
Unit 2.1 Stack, Queue and Trees

Algorithms

EE/NTHU

Mar. 7, 2019

Algorithms (EE/NTHU) Unit 2.1 Stack, Queue and Trees Mar. 7, 2019 1 / 18

Stacks
A stack is a linear list that can store elements to be fetched later, and the
element fetched from the stack is the last one stored.

Last In First Out (LIFO).
Stack can be implemented using a simple array and an integer that represents
the top position.
Assume the array is stack[1 : n] with n elements and the stack index is top,
which is initialized to 0.
The following algorithm inserts an element into the stack.

Algorithm 2.1.1. Stack Push – Array
// Push an element into the stack.
// Input: item to be inserted; Output: none.

1 Algorithm StkPush(item)
2 {
3 if (top ≥ n) then error (” Stack is full! ”) ;
4 else {
5 top := top + 1 ;
6 stack[top] := item ; // Store item.
7 }
8 }
Algorithms (Stack, queue and trees) Unit 2.1 Stack, Queue and Trees Mar. 7, 2019 2 / 18

Stack — Pop

To fetch an item from the stack.

Algorithm 2.1.2. Stack Pop – Array
// Pop the top element from the stack and return its value.
// Input: none; Output: item on top of the stack.

1 Algorithm StkPop()
2 {
3 if (top < 1) then error (” Stack is empty! ”) ;
4 else {
5 item := stack[top] ;
6 top := top − 1 ;
7 return item ;
8 }
9 }

Both StkPush and StkPop algorithms have the time complexity of O(1)

It is independent of the size of the stack, n.
And also independent of the number of items stored, top.

Algorithms (Stack, queue and trees) Unit 2.1 Stack, Queue and Trees Mar. 7, 2019 3 / 18

Stack — Status Check
Two functions are useful to check the status of the stack.

Algorithm 2.1.3. Stack Empty Check
// Check if the stack is empty.
// Input: none; Output: true if stack empty otherwise false.

1 Algorithm StkEmpty()
2 {
3 if (top = 0) then return true ;
4 else return false ;
5 }

Algorithm 2.1.4. Stack Full Check
// Check if the stack is Full.
// Input: none; Output: true if stack full otherwise false.

1 Algorithm StkFull()
2 {
3 if (top = n) then return true ;
4 else return false ;
5 }

Algorithms (Stack, queue and trees) Unit 2.1 Stack, Queue and Trees Mar. 7, 2019 4 / 18

Stack — Dynamically Allocated Array
The array stack can be either a static array or a dynamically allocated array.
Using static array, then the number of items to be stored is limited by the
size, n, of the array.
Using a dynamically allocated array, the array size, n, can be enlarged and
then employ the realloc function to adjust the stack space.

This is more flexible to handle problems in different sizes.

Stack can also be implemented using linked list
Assuming NODE is a structure defined as

struct NODE {
TYPE data; // for data storage
struct NODE *link; // pointer to the next node

}

NODE pointer LStack is now the linked list to store the items.
LStack is initialized to NULL.

The variable top is no longer needed.
Algorithms (Stack, queue and trees) Unit 2.1 Stack, Queue and Trees Mar. 7, 2019 5 / 18

Stacks in Linked List
Algorithm 2.1.5. Stack Push – Linked List

// Push an element into the stack.
// Input: item to be inserted; Output: none.

1 Algorithm LStkPush(item)
2 {
3 temp := new NODE ;
4 temp → data := item ; temp → link := LStack ;
5 LStack := temp ;
6 }

Algorithm 2.1.6. Stack Pop – Linked List
// Pop the top element from the stack and return its value.
// Input: none; Output: item on top of the stack.

1 Algorithm LStkPop()
2 {
3 if (LStack = NULL) then error (” Stack is empty! ”) ;
4 else {
5 item := LStack → data ; temp := LStack ; LStack := temp → link ;
6 free temp ; return item ;
7 }
8 }
Algorithms (Stack, queue and trees) Unit 2.1 Stack, Queue and Trees Mar. 7, 2019 6 / 18

Linked List Stack Status Check

With enough computer resources, stack implemented using linked list should
not have stack full issue.

Thus, no StkFull check is needed.
Stack empty check is equivalent to check if LStack is NULL.
Again, either LStkPush or LStkPop algorithm is of O(1) time complexity.

Independent to stack size or the number of items stored.
The space complexity of the array stack is Θ(n), where n is the size of the
array.
The space complexity of linked list stack is Θ(m), where m is the number of
items stored.
The linked list stack appears to be more memory efficient, since m ≤ n.

Algorithms (Stack, queue and trees) Unit 2.1 Stack, Queue and Trees Mar. 7, 2019 7 / 18

Queue
Queue is another linear list to store data, but the data fetched is the first one
stored.

