Unit 1.3 Analysis II

Algorithms

EE/NTHU

Mar. 4, 2019

Algorithms (EE/NTHU)

Unit 1.3 Analysis II

Mar. 4, 2019

1/2

Asymptotic Notations

• Computational complexities are usually denoted using the following notations.

Definition 1.3.1. Big \mathcal{O} .

The function $f(n) = \mathcal{O}(g(n))$ if and only if there are positive constants c and n_0 such that $f(n) \leq c \cdot g(n)$ for all n, $n \geq n_0$.

- f(n) is bound above by g(n).
- Examples
 - $3n + 2 = \mathcal{O}(n)$,
 - $1000n^2 + 100n 6 = \mathcal{O}(n^2)$,
 - $6 \cdot 2^n + n^2 = \mathcal{O}(2^n)$.
- $\mathcal{O}(1)$ means the complexity is constant.
- $\mathcal{O}(n)$ is called linear.
- $\mathcal{O}(n^2)$ is called quadratic.
- $\mathcal{O}(n^3)$ is called cubic.
- $\mathcal{O}(2^n)$ is called exponential.

Asymptotic Notations, II

Theorem 1.3.2. Polynomial and \mathcal{O} .

If $f(n) = a_m n^m + \cdots + a_1 n + a_0$, then $f(n) = \mathcal{O}(n^m)$.

Proof.

$$f(n) \le \sum_{i=0}^{m} |a_i| n^i$$

$$= n^m \sum_{i=0}^{m} |a_i| n^{i-m}$$

$$\le n^m \sum_{i=0}^{m} |a_i| \qquad \text{for } n \ge 1.$$

Therefore, $f(n) \leq cn^m$ for $n \geq 1$ and $c = \sum |a_i|$, and by definition, $f(n) = \mathcal{O}(n^m)$.

• The following complexities are seen more often: $\mathcal{O}(1)$, $\mathcal{O}(\lg n)$, $\mathcal{O}(n)$, $\mathcal{O}(n \lg n)$, $\mathcal{O}(n^2)$, $\mathcal{O}(n^3)$, $\mathcal{O}(2^n)$.

Algorithms (Analysis II)

Unit 1.3 Analysis II

Mar. 4, 2019

3/2

Asymptotic Notations, III

Definition 1.3.3. Omega.

The function $f(n) = \Omega(g(n))$ if and only if there are positive constants c and n_0 such that $f(n) \ge c \cdot g(n)$ for all n, $n \ge n_0$.

- f(n) is bounded below by g(n).
- Example
 - $3n+2 \ge 3n$ for $n \ge 0$, thus $3n+2 = \Omega(n)$,
 - $10n^2 + 4n + 2 \ge 10n^2$ for $n \ge 0$, thus $10n^2 + 4n + 2 = \Omega(n^2)$,
 - $6 \cdot 2^n + n^2 = \Omega(2^n)$.
- Note that $10n^2 + 4n + 2 = \Omega(n)$ as well, but it is less informative to write so.
- Thus, we usually take the highest order g(n) in this notation.

Theorem 1.3.4.

If $f(n) = a_m n^m + \cdots + a_1 n + a_0$ and $a_m > 0$, then $f(n) = \Omega(n^m)$.

Asymptotic Notations, IV

Definition 1.3.5. Theta.

The function $f(n) = \Theta(g(n))$ if and only if there are positive constants c_1 , c_2 and n_0 such that $c_1 \cdot g(n) \leq f(n) \leq c_2 \cdot g(n)$ for all $n \geq n_0$.

- $f(n) = \Theta(g(n))$ if and only if g(n) is both an upper and lower bound on f(n).
- Example
 - $3n + 2 = \Theta(n)$,
 - $10n^2 + 4n + 2 = \Theta(n^2)$,
 - $6 \cdot 2^n + n^2 = \Theta(2^n)$.
 - $10 \lg n + 4 = \Theta(\lg n)$.

Theorem 1.3.6.

Given two functions f(n) and g(n), we have $f(n) = \Theta(g(n))$ if and only if $f(n) = \mathcal{O}(g(n))$ and $f(n) = \Omega(g(n))$.

Theorem 1.3.7.

If $f(n) = a_m n^m + \cdots + a_1 n + a_0$ and $a_m > 0$, then $f(n) = \Theta(n^m)$.

Algorithms (Analysis II)

Unit 1.3 Analysis II

Mar. 4, 2019

5 / 2

Asymptotic Notations, V

Definition 1.3.8. Little o.

