
Unit 1.4 Mathematical Backgrounds

Algorithms

EE/NTHU

Mar. 4, 2019

Algorithms (EE/NTHU) Unit 1.4 Mathematical Backgrounds Mar. 4, 2019 1 / 11

Mathematical Backgrounds
Monotonicity

A function f(n) is monotonically increasing if m ≤ n implies f(m) ≤ f(n).
A function f(n) is monotonically decreasing if m ≤ n implies f(m) ≥ f(n).
A function f(n) is strictly increasing if m < n implies f(m) < f(n).
A function f(n) is strictly decreasing if m < n implies f(m) > f(n).

Floor and ceiling functions
For any real number x, we denote the greatest integer less than or equal to x
by ⌊x⌋ and the least integer greater than or equal to x by ⌈x⌉.
For any real x

x − 1 < ⌊x⌋ ≤ x ≤ ⌈x⌉ < x + 1. (1.4.1)
For any integer n,

⌈n/2⌉+ ⌊n/2⌋ = n. (1.4.2)
For any real number x ≥ 0 and integers m,n > 0,

⌈⌈x/m⌉/n⌉ = ⌈x/(mn)⌉, (1.4.3)
⌊⌊x/m⌋/n⌋ = ⌊x/(mn)⌋, (1.4.4)

⌈m/n⌉ ≤ (m + (n − 1))/n, (1.4.5)
⌊m/n⌋ ≤ (m + (n − 1))/n. (1.4.6)

The floor function ⌊x⌋ is monotically increasing, so is the ceiling function ⌈x⌉.
Algorithms (Background) Unit 1.4 Mathematical Backgrounds Mar. 4, 2019 2 / 11

Mathematical Backgrounds, II

Modular arithmetic
For any integer m and positive integer n, the value m mod n is the remainder
(or residue) of the quotient m/n:

m mod n = m − ⌊m/n⌋n. (1.4.7)

If (a mod n) = (b mod n), we write a ≡ b (mod n) and say a is equivalent to
b, modulo n.
a ≡ b (mod n) if a and b have the same remainder when divided by n.
a ≡ b (mod n) if and only if n is a divisor of b − a.
We write a ̸≡ b (mod n) if a is not equivalent to b, modulo n.

Algorithms (Background) Unit 1.4 Mathematical Backgrounds Mar. 4, 2019 3 / 11

Mathematical Backgrounds, III

Polynomials
Given a nonnegative integer n, a polynomial in x of degree n is a function
p(x) of the form

p(x) =
n∑

k=0

akxk, (1.4.8)

where the constants a0, a1, · · · , an are the coefficients of the polynomial and
an ̸= 0.
A polynomial is asymptotically positive if and only if an > 0.
For an asymptotically positive polynomial p(x) of degree n, we have
p(x) = Θ(xn).
For any real constant c >= 0 then function xc is monotonically increasing,
and for any real constant c <= 0, the function xc is monotonically decreasing.
We say that a function f(x) is polynomial bounded if f(x) = O(xk) for some
constant k.

Algorithms (Background) Unit 1.4 Mathematical Backgrounds Mar. 4, 2019 4 / 11

Mathematical Backgrounds, IV
Exponentials

For all real a > 0, m and n, we have the following identities:
a0 = 1, (1.4.9)
a1 = a, (1.4.10)

a−1 = 1/a, (1.4.11)
(am)n = amn, (1.4.12)
(am)n = (an)m, (1.4.13)

am · an = am+n. (1.4.14)
For all n and a ≥ 1, the function an is monotonically increasing in n. When
convenient, we assume 00 = 1.
For all real constants a and b such that a > 1,

lim
n→∞

nb

an = 0, (1.4.15)

thus
nb = o(an). (1.4.16)

That is any exponential function with a base strictly greater than 1 grows
faster than any polynomial function.
Algorithms (Background) Unit 1.4 Mathematical Backgrounds Mar. 4, 2019 5 / 11

Mathematical Backgrounds, V

Let e be the base of the natural logarithm function, e = 2.71828 · · · , we have
for all real x

ex = 1 + x +
x2
2!

+
x3
3!

+ · · · =
∞∑

k=0

x k

k ! . (1.4.17)

For all real x, we have the inequality

ex ≥ 1 + x, (1.4.18)

withe the equality holds only when x = 0.
When |x| ≤ 1, we have the approximation

1 + x ≤ ex ≤ 1 + x + x2. (1.4.19)

Considering x → 0, we have

ex = 1 + x +Θ(x2). (1.4.20)

For all real x, we have
lim

n→∞
(1 +

x
n)n = ex. (1.4.21)

Algorithms (Background) Unit 1.4 Mathematical Backgrounds Mar. 4, 2019 6 / 11

Mathematical Backgrounds, VI
Logarithms

The following notations are adopted
lg n = log2 n (binary logarithm),
ln n = loge n (natural logarithm),

lgk n = (lg n)k (exponentiation),
lg lg n = lg(lg n) (composition).