First in First out (FIFO).
Queue can also be implemented using simple array.
Assume the array is Q[1 : n] with n elements.

Two integer variables: head for the front of the queue, and tail for the rear of
the queue.

The following algorithm stores an item onto the queue.
Algorithm 2.1.7. Enqueu.

// Insert the item into the queue.
// Input: item to be inserted; Output: none.

1 Algorithm Enqueue(item)
2 {
3 tail := (tail + 1) mod n ;
4 if (head = tail) then error (” Queue is full! ”) ;
5 else {
6 Q[tail] := item ;
7 }
8 }

Algorithms (Stack, queue and trees) Unit 2.1 Stack, Queue and Trees Mar. 7, 2019 8 / 18

Queue, II
Algorithm 2.1.8. Queue Empty.

// Check if the queue is empty or not.
// Input: none; Output: true if queue is empty otherwise false.

1 Algorithm EmptyQ()
2 {
3 if (head = tail) then return true ;
4 else return false ;
5 }

Algorithm 2.1.9. Dequeue.
// Retrieve the item from the queue.
// Input: none; Output: the first item of the queue.

1 Algorithm Dequeue()
2 {
3 if EmptyQ() then error (” Queue is empty! ”) ;
4 else {
5 head := (head + 1) mod n ;
6 item := Q[head] ;
7 return item ;
8 }
9 }
Algorithms (Stack, queue and trees) Unit 2.1 Stack, Queue and Trees Mar. 7, 2019 9 / 18

Stack and Queue

Time complexities of both Enqueue() and Dequeue() algorithms are O(1).
Space complexities are Θ(n), n is the size of the array Q.

Queue also can be implemented using linked list

Both stack and queue are useful data structures to store temporary data.
Storing and retrieving data are very efficient.

Stack is Last In First Out
A simple array with an addition variable is sufficient.

Queue is First In First Out
An simple array with two additional variables.
The array elements are used in a circular fashion.
Enlarging queue size is a little more complicated than stack.

Both can also be implemented using linked lists.
Space utilization is more efficient.
Time complexity remains the same.

Algorithms (Stack, queue and trees) Unit 2.1 Stack, Queue and Trees Mar. 7, 2019 10 / 18

Celebrity Problem

A group of n persons have been gathered. There might be a celebrity in the
group such that everyone knows the celebrity while the celebrity knows no
one. Is there a way to identify the celebrity quickly?
The relationship of the persons of the group can be represented by an n × n
matrix, A, such that if person i knows person j then A[i, j] = 1, otherwise
A[i, j] = 0. For simplicity, A[i, i] = 1 is also assumed.
If person k is the celebrity, then we have A[i, k] = 1, 1 ≤ i ≤ n, and
A[k, j] = 0, 1 ≤ j ≤ n and j ̸= k.

A[i, k] = 1, 1 ≤ i ≤ n, (2.1.1)
A[k, j] = 0, 1 ≤ j ≤ n and j ̸= k. (2.1.2)

The brute force approach is to check all A[i, j], 1 ≤ i, j ≤ n against the
equations (2.1.1) and (2.1.2).
It is apparent the brute force approach is O(n2).

Algorithms (Stack, queue and trees) Unit 2.1 Stack, Queue and Trees Mar. 7, 2019 11 / 18

Celebrity Problem, II
An alternative to identifying the celebrity is

Algorithm 2.1.10. Celebrity Identification – Generic Algorithm
// Given n × n matrix A find the celebrity satisfies Eqs (2.1.1) and (2.1.2).
// Input: Array A, int n; ; Output: Celebrity k, or ”None”.

1 Algorithm Celebrity(A,n)
2 {
3 Form a set S := {1, 2, · · · ,n} ; // S initialized to n elements.
4 while |S| > 1 do { // S has more then one element.
5 choose two elements u, v ∈ S ;
6 if A[u, v] = 1 then S := S − {u} ; // Remove u.
7 else S := S − {v } ; // Remove v.
8 }
9 let k be the only element in S ; // k is the candidate for celebrity.

10 for i := 1 to n do // Verify k is the celebrity.
11 if i ̸= k then {
12 if A[i, k] ̸= 1 or A[k, i] ̸= 0 then return ”None” ;
13 }
14 return k ;
15 }

Algorithms (Stack, queue and trees) Unit 2.1 Stack, Queue and Trees Mar. 7, 2019 12 / 18

Celebrity Problem, III

In Algorithm (2.1.10) line 6, A[u, v] is checked.
If A[u, v] = 1 then u cannot be the celebrity therefore it is removed from set S;
On the other hand, if A[u, v] = 0 then v is not the celebrity and is removed.

Therefore, each iteration of the loop (lines 4–8) one element is removed from
S.

After n − 1 iterations, one element is left and it should be a candidate for the
celebrity.
The complexity is Θ(n).

