Unit 2.1 Stack, Queue and Trees

Algorithms

EE/NTHU

Mar. 7, 2019

Algorithms (EE/NTHU) Unit 2.1 Stack, Queue and Trees Mar. 7, 2019 1/18

Stacks

@ A stack is a linear list that can store elements to be fetched later, and the
element fetched from the stack is the last one stored.
o Last In First Out (LIFO).

@ Stack can be implemented using a simple array and an integer that represents
the top position.

@ Assume the array is stack[l : n| with n elements and the stack index is top,
which is initialized to 0.

@ The following algorithm inserts an element into the stack.

Algorithm 2.1.1. Stack Push — Array

// Push an element into the stack.
// Input: item to be inserted; Output: none.
1 Algorithm StkPush(item)
2 {
3 if (top > n) then error (” Stack is fulll ”);
4 else {
5 top := top +1;
6 stack[top] := item; // Store item.
7}
8}

4
Algorithms (Stack, queue and trees) Unit 2.1 Stack, Queue and Trees Mar. 7, 2019 2/18

Stack — Pop

@ To fetch an item from the stack.

Algorithm 2.1.2. Stack Pop — Array

// Pop the top element from the stack and return its value.
// Input: none; Output: item on top of the stack.

1 Algorithm StkPop()

2 {

3 if (top < 1) then error (” Stack is empty! 7);

4 else {

5 item := stack[top] ;

6 top := top — 1;

7 return item ;

s}

9}

@ Both StkPush and StkPop algorithms have the time complexity of O(1)

o It is independent of the size of the stack, n.
e And also independent of the number of items stored, top.

Algorithms (Stack, queue and trees) Unit 2.1 Stack, Queue and Trees Mar. 7, 2019 3/18

Stack — Status Check

@ Two functions are useful to check the status of the stack.

Algorithm 2.1.3. Stack Empty Check

// Check if the stack is empty.
// Input: none; Output: true if stack empty otherwise false.
1 Algorithm StkEmpty()

2 {
3 if (top = 0) then return true ;
4 else return false ;

5}

Algorithm 2.1.4. Stack Full Check

// Check if the stack is Full.
// Input: none; Output: true if stack full otherwise false.
1 Algorithm StkFull()

2 {
3 if (top = n) then return true ;
4 else return false ;

5}

v

Algorithms (Stack, queue and trees) Unit 2.1 Stack, Queue and Trees Mar. 7, 2019 4/18

Stack — Dynamically Allocated Array

@ The array stack can be either a static array or a dynamically allocated array.
@ Using static array, then the number of items to be stored is limited by the
size, n, of the array.

@ Using a dynamically allocated array, the array size, n, can be enlarged and
then employ the realloc function to adjust the stack space.

e This is more flexible to handle problems in different sizes.

@ Stack can also be implemented using linked list
@ Assuming NODE is a structure defined as

struct NODE {
TYPE data; // for data storage
struct NODE *link; // pointer to the next node

+

@ NODE pointer LStack is now the linked list to store the items.
e LStack is initialized to NULL.

@ The variable top is no longer needed.

Algorithms (Stack, queue and trees) Unit 2.1 Stack, Queue and Trees Mar. 7, 2019 5/18

Stacks in Linked List

Algorithm 2.1.5. Stack Push — Linked List

// Push an element into the stack.
// Input: item to be inserted; Output: none.
1 Algorithm LStkPush(item)

2 {

3 temp := new NODE;

4 temp — data := item; temp — link := LStack;
5 LStack := temp;

6 }

Algorithm 2.1.6. Stack Pop — Linked List

// Pop the top element from the stack and return its value.
// Input: none; Output: item on top of the stack.
1 Algorithm LStkPop()

2 {
3 if (LStack = NULL) then error (” Stack is empty! 7);

4 else {

5 item := LStack — data; temp := LStack; LStack := temp — link;
6 free temp; return item ;

7}

8

Algorithms (Stack, queue and trees) Unit 2.1 Stack, Queue and Trees Mar. 7, 2019 6/18

Linked List Stack Status Check

@ With enough computer resources, stack implemented using linked list should
not have stack full issue.

@ Thus, no StkFull check is needed.
@ Stack empty check is equivalent to check if LStack is NULL.
@ Again, either LStkPush or LStkPop algorithm is of O(1) time complexity.

e Independent to stack size or the number of items stored.

@ The space complexity of the array stack is ©(n), where n is the size of the
array.

@ The space complexity of linked list stack is ©(m), where m is the number of
items stored.

@ The linked list stack appears to be more memory efficient, since m < n.

