

Hence the total number of edges can be determined in O(n + e) time.
For a directed graph, the out-degree of any vertex is again the number of
nodes of its adjacency list.
The in-degree may need to have another inverse adjacency list.

Algorithms (Sets and graphs) Unit 2.3 Sets and Graphs Mar. 14, 2019 10 / 25

Weighted Edges

In many applications, the edges of a graph have weights assigned to them.
Thus, the adjacency matrix and adjacency lists need to accommodate these
weights information.
The adjacency matrix can store the weight of edge ⟨i, j ⟩ to A[i][j] directly.

No extra storage is required.
Space complexity is O(n2).

For the adjacency lists, each node of the list needs to have an additional field
to store the weight.

In terms of space complexity, it is still the same as Θ(e), where e is the
number of edges in G = (V,E), Or, in worst-case O(n2).

Algorithms (Sets and graphs) Unit 2.3 Sets and Graphs Mar. 14, 2019 11 / 25

Network Connectivity Problem
Given a network below, is node u connected to node v?

u

v
Algorithms (Sets and graphs) Unit 2.3 Sets and Graphs Mar. 14, 2019 12 / 25

Network Connectivity Problem, II

2 3 4 5

6 7 8 9 10

11 12 13 14 15
16 17 18 19 20

21 22 23 24

u = 1

v = 25

A smaller instance is shown above.
One solution approach is to form sets of connected nodes, Si.
If there is a Sk such that u, v ∈ Sk, then u is connected to v.

Algorithms (Sets and graphs) Unit 2.3 Sets and Graphs Mar. 14, 2019 13 / 25

Network Connectivity Problem, Algorithm

A generic algorithm for network connectivity problem is shown below.

Algorithm 2.3.1. Connectivity – Generic.
// Given G(V,E) and u, v ∈ V, find if u and v are connected.
// Input: G, u, v ; Output: true if connected, false otherwise.

1 Algorithm Connected(G, u, v)
2 {
3 for each vi∈V do Si := {vi} ; // One element for each set.
4 for each e = (vi, vj) do { // Connected vertices
5 Si := SetFind(vi) ; Sj := SetFind(vj) ;
6 Si := Si ∪ Sj ; // Set union.
7 }
8 if SetFind(u) = SetFind(v) then return true ;
9 return false ;

10 }

The time complexity is dominated by the loop on lines 4-7
Iterations: O(|E |).
Two SetFind and one SetUnion per iteration.

Algorithms (Sets and graphs) Unit 2.3 Sets and Graphs Mar. 14, 2019 14 / 25

Disjoint Sets
Disjoint sets

Assume the elements are numbered 1, 2, …, n.
Disjoint sets Si, Sj such that Si ∩ Sj = ∅, i ̸= j.
Forest can be used to represent disjoint sets

Operations important to set manipulations
Union: Merge two disjoint sets into one.
Find(i): Given an element i find the set that contains i.

Example: S1 = {1, 7, 8, 9}, S2 = {2, 5, 10}, S3 = {3, 4, 6}.

1

2

3

4

5

67 8 9 10

S1 S2 S3Set names:
Pointers:

Note that for the forest the link is pointing from child to parent.
In this way, the set name can be found by following the pointers.

Algorithms (Sets and graphs) Unit 2.3 Sets and Graphs Mar. 14, 2019 15 / 25

Disjoint Sets – Array Representation

Simple array can also be used to represent disjoint sets.
Example: S1 = {1, 7, 8, 9}, S2 = {2, 5, 10}, S3 = {3, 4, 6}.

1

2

3

4

5

67 8 9 10

1 2 3 4 5 6 7 8 9 10
p -1 5 -1 3 -1 3 1 1 1 5

A single array, p, can represent the disjoint sets.

Algorithms (Sets and graphs) Unit 2.3 Sets and Graphs Mar. 14, 2019 16 / 25

Disjoints Sets – Union

Two disjoint sets can be united easily.
Example

1

2

57 8 9

10

S1 ∪ S2

1 2

5

7 8 9

10

S1 ∪ S2

Both scenarios are legal and efficient.
Union of two sets are done by setting one of the roots to be the parent of
another root.

Algorithms (Sets and graphs) Unit 2.3 Sets and Graphs Mar. 14, 2019 17 / 25

Disjoint Sets – Algorithms
Using the array p to represent the disjoint sets, then the following algorithms
perform the desired operations.

Algorithm 2.3.2. Set Union.
// Form union of two sets with roots, i and j.
// Input: roots, i and j ; Output: none.

1 Algorithm SetUnion(i, j)
2 {
3 p[i] := j ;
4 }

Algorithm 2.3.3. Set Find.
// Find the set that element i is in.
// Input: element i ; Output: root element of the set.

1 Algorithm SetFind(i)
2 {
3 while (p[i] ≥ 0) do i := p[i] ;
4 return i ;
5 }

Algorithms (Sets and graphs) Unit 2.3 Sets and Graphs Mar. 14, 2019 18 / 25

Disjoint Sets – Weighting Rule

Algorithm SetFind(i) has the complexity O(h), where h is the height of the
tree the element i is in.
Algorithm SetUnion(i, j) has the time complexity O(1).

However, each union operation increases the height of the tree by 1.
Thus, after some union operations the tree might become skewed and the
execution time of SetFind increases.
This issue can be alleviated by using the weighting rule.

Definition 2.3.4. Weighting rule for set union.
If the number of nodes in the tree with root i is less than the number of nodes in the
tree with root j, then make j the parent of i; otherwise make i the parent of j.