Lines 10–13 verify if the candidate is, indeed, the celebrity.
The complexity is Θ(n).

Thus, the total complexity is Θ(n).
In fact, matrix A is accessed 3(n − 1) times over all.

Algorithms (Stack, queue and trees) Unit 2.1 Stack, Queue and Trees Mar. 7, 2019 13 / 18

Celebrity Identification using Array
Algorithm (2.1.10) can be implemented using array for S as

Algorithm 2.1.11. Celebrity Identification – Using Array
// Given n × n matrix A find the celebrity satisfies Eqs (2.1.1) and (2.1.2).
// Input: Array A, int n; ; Output: Celebrity k, or ”None”.

1 Algorithm Celebrity_A(A,n)
2 {
3 for i := 1 to n do S[i] := i ; // Initialize array S.
4 u := 1 ; v := n ;
5 while u < v do { // S has more than one element left.
6 if A[u, v] = 1 then u := u + 1 ; // Remove u.
7 else v := v − 1 ; // Remove v.
8 }
9 k := u ; // k is the candidate for celebrity.

10 for i := 1 to n do // Verify k is the celebrity.
11 if i ̸= k then {
12 if A[i, k] ̸= 1 or A[k, i] ̸= 0 then return ”None” ;
13 }
14 return k ;
15 }

Algorithms (Stack, queue and trees) Unit 2.1 Stack, Queue and Trees Mar. 7, 2019 14 / 18

Celebrity Identification using Stack
Algorithm (2.1.10) can be implemented using stack for S as

Algorithm 2.1.12. Celebrity Identification – Using Stack
// Given n × n matrix A find the celebrity satisfies Eqs (2.1.1) and (2.1.2).
// Input: Array A, int n; ; Output: Celebrity k, or ”None”.

1 Algorithm Celebrity_S(A,n)
2 {
3 for i := 1 to n do StkPush(i) ; // Initialize stack.
4 for i := 1 to n − 1 do // Repeat n − 1 times
5 u := StkPop() ; v := StkPop() ;
6 if A[u, v] = 1 then StkPush(v) ; // Remove u.
7 else StkPush(u) ; // Remove v.
8 }
9 k := StkPop() ; // k is the candidate for celebrity.

10 for i := 1 to n do // Verify k is the celebrity.
11 if i ̸= k then {
12 if A[i, k] ̸= 1 or A[k, i] ̸= 0 then return ”None” ;
13 }
14 return k ;
15 }

Algorithms (Stack, queue and trees) Unit 2.1 Stack, Queue and Trees Mar. 7, 2019 15 / 18

Celebrity Identification using Queue
Algorithm (2.1.10) can be implemented using queue for S as

Algorithm 2.1.13. Celebrity Identification – Using Queue
// Given n × n matrix A find the celebrity satisfies Eqs (2.1.1) and (2.1.2).
// Input: Array A, int n; ; Output: Celebrity k, or ”None”.

1 Algorithm Celebrity_Q(A,n)
2 {
3 for i := 1 to n do Enqueue(i) ; // Initialize stack.
4 for i := 1 to n − 1 do // Repeat n − 1 times
5 u := Dequeue() ; v := Dequeue() ;
6 if A[u, v] = 1 then Enqueue(v) ; // Remove u.
7 else Enqueue(u) ; // Remove v.
8 }
9 k := Dequeue() ; // k is the candidate for celebrity.

10 for i := 1 to n do // Verify k is the celebrity.
11 if i ̸= k then {
12 if A[i, k] ̸= 1 or A[k, i] ̸= 0 then return ”None” ;
13 }
14 return k ;
15 }

Algorithms (Stack, queue and trees) Unit 2.1 Stack, Queue and Trees Mar. 7, 2019 16 / 18

Celebrity Identification Implementations

Algorithms Celebrity_A (2.1.11), Celebrity_S (2.1.12) and Celebrity_Q
(2.1.13) implement Algorithm Celebrity_G (2.1.10) using different data
structures for S.
All of them have the same time complexity Θ(n).
In Algorithm Celebrity_A (2.1.11) if u or v is the candidate, then it is not
changed for the rest of the iterations.
In Algorithm Celebrity_S (2.1.12) if the candidate has been popped from
the stack, it also remains on top of the stack for the rest of the iterations.
In Algorithm Celebrity_Q (2.1.13), however, the candidate is enqueued to
the end of the queue.

The candidate is evaluated at most ⌊lg n⌋ times.

Algorithms (Stack, queue and trees) Unit 2.1 Stack, Queue and Trees Mar. 7, 2019 17 / 18

Summary

Stacks and queues
Insert, delete and status check
Array and linked list representations

Celebrity problem
With array
With stack
With queue

Algorithms (Stack, queue and trees) Unit 2.1 Stack, Queue and Trees Mar. 7, 2019 18 / 18