Algorithms (Stack, queue and trees) Unit 2.1 Stack, Queue and Trees Mar. 7, 2019 7/18

Queue

@ Queue is another linear list to store data, but the data fetched is the first one
stored.
e First in First out (FIFO).
@ Queue can also be implemented using simple array.
@ Assume the array is Q[1 : n] with n elements.
e Two integer variables: head for the front of the queue, and tail for the rear of
the queue.

@ The following algorithm stores an item onto the queue.

Algorithm 2.1.7. Enqueu.

// Insert the item into the queue.
// Input: item to be inserted; Output: none.
1 Algorithm Enqueue(item)
2 {
3 tail ;== (tail+ 1) mod n;
4 if (head = tail) then error (” Queue is fulll ”);
5 else {
6 Q[tail] := item;
7 }
8)

v

Algorithms (Stack, queue and trees) Unit 2.1 Stack, Queue and Trees Mar. 7, 2019 8/18

Algorithm 2.1.8. Queue Empty.

// Check if the queue is empty or not.
// Input: none; Output: true if queue is empty otherwise false.
1 Algorithm EmptyQ()
2 {
3 if (head = tail) then return true ;
4 else return false ;

5}

Algorithm 2.1.9. Dequeue.

// Retrieve the item from the queue.

// Input: none; Output: the first item of the queue.
1 Algorithm Dequeue()
2 {
3 if EmptyQ() then error (” Queue is empty! 7);
4 else {
5 head := (head + 1) mod n;
6 item := Qlhead];
7
8

return item ;

9 }

Algorithms (Stack, queue and trees) Unit 2.1 Stack, Queue and Trees Mar. 7, 2019 9/18

Stack and Queue

e Time complexities of both Enqueue() and Dequeue() algorithms are O(1).
e Space complexities are ©(n), n is the size of the array Q.

@ Queue also can be implemented using linked list

@ Both stack and queue are useful data structures to store temporary data.
e Storing and retrieving data are very efficient.

@ Stack is Last In First Out
e A simple array with an addition variable is sufficient.

@ Queue is First In First Out

e An simple array with two additional variables.
e The array elements are used in a circular fashion.
e Enlarging queue size is a little more complicated than stack.

@ Both can also be implemented using linked lists.

e Space utilization is more efficient.
e Time complexity remains the same.

Algorithms (Stack, queue and trees) Unit 2.1 Stack, Queue and Trees Mar. 7, 2019 10/18

Celebrity Problem

@ A group of n persons have been gathered. There might be a celebrity in the
group such that everyone knows the celebrity while the celebrity knows no
one. Is there a way to identify the celebrity quickly?

@ The relationship of the persons of the group can be represented by an n x n
matrix, A, such that if person ¢ knows person j then A[i, j] = 1, otherwise
Ali, 7] = 0. For simplicity, A[4,7] = 1 is also assumed.

@ If person k is the celebrity, then we have A[7, k]l =1, 1 < i< mn, and
Alkj]=0,1<j<mandj#k

Alikl=1, 1<i<n, (2.1.1)
Alk,j] =0, 1<j<nandj#k (2.1.2)

@ The brute force approach is to check all A[i,j], 1 < 4,7 < n against the
equations (2.1.1) and (2.1.2).

e It is apparent the brute force approach is O(n?).

Algorithms (Stack, queue and trees) Unit 2.1 Stack, Queue and Trees Mar. 7, 2019 11/18

Celebrity Problem, Il

@ An alternative to identifying the celebrity is
Algorithm 2.1.10. Celebrity Identification — Generic Algorithm
// Given n x n matrix A find the celebrity satisfies Eqs (2.1.1) and (2.1.2).
// Input: Array A, int n;; Output: Celebrity k, or "None".

1 Algorithm Celebrity(4, n)

2 {

3 Form aset S:={1,2,---,n}; // Sinitialized to n elements.

4 while |S| > 1 do { // S has more then one element.

5 choose two elements u, v € S;

6 if Afu,v] =1 then §:= S5 — {u}; // Remove w.

7 else S:= S—{v}; // Remove v.

8 }

9 let k be the only element in S; // kis the candidate for celebrity.
10 for i:=1 to ndo // Verify k is the celebrity.
11 if ¢ # k then {
12 if A[i,k] # 1 or A[k,] # O then return ”"None”;
13 }
14 return k;
15 }

v

Algorithms (Stack, queue and trees) Unit 2.1 Stack, Queue and Trees Mar. 7, 2019 12/18

Celebrity Problem, Il

@ In Algorithm (2.1.10) line 6, A[u, v] is checked.

o If A[u,v] =1 then u cannot be the celebrity therefore it is removed from set S;
o On the other hand, if AJu,v] =0 then v is not the celebrity and is removed.

