
Unit 2.2 Trees

Algorithms

EE/NTHU

Mar. 11, 2019

Algorithms (EE/NTHU) Unit 2.2 Trees Mar. 11, 2019 1 / 29

Trees

Definition 2.2.1. Tree.
A tree is a finite set of one or more nodes such that there is a specially designated
node called the root and the remaining nodes are partitioned into n ≥ 0 disjoint
sets T1, …, Tn, where each of these sets is a tree. The sets T1, …, Tn are called
the subtrees of the root.

A

B C D

E F G H I J

K K M

level
1

2

3

4

Algorithms (Stack, queue and trees) Unit 2.2 Trees Mar. 11, 2019 2 / 29

Trees, II

The number of subtrees of a node is called its degree.
Nodes that have degree 0 are called leaf or terminal nodes.

The other nodes are nonterminals.
The roots of the subtree of a node X are the children of X.

The node X is the parent of its children.
The ancestors of a node are all the nodes along the path from the root to
that node.
Children of the same parent are said to be siblings.
The degree of a tree is the maximum degree of the nodes in the tree.
The root is at level 1. If a node is at level p, then its children are at level
p + 1.
The height or depth of a tree is the maximum level of any node in the tree.
A forest is a set of n > 0 disjoint trees.

Algorithms (Stack, queue and trees) Unit 2.2 Trees Mar. 11, 2019 3 / 29

Binary Trees

Definition. 2.2.2. Binary Tree.
A binary tree is a finite set of nodes that is either empty or consists of a root and
two disjoint binary trees called the left and right subtrees.

A

B

C

D

E

A skewed binary tree.

D

H I

B

E F

C

G

A

A complete binary tree.

Algorithms (Stack, queue and trees) Unit 2.2 Trees Mar. 11, 2019 4 / 29

Dictionaries

An abstract data type that supports the operations insert, delete and search
is called a dictionary.
At high level dictionaries can be categorized as comparison methods and
direct access methods.

Binary search tree is one of the comparison methods.
Hashing is an example of direct access method.

Algorithms (Stack, queue and trees) Unit 2.2 Trees Mar. 11, 2019 5 / 29

Binary Search Trees

Definition 2.2.3. Binary search tree.
A binary search tree is a binary tree. It may be empty. If it is not empty, then it
satisfies the following properties:

1. Every element has a key and no two elements have the same key (i.e., the
keys are distinct).

2. The keys (if any) in the left subtree are smaller than the key in the root.
3. The keys (if any) in the right subtree are larger than the key in the root.
4. The left and right subtrees are also binary search trees.

10 15 22

12 25

20

Algorithms (Stack, queue and trees) Unit 2.2 Trees Mar. 11, 2019 6 / 29

Binary Search Trees – Data Structure

Linked list can be used to store binary search trees.
Each node has four items: parent, lchild, rchild, key.

An additional item, leftsize, is needed for search by rank algorithm.

A

B

C

D

E

A

B C

D E F G

H I

Algorithms (Stack, queue and trees) Unit 2.2 Trees Mar. 11, 2019 7 / 29

Binary Search Trees – Min and Max
Given a binary tree, the tree node with the minimum or maximum key can be
found by the following algorithms.

Algorithm 2.2.4. Find the minimum in a Binary Search Tree
// Find the minimum in a binary tree T.
// Input: none; Output: min of T.

1 Algorithm BSTmin(T)
2 {
3 t := T ; while (t → lchild ̸= NULL) t := t → lchild ;
4 return t ;
5 }

Algorithm 2.2.5. Find the maximum in a Binary Search Tree
// Find the maximum in a binary tree T.
// Input: none; Output: max of T.

1 Algorithm BSTmax(T)
2 {
3 t := T ; while (t → rchild ̸= NULL) t := t → rchild ;
4 return t ;
5 }

Algorithms (Stack, queue and trees) Unit 2.2 Trees Mar. 11, 2019 8 / 29

Binary Search Trees – Search

Search in a binary search tree can be easily done.
This is a recursive version.