In order to implement the weighting rule, we need to know the number of
elements in each set. This can be done using the root location in the p array.
Set it to −count(i), count(i) is the number of elements in set i.
Example: the disjoint sets can be represented as

1 2 3 4 5 6 7 8 9 10
p -4 5 -3 3 -3 3 1 1 1 5

Algorithms (Sets and graphs) Unit 2.3 Sets and Graphs Mar. 14, 2019 19 / 25

Disjoint Sets – Weighted Set Union

Algorithm 2.3.5. Weighted Set Union.
// Form union of two sets with roots, i and j, using the weighting rule.
// Input: roots of two sets i, j ; Output: none.

1 Algorithm WeightedUnion(i, j)
2 {
3 temp := p[i] + p[j] ; // Note that temp < 0.
4 if (p[i] > p[j]) then { // i has fewer elements.
5 p[i] := j ; p[j] := temp ;
6 }
7 else { // j has fewer elements.
8 p[j] := i ; p[i] := temp ;
9 }

10 }

Using this algorithm, the depth of the union tree can be controlled.

Algorithms (Sets and graphs) Unit 2.3 Sets and Graphs Mar. 14, 2019 20 / 25

Weighted Set Union – Complexity

Lemma 2.3.6.
Assume that we start with a forest of trees, each having one element. Let T be a
tree with m nodes created as a result of a sequence of unions each performed
using WeightedUnion algorithm. The height of T is no greater than ⌊lg m⌋+ 1.

Proof. The first step is true when two sets of one element are united. Assume
the Lemma is true for the first m − 1 operations, consider the last step of the
union operations, WeightedUnion(k, j). If set j has a elements, then set k has
m − a elements. And, 1 ≤ a ≤ m/2. The height of T must be the same as that
of k or one more than that of j. In the former case, the height of T is
≤ ⌊lg(m − a)⌋+ 1 ≤ ⌊lg m⌋+ 1. In the latter case, the height of T is
≤ ⌊lg a⌋+ 2 ≤ ⌊lg m/2⌋+ 2 ≤ ⌊lg m⌋+ 1. □

Thus, the union set created using Algorithm WeightedUnion has no more
than ⌊lg m⌋+ 1 levels.
And the time complexity of Find algorithm on the resulting set is O(lg m).

Algorithms (Sets and graphs) Unit 2.3 Sets and Graphs Mar. 14, 2019 21 / 25

Disjoint Sets – Collapsing Find
The height of a set may still be improved using the collapsing rule.

Definition 2.3.7. Collapsing Rule.
If j is an element on the path from i to its root and p[i] ̸= root(i), then set p[j]
to root(i).

The CollapsingFind algorithm below utilizes this rule.
Algorithm 2.3.8. Collapsing Find.

// Find the root of i, and collapsing the elements on the path.
// Input: an element i ; Output: root of the set containing i.

1 Algorithm CollapsingFind(i)
2 {
3 r := i ; // Initialized r to i.
4 while (p[r] > 0) do r := p[r] ; // Find the root.
5 while (i ̸= r) do { // Collapse the elements on the path.
6 s := p[i] ; p[i] := r ; i := s ;
7 }
8 return r ;
9 }

Algorithms (Sets and graphs) Unit 2.3 Sets and Graphs Mar. 14, 2019 22 / 25

Ackermann’s Function
Definition 2.3.9. Ackermann’s function.
The Ackermann’s function is defined as

A(1, j) = 2j for j ≥ 1,
A(i, 1) = A(i − 1, 2) for i ≥ 2,
A(i, j) = A(i − 1,A(i, j − 1)) for i, j ≥ 2.

(2.3.3)

Also define
α(p, q) = min{z ≥ 1|A(z, ⌊p

q ⌋) > lg q}, p ≥ q ≥ 1. (2.3.4)

A(1, 1) = 2 A(1, 2) = 4 A(1, 3) = 8 A(1, 4) = 16
A(2, 1) = 4 A(2, 2) = 16 A(2, 3) = 216 A(2, 4) = 265536

A(3, 1) = 16 A(3, 2) ≫ 265536

A(4, 1) ≫ 265536

A is very fast growing function and α is a very slow growing function.
Note that A(3, 1) = 16, α(p, q) ≤ 3 for q < 216 = 65, 536 and p > q.
Since A(4, 1) is a very large number, α(p, q) ≤ 4 for all practical purposes.

Algorithms (Sets and graphs) Unit 2.3 Sets and Graphs Mar. 14, 2019 23 / 25

Tarjan and Van Leeuwen Bound

Lemma 2.3.10. Tarjan and Van Leeuwen bounds.
Assume that we start with a forest of trees, each having one node. Let T(f, u) be
the maximum time required to process any intermixed sequence of f finds and u
unions. Assume that u ≥ n/2, then

k1
(

n + f · α(f + n,n)
)

≤ T(f, u) ≤ k2
(

n + f · α(f + n,n)
)

(2.3.5)

for some positive constants k1 and k2.

Proof please see textbook [Cormen], pp. 575-581.

Thus, manipulating disjoint sets are rather efficient.
Though algorithms (2.3.2), (2.3.3), (2.3.5), and (2.3.8) assume the disjoint
sets are represented using a simple array, they can be implemented if the
disjoint sets are represented using linked lists as well.
The complexities are the same with either data structure.

Algorithms (Sets and graphs) Unit 2.3 Sets and Graphs Mar. 14, 2019 24 / 25

Summary

Graphs
Definitions.
Adjacency matrix.
Adjacency lists.

Network connectivity problem
Disjoint sets.

Set union.
Set find.
Weighted set union.
Collapsing set find.

Algorithms (Sets and graphs) Unit 2.3 Sets and Graphs Mar. 14, 2019 25 / 25