@ Therefore, each iteration of the loop (lines 4-8) one element is removed from
S.

o After n — 1 iterations, one element is left and it should be a candidate for the
celebrity.
o The complexity is ©(n).

@ Lines 10-13 verify if the candidate is, indeed, the celebrity.
e The complexity is ©(n).
@ Thus, the total complexity is ©(n).

@ In fact, matrix A is accessed 3(n — 1) times over all.

Algorithms (Stack, queue and trees) Unit 2.1 Stack, Queue and Trees Mar. 7, 2019 13/18

Celebrity Identification using Array

@ Algorithm (2.1.10) can be implemented using array for S as

Algorithm 2.1.11. Celebrity Identification — Using Array

// Given n X n matrix A find the celebrity satisfies Eqs (2.1.1) and (2.1.2).
// Input: Array A, int n;; Output: Celebrity k, or "None".
1 Algorithm Celebrity_A(A, n)

3 for ¢:=1 to ndo §[i] := ¢; // Initialize array S.

4 u:=1; v:=n;

5 while u < vdo { // S has more than one element left.
6 if Alu,v] =1 then u:=u+1; // Remove u.

7 else v:=v—1; // Remove v.

8

9

}
k:= u; // kis the candidate for celebrity.
10 for i:=1 to ndo // Verify k is the celebrity.
11 if i# k then {
12 if A[i, k] # 1 or A[k,] # O then return ”"None”;
13 }
14 return k;
15 }

v

Mar. 7, 2019 14 /18

Algorithms (Stack, queue and trees) Unit 2.1 Stack, Queue and Trees

Celebrity ldentification using Stack

@ Algorithm (2.1.10) can be implemented using stack for S as

Algorithm 2.1.12. Celebrity Identification — Using Stack

// Given n x n matrix A find the celebrity satisfies Eqs (2.1.1) and (2.1.2).
// Input: Array A, int n;; Output: Celebrity k£, or "None”.
1 Algorithm Celebrity_S(A, n)
2 {
3 for i:=1 to n do StkPush(7); // Initialize stack.
4 for i:=1ton—1do // Repeat n— 1 times
5 u := StkPop(); v:= StkPop();
6 if A[u,v] =1 then StkPush(v); // Remove w.
7 else StkPush(u); // Remove w.
8 }
9 k := StkPop(); // k is the candidate for celebrity.
10 for i:=1 to ndo // Verify k is the celebrity.
11 if ¢ # k then {
12 if A[i, k] # 1 or A[k,] # O then return ”"None”;
13 }
14 return k;

Algorithms (Stack, queue and trees) Unit 2.1 Stack, Queue and Trees Mar. 7, 2019 15/18

Celebrity ldentification using Queue

@ Algorithm (2.1.10) can be implemented using queue for S as
Algorithm 2.1.13. Celebrity Identification — Using Queue
// Given n X n matrix A find the celebrity satisfies Eqs (2.1.1) and (2.1.2).
// Input: Array A, int n;; Output: Celebrity k£, or "None”.
1 Algorithm Celebrity_Q(A, n)
2 {
3 for i:=1 to n do Enqueue(s); // Initialize stack.
4 for i:=1ton—1do // Repeat n— 1 times
5 u := Dequeue() ; v := Dequeue();
6 if A[u,v] =1 then Enqueue(v); // Remove w.
7 else Enqueue(u); // Remove v.
8 }
9 k := Dequeue(); // kis the candidate for celebrity.
10 for i:=1 to ndo // Verify k is the celebrity.
11 if i # k then {
12 if A[i, k] # 1 or A[k,] # O then return "None”;
13 }
14 return k;
15 }

Algorithms (Stack, queue and trees) Unit 2.1 Stack, Queue and Trees Mar. 7, 2019 16 /18

Celebrity ldentification Implementations

@ Algorithms Celebrity_A (2.1.11), Celebrity_S (2.1.12) and Celebrity_Q
(2.1.13) implement Algorithm Celebrity_G (2.1.10) using different data
structures for S.

@ All of them have the same time complexity ©(n).

@ In Algorithm Celebrity_A (2.1.11) if u or v is the candidate, then it is not
changed for the rest of the iterations.

@ In Algorithm Celebrity_S (2.1.12) if the candidate has been popped from
the stack, it also remains on top of the stack for the rest of the iterations.

@ In Algorithm Celebrity_Q (2.1.13), however, the candidate is enqueued to
the end of the queue.

e The candidate is evaluated at most |lgn| times.

Algorithms (Stack, queue and trees) Unit 2.1 Stack, Queue and Trees Mar. 7, 2019 17 /18

Summary

@ Stacks and queues

o Insert, delete and status check
e Array and linked list representations

@ Celebrity problem

e With array
e With stack
o With queue