The function f(n) = o(g(n)) if and only if

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0. \tag{1.3.1}$$

- Example
 - $3n+2=o(n^2)$,
 - $\bullet \ 3n+2=o(n\lg n),$
 - $\bullet \ 3n+2=o(n\lg\lg n),$
 - $6 \cdot 2^n + n^2 = o(3^n)$,
 - $6 \cdot 2^n + n^2 = o(2^n \lg n)$,

Definition 1.3.9. Little omega.

The function $f(n) = \omega(g(n))$ if and only if

$$\lim_{n \to \infty} \frac{g(n)}{f(n)} = 0. \tag{1.3.2}$$

Properties of Asymptotic Notations

- The following properties hold for asymptotic notations.
- Transitivity:

```
f(n) = \Theta(q(n))
                      and
                             q(n) = \Theta(h(n))
                                                   then
                                                           f(n) = \Theta(h(n)),
f(n) = \mathcal{O}(g(n))
                      and
                             g(n) = \mathcal{O}(h(n))
                                                           f(n) = \mathcal{O}(h(n)),
                                                   then
f(n) = \Omega(g(n))
                      and
                             q(n) = \Omega(h(n))
                                                   then
                                                           f(n) = \Omega(h(n)),
                             q(n) = o(h(n))
f(n) = o(g(n))
                      and
                                                   then
                                                           f(n) = o(h(n)),
                             g(n) = \omega(h(n))
f(n) = \omega(g(n))
                                                           f(n) = \omega(h(n)).
                      and
                                                   then
```

Reflexivity:

$$f(n) = \Theta(f(n)),$$

$$f(n) = \mathcal{O}(f(n)),$$

$$f(n) = \Omega(f(n)).$$

Algorithms (Analysis II)

Unit 1.3 Analysis II

Mar. 4, 2019

7/2

Properties of Asymptotic Notations, II

• Symmetry:

$$f(n) = \Theta(g(n))$$
 if and only if $g(n) = \Theta(f(n))$.

• Transpose symmetry:

$$f(n) = \mathcal{O}(g(n))$$
 if and only if $g(n) = \Omega(f(n))$, $f(n) = o(g(n))$ if and only if $g(n) = \omega(f(n))$.

Definition 1.3.10. Asymptotic Comparisons.

Given two functions f(n) and g(n), f(n) is asymptotically smaller than g(n) if

$$f(n) = o(g(n)).$$
 (1.3.3)

And f(n) is asymptotically larger then g(n) if

$$f(n) = \omega(g(n)). \tag{1.3.4}$$

Complexity in Asymptotic Notations

• These notations can be applied to asymptotic complexity analysis.

Statement	s/e	freq.	Total steps
// Simple summation.			
1 Algorithm Sum (A,n)	0	_	0
2 {	0	_	0
Sum := 0;	1	1	$\Theta(1)$
4 for $i := 1$ to n do	1	n+1	$\Theta(n)$
Sum := Sum + A[i];	1	n	$\Theta(n)$
6 return Sum ;	1	1	$\Theta(1)$
7 }	0	_	0
Total			$\Theta(n)$

 Some details in calculating the exact execution steps can be ignored using these notations.

Algorithms (Analysis II)

Unit 1.3 Analysis II

Mar. 4, 2019

9/2

Complexity in Asymptotic Notations, II

Another example

Statement	s/e	freq.	total steps
$//$ $C := A + B$, all are $m \times n$ matrices.			
1 Algorithm MAdd (A, B, C, m, n)	0	_	0
2 {	0	_	0
3 for $i:=1$ to m do	1	$\Theta(m)$	$\Theta(m)$
for $j := 1$ to n do	1	$\Theta(mn)$	$\Theta(mn)$
	1	$\Theta(mn)$	$\Theta(mn)$
6 }	0	_	0
Total			$\Theta(mn)$

Note that we have used the following properties

$$\Theta(n) + \Theta(1) = \Theta(n),$$

$$\Theta(n) + \Theta(n) = \Theta(n).$$

$$\Theta(mn) + \Theta(m) = \Theta(mn).$$

Power Function

• To calculate x^n , where $n \ge 0$ is an integer.

Algorithm 1.3.11. Power

```
// Calculate x^n
// Input: x, int n \ge 0; Output: x^n.

1 Algorithm Pow1(x, n)

2 {
3     result := 1; // Initialize result
4     for i := 1 to n do { // Step n times
5         result := result \times x; // Multiplication.
6     }
7     return result;
8 }
```

• This algorithm has computational complexity of Θn .

