Unit 1.3 Analysis Il

Algorithms

EE/NTHU

Mar. 4, 2019

Algorithms (EE/NTHU) Unit 1.3 Analysis Il Mar. 4, 2019 1/21

Asymptotic Notations

@ Computational complexities are usually denoted using the following notations.

Definition 1.3.1. Big O.

The function f(n) = O(g(n)) if and only if there are positive constants ¢ and ng
such that f(n) < c¢- g(n) for all n, n > ng.

@ f(n) is bound above by g(n).
@ Examples

o 3n+2=0(n),
e 10007 + 100n — 6 = O(n?),
o 6-2"4 n? = 0O(2").
O(1) means the complexity is constant.
O(n) is called linear.
O(n?) is called quadratic.
(
(

O(n?) is called cubic.

O(2™) is called exponential.

Algorithms (Analysis II) Unit 1.3 Analysis I Mar. 4, 2019 2/21



Asymptotic Notations, |l

Theorem 1.3.2. Polynomial and O.

If f(n) = amn™+---+ axn+ ag, then f(n) = O(n™).

v

Proof.
m .
f(n) <> Jain’
=0
m .
:nmz Iai‘nz—m
=0

m
Snmz | ai for n > 1.
=0

Therefore, f(n) < e¢n™ for n>1and c= > |ay,
and by definition, f(n) = O(n™).

@ The following complexities are seen more often: O(1), O(lgn), O(n),
O(nlgn), O(n?), O(n?), O(2™).

Algorithms (Analysis Il)

Unit 1.3 Analysis Il Mar. 4, 2019 3/21

Asymptotic Notations, |l|

Definition 1.3.3. Omega.

The function f(n) = Q(g(n)) if and only if there are positive constants ¢ and ng
such that f(n) > c¢- g(n) for all n, n > ng.

@ f(n) is bounded below by ¢(n).
@ Example

e 3n+2 > 3n for n> 0, thus 3n+ 2 = Q(n),

o 10n* +4n+ 2 > 10n? for n > 0, thus 10n? + 4n + 2 = Q(n?),
o 6-2"+n? =Q(2").

o Note that 10n2 4+ 4n+2 = Q(n) as well, but it is less informative to write so.
@ Thus, we usually take the highest order g (n) in this notation.

Theorem 1.3.4.

If f(n) = apmn™ + -+ axn+ ag and a,, > 0, then f(n) = Q(n™).

Algorithms (Analysis Il)

Unit 1.3 Analysis Il

Mar. 4, 2019  4/21



Asymptotic Notations, |V

Definition 1.3.5. Theta.

The function f(n) = ©(g(n)) if and only if there are positive constants ¢;, ¢z and
ng such that ¢1 - g(n) < f(n) < cg-g(n) for all n > ng.

e f(n) =0O(g(n)) if and only if g(n) is both an upper and lower bound on f(n).
@ Example

3n+2=0(n),

101 + 4n+ 2 = O(n?),

6-2" 4+ n* = O(2").

10lgn+ 4 = O(Ilgn).

Theorem 1.3.6.

Given two functions f(n) and g (n), we have f(n) = ©(g(n)) if and only if
f(n) = O(g(n)) and f(n) = Q(g(n)).

Theorem 1.3.7.

If f(n) = amn™+---+ an+ ag and a,, > 0, then f(n) = O(n™).

Algorithms (Analysis Il) Unit 1.3 Analysis Il Mar. 4, 2019 5/21

Asymptotic Notations, V

Definition 1.3.8. Little o.
The function f(n) = o(g(n)) if and only if

im LY (1.3.1)
n—oo g(m)
@ Example

o 3n+ 2= o(n?),

e 3n+ 2= o(nlgn),

e 3n+ 2= o(nlglgn),

o 6-2"4 n? = o(3"),

o 6-2"4 n® = o(2"Ign),

Definition 1.3.9. Little omega.