Algorithm 2.2.6. Recursive Search for a Binary Search Tree
// Recursive search key x in binary tree T.
// Input: binary tree T, key x; Output: the node with key x.

1 Algorithm BSTsearch_R(T, x)
2 {
3 if (T = NULL or x = T→key) then return T ;
4 if (x < T→key) then return BSTsearch_R(T→lchild, x) ;
5 else return BSTsearch_R(T→rchild, x) ;
6 }

For a binary tree of height h, the time complexity for all three algorithms
above are O(h).

Algorithms (Stack, queue and trees) Unit 2.2 Trees Mar. 11, 2019 9 / 29

Binary Search Trees – Iterative Search

Search in binary search tree can also be done iteratively.

Algorithm 2.2.7. Iterative Search for a Binary Search Tree
// Iterative search key x in binary tree T.
// Input: binary tree T, key x; Output: the node with key x.

1 Algorithm BSTsearch(T, x)
2 {
3 t := T ;
4 while ((t ̸= NULL) and (x ̸= t→key)) do {
5 if (x < t→key) then t := t→lchild ;
6 else t := t→rchild ;
7 }
8 return t ;
9 }

The searching time is the same as the recursive version, O(h).

Algorithms (Stack, queue and trees) Unit 2.2 Trees Mar. 11, 2019 10 / 29

Binary Search Trees – Search by Rank
If each node in the binary search tree has an additional item, leftsize, which
is one plus the number of elements in the left subtree, then the following
algorithm performs search by rank.

Algorithm 2.2.8. Search by Rank with Binary Search Tree
// Search the k-th element in binary tree T
// Input: binary tree T, rank k; Output: the k-th node in T.

1 Algorithm BSTsearchRank(T, k)
2 {
3 t := T ;
4 while ((t ̸= NULL) and (k ̸= t→leftsize)) do {
5 if (k < t→leftsize) then t := t→lchild ;
6 else {
7 k := k − t→leftsize ; t := t→rchild ;
8 }
9 }

10 return t ;
11 }

Time complexity is O(h).
Algorithms (Stack, queue and trees) Unit 2.2 Trees Mar. 11, 2019 11 / 29

Binary Search Trees – Successor

The successor of a node in a binary tree can also be found in O(h) time.

Algorithm 2.2.9. Find the successor
// Find the successor of T in a binary tree.
// Input: node T; Output: successor of T.

1 Algorithm BSTsuccessor(T)
2 {
3 if (T→rchild ̸= NULL) then
4 return BSTmin(T→rchild) ;
5 P := T→parent ;
6 while (P ̸= NULL and T = P→rchild) {
7 T := P ; P := P→parent ;
8 }
9 return P ;

10 }

The predecessor can also be found similarly.

Algorithms (Stack, queue and trees) Unit 2.2 Trees Mar. 11, 2019 12 / 29

Binary Search Trees – Insertion
Algorithm 2.2.10. Binary Search Tree Insertion.

// Insert a node with key x into the binary search tree T.
// Input: tree T, key x; Output: updated tree T.

1 Algorithm BSTinsert(T, x)
2 {
3 t := T ; P := t→parent ;
4 while (t ̸= NULL) { // Repeat until P is a leaf node.
5 P := t ;
6 if (x < t→key) t := t→lchild ; // Maintain BST property.
7 else t := t→rchild ;
8 }
9 q := new Node ; // Create a new Node.

10 q→lchild := NULL ; q→rchild := NULL ; q→key := x ;
11 if (P = NULL) T := q ; // The tree was empty.
12 else if (x < P→key) P→lchild := q ; // Insert.
13 else P→rchild := q ;
14 return T ;
15 }

The time complexity is O(h).
Algorithms (Stack, queue and trees) Unit 2.2 Trees Mar. 11, 2019 13 / 29

Binary Search Trees – Deletion

Delete a node need to consider the following cases:
Deletion of a leaf node is straightforward.