Algorithms (Analysis II)

Unit 1.3 Analysis II

Mar. 4. 2019

11 / 21

Power Function, II

Algorithm 1.3.12. Power – Improved

```
// Calculate x^n
    // Input: x, int n \ge 0; Output: x^n.
 1 Algorithm Pow(x, n)
 2 {
         m := n; result := 1; // Initialization
 3
         while (m > 0) do \{ // \text{Repeat} \}
              z := x; // Multiplicand
 5
              while (m \mod 2 = 0) do \{ // \text{ Account for 2's power } \}
 6
                    m := m/2; z := z \times z;
 7
 8
              m := m - 1; result := result \times z; // accumulate to result
 9
10
11
         return result;
12 }
```

- This algorithm has computational complexity of $\Theta(\lg n)$.
- Asymptotic analysis enables comparison of different algorithms.

Algorithms (Analysis II)

Unit 1.3 Analysis II

Mar. 4, 2019

Comparing Algorithms

• It can be shown that Pow1 algorithm has the asymptotic computational complexity of $\Theta(n)$,

$$\exists c_1, c_2, n_1$$
, such that $c_1 \cdot n \leq t_{\mathsf{Pow}1} \leq c_2 \cdot n$ for $n \geq n_1$.

• While Pow algorithm is $\Theta(\lg n)$,

$$\exists d_1, d_2, n_2$$
, such that $d_1 \cdot \lg n \leq t_{Pow} \leq d_2 \cdot \lg n$ for $n \geq n_2$.

• Since $\lg n < n$ for $n \ge 1$,

$$t_{Pow} < t_{Pow1} \text{ for } n > \max\{n_1, n_2\}.$$

- Thus, Pow function is more efficient than Pow1.
- Frequently used asymptotic complexities

$\lg n$	$\mid n \mid$	$n \lg n$	n^2	n^3	2^n
0	1	0	1	1	2
1	2	2	4	8	4
2	4	8	16	64	16
3	8	24	64	512	256
4	16	64	256	4,096	65,536
5	32	160	1,024	32,768	4,294,967,296

Algorithms (Analysis II)

Unit 1.3 Analysis II

Mar. 4, 2019

13 / 2

Comparing Algorithms, II

- Linear scale plot
 - $\lg n$, n and $n \lg n$ appear to be tractable.
 - n^2 and 2^n grow quickly.
- Log scale plot
 - More useful for asymptotic complexity comparisons.
 - Most curves appear to be straight lines (even $\lg n$ and $n \lg n$).
 - ullet 2^n , exponential curves, increase too fast to be tractable.

Comparing Algorithms, III

Execution Time							
n	t(n)	$t(n \lg n)$	$t(n^2)$	$t(n^3)$	$t(n^4)$	$t(n^{10})$	$t(2^n)$
10	$0.01~\mu$ s	$0.0332~\mu \mathrm{s}$	$0.1~\mu$ s	$1~\mu$ s	$10~\mu$ s	10 s	$1.02~\mu$ s
20	$0.02~\mu \mathrm{s}$	0.0864 μ s	0.4 μ s	8 μ s	$160~\mu \mathrm{s}$	2.84 h	1.05 ms
30	$0.03~\mu \mathrm{s}$	0.147 μ s	0.9 μ s	$27~\mu s$	810 μ s	6.83 d	1.07 s
40	$0.04~\mu s$	0.213 μ s	$1.6~\mu$ s	64 μ s	2.56 ms	121 d	18.3 m
50	$0.05~\mu \mathrm{s}$	0.282 μ s	$2.5~\mu$ s	$125~\mu$ s	6.25 ms	3.1 y	13 d
100	$0.1~\mu$ s	0.664 μ s	$10~\mu$ s	1 ms	100 ms	3171 y	$4.02 \times 10^{13} \text{ y}$
10^{3}	$1~\mu$ s	9.97 μ s	1 ms	1 s	16.7 m	$3.17 \times 10^{13} \text{ y}$	$3.4 \times 10^{284} \text{ y}$
10^{4}	$10~\mu$ s	133 μ s	100 ms	16.7 m	116 d	$3.17 \times 10^{23} \text{ y}$	
10^{5}	$100~\mu$ s	1.66 ms	10 s	11.6 d	3171 y	$3.17 \times 10^{33} \text{ y}$	
-10^{6}	1 ms	19.9 ms	16.7 m	31.7 y	3.17×10^7 y	$3.17 \times 10^{43} \text{ y}$	
Units: μ s: 10^{-6} seconds; ms: 10^{-3} seconds; s: seconds; m: minutes; h: hours; d: days; y: years.							