We also adopt the convention that the logarithm functions only apply to the
next term in the formula, so that lg n + k = (lg n) + k.
If b > 1 is a constant, then for n > 0 the function logb n is strictly increasing.
For all a > 0, b > 0, c > 0 and n,

a = blogb a,
logc(ab) = logc a + logc b,

logb an = n logb a,
logb a =

logc a
logc b ,

logb(1/a) = − logb a,
logb a =

1

loga b ,

alogb c = clogb a,

where the base of each logarithm is not 1.
Algorithms (Background) Unit 1.4 Mathematical Backgrounds Mar. 4, 2019 7 / 11

Mathematical Backgrounds, VII

When |x| < 1,
ln(1 + x) = x − x2

2
+

x3
3

− x4
4

+
x5
5

− · · · . (1.4.22)

For x > −1, x
1 + x ≤ ln(1 + x) ≤ x. (1.4.23)

where the equality holds only for x = 0.
A function f(n) is polylogarithmically bounded if f(n) = O(lgk n) for some
constant k. Since

lim
n→∞

lgb n
(2a)lg n = lim

n→∞
lgb n
na = 0, (1.4.24)

we have
lgb n = o(na) (1.4.25)

for any constant a > 0. Thus, any positive polynomial function grows faster
than any polylogarithmic function.
Change the base of a logarithm from one constant to another changes the
value by a constant factor, so in conjunction with the O-notation, the use of
log, or lg or log2 are equivalent.
Algorithms (Background) Unit 1.4 Mathematical Backgrounds Mar. 4, 2019 8 / 11

Mathematical Backgrounds, VIII
Factorials

The factorial function, n!, is define for integers n ≥ 0 as

n! =
{

1 if n = 0,
n · (n − 1)! if n > 0.

(1.4.26)

Thus, n! = 1 · 2 · 3 · · ·n .
A weak upper bound on the factorial function is n! ≤ nn.
Stirling’s approximation

n! =
√
2πn

(n
e

)n (
1 + Θ(

1

n)
)
. (1.4.27)

Thus
n! = o(nn),
n! = ω(2n),

lg(n!) = Θ(n lg n).
For n ≥ 1

n! =
√
2πn

(n
e

)n
eαn , (1.4.28)

where
1

12n + 1
< αn <

1

12n .

Algorithms (Background) Unit 1.4 Mathematical Backgrounds Mar. 4, 2019 9 / 11

Mathematical Backgrounds, IX
Function iteration

The notation f (i)(x) is used to denote function f(x) iteratively applied i times
to an initial value of x.
That is, let f(x) be a function over the reals. Given a nonnegative integer i,
define

f (i)(x) =
{

n if i = 0,

f (f (i−1)(x)) if i > 0.
(1.4.29)

For example, if f(x) = 2x, then f (i)(x) = 2ix.
Note the difference of f (i)(x) and f i(x), which is f(x) raised to the i th power.

Iterative logarithm function
The iterative logarithm function is defined as

lg∗ x = min{i ≥ 0| lg(i) x ≤ 1}. (1.4.30)
Example lg∗ 2 = 1,

lg∗ 4 = 2,

lg∗ 16 = 3,

lg∗ 65536 = 4,

lg∗ 265536 = 5.

The iterative logarithm function is a very slow growing function.
Algorithms (Background) Unit 1.4 Mathematical Backgrounds Mar. 4, 2019 10 / 11

Mathematical Backgrounds, X
Fibonacci numbers

The Fibonacci numbers are defined as
F0 = 0,
F1 = 1,
Fi = Fi−1 + Fi−2 for i ≥ 2.

(1.4.31)

The first few Fibonacci numbers are
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, · · · .

The Fibonacci number is related to the golden ratio, ϕ, and its conjugate, ϕ̂,
as

Fi =
ϕi − ϕ̂i
√
5

. (1.4.32)

And,
ϕ =

1 +
√
5

2
= 1.61803 · · · ,

ϕ̂ =
1−

√
5

2
= −0.61803 · · · .

(1.4.33)

It can be shown that
Fi =

⌊
ϕi
√
5

⌋
. (1.4.34)

Thus, the Fibonacci numbers grow exponentially.
Algorithms (Background) Unit 1.4 Mathematical Backgrounds Mar. 4, 2019 11 / 11