Remove the corresponding link from its parent.
Deletion of a nonleaf node that has only one child is also straightforward.

Replace the data of deleted node by its child’s data
Then remove the child node.

Deletion of a nonleaf node that has two children can be done in the following
way:

Replace the data of the deleted node by the largest element of its left subtree or
the smallest element of its right subtree.
Then delete the replacing element from the subtree it is taken.

Deletion of a binary search tree of height h can be done in O(h) time.

Algorithms (Stack, queue and trees) Unit 2.2 Trees Mar. 11, 2019 14 / 29

Binary Search Tree, Tree Height

Given a binary tree with n nodes, then the maximum height is n.
Thus the worst-case complexity of the above BST algorithms are O(n).
However, we have the following theorem.

Theorem 2.2.11.
The expected height of a randomly built binary search tree on n distinct keys is
O(lg n).

Proof please see textbook [Cormen], pp. 300-303.

Thus, binary search tree is a good choice for dictionary applications.

Algorithms (Stack, queue and trees) Unit 2.2 Trees Mar. 11, 2019 15 / 29

Comparing to Other Trees

More tree data structure have been proposed for dictionary applications.
Worst-case O(lg n) complexity can be achieved.

Data structure Search Insert Delete
Binary search tree O(n) (wc) O(n) (wc) O(n) (wc)

O(lg n) (av) O(lg n) (av) O(lg n) (av)
AVL tree O(lg n) (wc) O(lg n) (wc) O(lg n) (wc)
2-3 tree O(lg n) (wc) O(lg n) (wc) O(lg n) (wc)
Red-Black tree O(lg n) (wc) O(lg n) (wc) O(lg n) (wc)
B-tree O(lg n) (wc) O(lg n) (wc) O(lg n) (wc)
Splay tree O(lg n) (am) O(lg n) (am) O(lg n) (am)

(wc): worst case.
(av): average case.
(am): amortized cost.

Algorithms (Stack, queue and trees) Unit 2.2 Trees Mar. 11, 2019 16 / 29

Binary Trees – Maximum Nodes

Lemma 2.2.12.
The maximum number of nodes on level i of a binary tree is 2i−1. Also, the
maximum number of nodes in a binary tree of depth k is 2k − 1, k > 0.

4

8 9

5

10 11

6

12 13

7

14 15

2 3

1

A full binary tree of depth 4.

Algorithms (Stack, queue and trees) Unit 2.2 Trees Mar. 11, 2019 17 / 29

Complete Binary Trees

A binary tree of depth k has exactly 2k − 1 nodes is called a full binary tree of
depth k.
A full binary tree can be stored into a linear array with 2k − 1 elements. The
root is stored in the first element, followed by its left child, and then the right
child. All the nodes at the same level will be stored sequentially, from left to
right.
A binary tree with n nodes and depth k is complete if and only if its nodes
correspond to the nodes that are numbered one to n in a full binary tree of
depth k.

That is it can be stored in the first n elements of a linear array following the
rules above.
In a complete binary tree, the leaf nodes occur on at most two adjacent levels.

Algorithms (Stack, queue and trees) Unit 2.2 Trees Mar. 11, 2019 18 / 29

Complete Binary Trees and Arrays

Lemma 2.2.13.
If a complete binary tree with n nodes is represented by a linear array, then for any
node with index i, 1 ≤ i ≤ n, we have:

1. parent(i) is at ⌊i/2⌋, if i ̸= 1. When i = 1, i is the root and has no parent.
2. lchild(i) is at 2i, if 2i ≤ n. If 2i > n, i has no left child.
3. rchild(i) is at 2i + 1, if 2i + 1 ≤ n. If 2i + 1 > n, i has no right child.