The function f(n) = w(g(n)) if and only if

lim 2 (1.3.2)

Algorithms (Analysis Il) Unit 1.3 Analysis Il Mar. 4, 2019 6/21




Properties of Asymptotic Notations

@ The following properties hold for asymptotic notations.

@ Transitivity:

@ Reflexivity:

Algorithms (Analysis Il)

f(n) = o(g(n)) (1.3.3)
And f(n) is asymptotically larger then g(n) if
F(n) = wlg (m). (1.3.4)

©(g(n)) and g(n) = O(h(n))
O(g(n)) and g(n) = O(h(n))
g(n)) and g(n) = Q(h(n))
o(g(n)) and g(n) = o(h(n))
w(g(n)) and g(n) = w(h(n))

(n) = 6(f(n))

if and only if g (n)
if and only if ¢ (n)

then
then
then
then
then

f(n) = ©(h(n)),
f(n) = O(h(n)),
f(n) = Q(h(n)),
f(n) = o(h(n)),
f(n) = w(h(n)).

Algorithms (Analysis Il)

Unit 1.3 Analysis Il




Complexity in Asymptotic Notations

@ These notations can be applied to asymptotic complexity analysis.

Statement s/e | freq. | Total steps
// Simple summation.

1 Algorithm Sum (A, n) 0 — 0

2 0 — 0

3 Sum :=0; 1 1 O(1)

4 for i:=1 to ndo 1 | n+1 O(n)

5 Sum = Sum+ Ali]; | 1 n O(n)

6 return Sum; 1 1 O(1)
7} 0 — 0
Total O(n)

v

@ Some details in calculating the exact execution steps can be ignored using
these notations.

Algorithms (Analysis Il) Unit 1.3 Analysis Il Mar. 4, 2019 9/21

Complexity in Asymptotic Notations, Il

@ Another example

Statement s/e freq. total steps
// C:= A+ B, all are m x n matrices.

1 Algorithm MAdd (A, B, C, m, n) 0 — 0

2 { 0 — 0

3 for i:=1 to m do 1 O(m) O(m)

4 for j:=1 to ndo 1 | O(mn) O(mn)
5 Cli,j] = Ali,j] + Bli,j]; | 1 | ©(mn) | ©(mn)
6 } 0 — 0
Total O (mn)

@ Note that we have used the following properties
©(n) + 6(1) = O(n),

O(n) + BO(n) = O(n).
O(mn) + O(m) = O(mn).

Algorithms (Analysis Il) Unit 1.3 Analysis Il Mar. 4, 2019 10/21




Power Function

@ To calculate 2™, where n > 0 is an integer.

Algorithm 1.3.11. Power

// Calculate z"
// Input: z, int n > 0; Output: z".
1 Algorithm Powl(z, n)
2 {
3 result :==1; // Initialize result
4 for i:=1 to ndo { // Step n times
5 result :== result X z; // Multiplication.
6 }
7 return result;
8 }

@ This algorithm has computational complexity of On.

Algorithms (Analysis Il) Unit 1.3 Analysis Il Mar. 4, 2019 11/21

Power Function, Il

Algorithm 1.3.12. Power — Improved

// Calculate z"
// Input: z, int n > 0; Output: z".
1 Algorithm Pow(z, n)
2 {
3 m := n; result := 1; // Initialization
4 while (m > 0) do { // Repeat
5 z:= x; // Multiplicand
6 while (m mod 2 =0) do { // Account for 2's power
7 m:=m/2; z:= z2Xz;
: }
9 m:=m— 1; result := resultx z; // accumulate to result
10 }
11 return result;
12 }

@ This algorithm has computational complexity of O(lgn).

@ Asymptotic analysis enables comparison of different algorithms.

Algorithms (Analysis Il) Unit 1.3 Analysis Il Mar. 4, 2019 12 /21



Comparing Algorithms

@ It can be shown that Powl algorithm has the asymptotic computational
complexity of O(n),

deq, co, nq, such that ¢1 - n < tpowt < ¢ - n for n > ny.
@ While Pow algorithm is O(lg n),
ddy, dy, ng, such that dy -lgn < tpow < do - 1gn for n > ns.
@ Sincelgn < nfor n>1,
tpow < tpow1 for n > max{ni, ns}.
@ Thus, Pow function is more efficient than Pow1.

@ Frequently used asymptotic complexities

lgn | n | nlgn n? n3 2"
0 1 0 1 1 2
1 2 2 4 8 4
2 4 8 16 64 16
3 8 24 64 512 256
4 16 64 256 | 4,096 65,536
5 32 160 | 1,024 | 32,768 | 4,294,967,296

Algorithms (Analysis Il) Unit 1.3 Analysis Il Mar. 4, 2019 13/21

Comparing Algorithms, |

Frequently Used Complexities — Linear Scale Frequently Used Complexities — Log Scale
10 T — 7

10°

10*

103 £

f(n)

10t £

100 Lo

@ Linear scale plot
e lgn, n and nlgn appear to be tractable.
e n? and 2" grow quickly.

@ Log scale plot

e More useful for asymptotic complexity comparisons.
e Most curves appear to be straight lines (even lgn and nlgn).
e 2", exponential curves, increase too fast to be tractable.

Algorithms (Analysis II) Unit 1.3 Analysis I Mar. 4, 2019 14 /21



Comparing Algorithms, 1lI

Execution Time

n t(n) t(nlgn) t(n?) t(n>) t(n?) t(n'?) t(2")
10 0.01 ps | 0.0332 us 0.1 us 1 us 10 us 10 s 1.02 us
20 0.02 us | 0.0864 us 0.4 us 8 us 160 us 2.84 h 1.05 ms
30 0.03 us 0.147 us 0.9 ps 27 ps 810 us 6.83 d 1.07 s
40 0.04 us 0.213 us 1.6 us 64 us 2.56 ms 121d 18.3 m
50 0.05 us 0.282 us 2.5 us 125 us 6.25 ms 31y 13d
100 0.1 us 0.664 s 10 ps 1 ms 100 ms 3171y | 4.02x10'3 y
103 1 ps 9.97 us 1 ms 1s 167 m | 3.17x10'3 y | 3.4x10%%y
10% 10 us 133 us | 100 ms | 16.7 m 116 d | 3.17x10%3 y
10° 100 ps 1.66 ms 10s | 11.6d 3171y | 3.17x10%3y
106 1ms 199ms | 16.7m | 317y | 3.17x107y | 3.17x10%3 y

Units: us: 1076 seconds; ms: 1073 seconds; s: seconds; m: minutes; h: hours; d: days; y: years.

Algorithms (Analysis Il)

Performance Measurement

Unit 1.3 Analysis Il

Assuming 10° operations per second can be performed

Improving computer operation speed has limited benefits.

o
@ Higher complexity algorithms can not handle large amount of data.
()
(*)

Algorithm’s complexity is of critical importance for practical programming.

Mar. 4, 2019

2 {
3
4

5

6 }

@ Example algorithm to be measured.

Algorithm 1.3.13. Sequential Search

i:=n; A[0] ;= z; // initialization.
while (A[i] # z) do ¢:= 17— 1; // Search backward.
return ¢; // If not found, return 0.

// Search for z in an array A of n elements.
// Input: A[l:n], z, int n > 0; Output: index i, A[i] = z, if not found 7= 0.
1 Algorithm SeqSearch(A, z,n) // A[0] is used as additional space.

@ The implemented algorithm can be measured on a computer.

@ Run time (CPU time) is the focus.
e Compilation time is ignored.

@ Algorithms with short run time should be repeated a number of times for
more accurate run time measurement.