The linear array storage of complete binary tree is efficient with no waste.
But for general binary tree, there could be spaces wasted, especially for skewed
trees.
Insertion and deletion of nodes are difficult to perform.

Algorithms (Stack, queue and trees) Unit 2.2 Trees Mar. 11, 2019 19 / 29

Priority Queues

Any data structure that supports the operations of search min (or max),
insert, and delete min (or max) is called a priority queue.

Definition 2.2.14. Heap
A max (min) heap is a complete binary tree with the property that the value at
each node is at least as large as (as small as) the values at its children (if they
exist). This property is called the heap property.

By definition, the search time for max (or min) heap is O(1).
But, insert and delete function need to be carefully implemented.

A max heap can be implemented using an array A[1 : n].
The functions insert and delete are illustrated in the following.

Algorithms (Stack, queue and trees) Unit 2.2 Trees Mar. 11, 2019 20 / 29

Heap Insertion

The following algorithm insert an item to a max heap, which is represented
by an array A.

Algorithm 2.2.15. Heap insertion.
// Insert the n-th element, item, to the max heap, A.
// Input: heat array A, int n, item; Output: update A.

1 Algorithm HeapInsert(A,n, item)
2 {
3 i := n ; A[n] := item ; // initialization
4 while ((i > 1) and (A[⌊i/2⌋] < item)) do { // maintain max heap property.
5 A[i] := A[⌊i/2⌋] ; i := ⌊i/2⌋ ; // parent should be larger.
6 }
7 A[i] := item ;
8 }

HeapInsert algorithm takes O(lg n) time in worst case.
Note that for a max heap, the root is always the largest element.

Also for all the subtrees.

Algorithms (Stack, queue and trees) Unit 2.2 Trees Mar. 11, 2019 21 / 29

Heap Insertion, Example

40 35

45

50

70

80

90 40 35

45

50 70

80

90

40 35

45

50 70

90

80

Algorithms (Stack, queue and trees) Unit 2.2 Trees Mar. 11, 2019 22 / 29

Heap Increase Key

For an item in the max heap, some applications may need to increase the
value (priority) of the item.
The following algorithm perform such task and maintain the heap property.
The time complexity if O(lg n).

Algorithm 2.2.16. Heap Increase Key.
// Increase A[i] to key.
// Input: heap array A, int i, new key; Output: updated A.

1 Algorithm HeapIncKey(A, i, key)
2 {
3 if (A[i] > key) error (”new key is smaller”) ;
4 A[i] := key ; // increase key.
5 while (i > 1 and A[⌊i/2⌋] < A[i]) do { // maintain max heap property.
6 t := A[i] ; A[i] := A[⌊i/2⌋] ; A[⌊i/2⌋] := t ; // swapping keys.
7 i := ⌊i/2⌋ ;
8 }
9 }

Algorithms (Stack, queue and trees) Unit 2.2 Trees Mar. 11, 2019 23 / 29

Heap Remove Max

The following algorithm remove the maximum from the max heap and then
calls Heapify to maintain the max heap property.
It can be shown that the complexity is also O(lg n).

Algorithm 2.2.17. Heap Remove Max.
// Remove and return the maximum of the heap array A[1 : n].
// Input: max heap array A, int n; Output: max value and updated A.

1 Algorithm HeapRmMax(A,n)
2 {
3 if (n = 0) then error (” heap is empty! ”) ;
4 x := A[1] ; A[1] := A[n] ;
5 Heapify(A, 1,n − 1) ;
6 return x ;
7 }

Algorithms (Stack, queue and trees) Unit 2.2 Trees Mar. 11, 2019 24 / 29

Heapify – Maintain Heap Property

Algorithm 2.2.18. Maintain heap property
// To enforce max heap property for n-element heap A with root i.
// Input: size n max heap array A, root i; Output: updated A.

1 Algorithm Heapify(A, i,n)
2 {
3 j := 2×i ; item := A[i] ; done := false ; // A[j] is the lchild.
4 while ((j ≤ n) and (not done)) do { // A[j + 1] is the rchild.
5 if ((j < n) and (A[j] < A[j + 1])) then
6 j := j + 1 ; // A[j] is the larger child.
7 if (item > A[j]) then // If larger than children, done.
8 done := true ;
9 else { A[⌊j/2⌋] := A[j] ; j := 2×j ; } // Otherwise, continue.

10 }
11 A[⌊j/2⌋] := item ;
12 }

The algorithm compares the value of the root with its children.
If not larger, moves the larger value to the root and continue downwards.

The time complexity is O(lg n).
Algorithms (Stack, queue and trees) Unit 2.2 Trees Mar. 11, 2019 25 / 29

Heap Sort
The HeapRmMax(A,n) algorithm removes the largest element from the array
A, and then the algorithm Heapify(A, 1,n− 1) adjusts the array A[1 : n− 1]
such that it satisfies the max heap property.
Removing the largest element takes O(1) time, and maintaining the max
heap property takes O(lg n) time.
Thus, one can use these algorithms to perform sort function.
In order to do that, the array needs to satisfy max heap property first.
The Heapify algorithm can also be use for this job.

Starting from the deepest internal nodes down to the root, perform Heapify
on these internal nodes.
Leave nodes have no lchild nor rchild, and thus no need to perform Heapify
on them.
Around n/2 nodes to Heapify and each takes O(lg n) time.
Total complexity is O(n lg n).

After that one can remove the maximum element and then perform Heapify
to maintain the max heap property.

This process repeats until the entire A array is sorted.
Heapify is called n times and each iteration take O(lg n) time.
Total time complexity is O(n lg n).

Algorithms (Stack, queue and trees) Unit 2.2 Trees Mar. 11, 2019 26 / 29

Heap Sort

Algorithm 2.2.19. Heap sort.
// Sort A[1 : n] into nondecreasing order.
// Input: Array A with n elements; Output: A sorted in nondecreasing order.

1 Algorithm HeapSort(A,n)
2 {
3 for i := ⌊n/2⌋ to 1 step −1 do // Initialize A[1 : n] to be a max heap.
4 Heapify(A, i,n) ;
5 for i := n to 2 step −1 do { // Repeat n − 1 times
6 t := A[i] ; A[i] := A[1] ; A[1] := t ; // Move maximum to the end.
7 Heapify(A, 1, i − 1) ; // Then make A[1 : i − 1] a max heap.
8 }
9 }

The time complexity of O(n lg n)
– The best possible for comparison based sorting algorithms.

Algorithms (Stack, queue and trees) Unit 2.2 Trees Mar. 11, 2019 27 / 29

Date Structures for Priority Queue

Priority queues have many applications.
Various data structures that support priority queue.

Data Structure Insert Remove max/min
Min heap O(lg n) (wc) O(lg n) (wc)
Min-max heap O(lg n) (wc) O(lg n) (wc)
Deap O(lg n) (wc) O(lg n) (wc)
Leftist tree O(lg n) (wc) O(lg n) (wc)
Binomial heap O(lg n) (wc) O(lg n) (wc)

O(1) (am) O(lg n) (am)
Fibonacci heap O(lg n) (wc) O(lg n) (wc)

O(1) (am) O(lg n) (am)
2-3 tree O(lg n) (wc) O(lg n) (wc)
Red-Black tree O(lg n) (wc) O(lg n) (wc)

Algorithms (Stack, queue and trees) Unit 2.2 Trees Mar. 11, 2019 28 / 29

Summary

Trees
Binary search tree

Recursive and iterative searches
Insert and delete
Application: dictionary

Heap
Max and min heap
Insert and delete
Application: priority queue
Heap sort

Algorithms (Stack, queue and trees) Unit 2.2 Trees Mar. 11, 2019 29 / 29