Algorithms (Analysis Il)

Unit 1.3 Analysis Il

Mar. 4, 2019




Performance Measurement, |l

Algorithm 1.3.14. Measuring Search Time

// To measure search CPU time with repetitions.
// Input: None; Output: n, total time, average CPU time
1 Algorithm TimeSearch()

3 R[20] := { 2e7,2e7,1.5e7,1e7,1e7,1e7,5€6,5e6,5€6,5e6, // #Repetition

4 5e6,5e6,5e6,5e6,5e6,5€6,2.5€6,2.5€6,2.5€6,2.5€6 } ;

5 for j:=1 to 1000 do A[j] :=34; // Init A] ] ={1,2,3,...,1000}.

6 for j:=1to 10do { // Init N[ ] = {0, 10, 20, ...,90, 100, 200, ..., 1000}
7 NJj] = 10x(j— 1);

8 N[j + 10] := 100x;

9

}
10 for j:=2 to 20 do { // Set n to be N[2 : 20]
11 h := GetTime();
12 for i:=1 to R[j] do // Repeat R[j] times for each n.
13 k := SeqSearch(A,0, N[j]);
14 tl := GetTime() — h; t:= t1/R][j];
15 write (N[j],1,t); // Write: n, total and average execution times.

Algorithms (Analysis Il) Unit 1.3 Analysis Il Mar. 4, 2019 17 /21

Performance Measurement, Il

@ The following function can get time of the day in seconds on linux systems.

Function 1.3.15. Get Time of Day

1 #include <sys/time.h>

2

3 double GetTime(void)

4 {

5 struct timeval tv;

6

7 gettimeofday (&tv,NULL) ;

8 return tv.tv_sec+le-6*tv.tv_usec;
9}

Algorithms (Analysis Il) Unit 1.3 Analysis Il Mar. 4, 2019 18 /21



Performance Measurement, |V

Seqential Search CPU time — Linear Scale Seqential Search CPU time — Log Scale
=-@= worst-case ‘ ‘ ‘ ‘ ‘ ‘ =@— Wworst-case T
—@— average-case 100 | —@= average-case i
1 - -
[%] %]
S8 S8
£ E 1071} E
B o05f s =
0 3 10721 B
| | | | | | | | | | | | R ! ! ! R | ! ! ! |
0 100 200 300 400 500 600 700 800 900 1,000 10t 102 103
n n
o v

@ As n grows larger, the asymptotic behavior of the algorithm becomes more
clear.

@ Both worst-case and average-case complexities for the sequential search
algorithm are O(n).

@ In log scale plot, both lines have the same slope.

@ For asymptotic complexity, the slope in log-scale plot is usually a better
indicator.

Algorithms (Analysis Il) Unit 1.3 Analysis Il Mar. 4, 2019 19/21

Performance Measurement, V

@ To measure the performance of an algorithm, the following factors should be
considered
e What is the resolution of the system clock?
e What should be the number of repetitions for a meaningful measurement?

e To measure worst-case or average-case performance?
e For comparing two algorithms or to get the asymptotic complexity?

@ If the overhead in generating the test case should be deducted?

For asymptotic analysis, least square fit for larger values of n should be used
to get the complexity.

@ Worst-case analysis should generate test cases that for each n the maximum
amount of CPU time will be taken.

e Can be approximated by using random test cases and take the maximum of
the run time given an n.

@ Average-case analysis should generate all possible test cases and then take
the average.

e Similar random-input-test-case approach can be taken for a quick
approximation.

@ Best-case analysis is the minimum execution given the size n input.
@ We are more interested in worst-case and average-case performance.

Algorithms (Analysis Il) Unit 1.3 Analysis Il Mar. 4, 2019 20/21




@ Asymptotic notations.

o O(f(n)), Qf(n). ©(f(n)), o(f(n)), w(f(n))
@ Some practical complexities.
@ Performance measurement.

o Worst-case performance
e Average-case performance
e Best-case performance

Algorithms (Analysis I1) Unit 1.3 Analysis I Mar. 4, 2019 21/21