- ullet Assuming 10^9 operations per second can be performed
- Higher complexity algorithms can not handle large amount of data.
- Improving computer operation speed has limited benefits.
- Algorithm's complexity is of critical importance for practical programming.

Algorithms (Analysis II)

Unit 1.3 Analysis II

Mar. 4, 2019

15/2

Performance Measurement

- The implemented algorithm can be measured on a computer.
- Run time (CPU time) is the focus.
 - Compilation time is ignored.
- Algorithms with short run time should be repeated a number of times for more accurate run time measurement.
- Example algorithm to be measured.

Algorithm 1.3.13. Sequential Search

```
// Search for x in an array A of n elements.

// Input: A[1:n], x, int n>0; Output: index i, A[i]=x, if not found i=0.

1 Algorithm SeqSearch(A,x,n) // A[0] is used as additional space.

2 {

3    i:=n; A[0]:=x; // initialization.

4    while (A[i] \neq x) do i:=i-1; // Search backward.

5    return i; // If not found, return 0.

6 }
```

Algorithm 1.3.14. Measuring Search Time

```
// To measure search CPU time with repetitions.
   // Input: None; Output: n, total time, average CPU time
 1 Algorithm TimeSearch()
 2 {
         R[20] := \{ 2e7, 2e7, 1.5e7, 1e7, 1e7, 1e7, 5e6, 5e6, 5e6, 5e6, \frac{1}{2} \# Repetition \}
 3
              5e6,5e6,5e6,5e6,5e6,2.5e6,2.5e6,2.5e6,2.5e6 };
 4
         for j := 1 to 1000 do A[j] := j; // Init A[] = \{1, 2, 3, ..., 1000\}.
 5
         for j := 1 to 10 do \{ // \text{ Init } N[] = \{0, 10, 20, \dots, 90, 100, 200, \dots, 1000 \}
 6
              N[j] := 10 \times (j-1);
 7
 8
              N[j+10] := 100 \times j;
 9
         for j := 2 to 20 do { // Set n to be N[2:20]
10
              h := \texttt{GetTime}();
11
              for i := 1 to R[j] do // Repeat R[j] times for each n.
12
                   k := SeqSearch(A, 0, N[j]);
13
              t1 := GetTime() - h; t := t1/R[j];
14
              write (N[j], t1, t); // Write: n, total and average execution times.
15
16
17 }
```

Algorithms (Analysis II)

Unit 1.3 Analysis II

Mar. 4, 2019

17 / 2

Performance Measurement, III

• The following function can get time of the day in seconds on linux systems.

Function 1.3.15. Get Time of Day

```
1 #include <sys/time.h>
2
3 double GetTime(void)
4 {
5     struct timeval tv;
6
7     gettimeofday(&tv,NULL);
8     return tv.tv_sec+1e-6*tv.tv_usec;
9 }
```

Performance Measurement, IV

- ullet As n grows larger, the asymptotic behavior of the algorithm becomes more clear.
- Both worst-case and average-case complexities for the sequential search algorithm are $\mathcal{O}(n)$.
- In log scale plot, both lines have the same slope.
- For asymptotic complexity, the slope in log-scale plot is usually a better indicator.

Algorithms (Analysis II)

Unit 1.3 Analysis II

Mar. 4, 2019

19 / 21

Performance Measurement, V

- To measure the performance of an algorithm, the following factors should be considered
 - What is the resolution of the system clock?
 - What should be the number of repetitions for a meaningful measurement?
 - To measure worst-case or average-case performance?
 - For comparing two algorithms or to get the asymptotic complexity?
 - If the overhead in generating the test case should be deducted?
 - For asymptotic analysis, least square fit for larger values of n should be used to get the complexity.
- ullet Worst-case analysis should generate test cases that for each n the maximum amount of CPU time will be taken.
 - ullet Can be approximated by using random test cases and take the maximum of the run time given an n.
- Average-case analysis should generate all possible test cases and then take the average.
 - Similar random-input-test-case approach can be taken for a quick approximation.
- ullet Best-case analysis is the minimum execution given the size n input.
- We are more interested in worst-case and average-case performance.

Summary

- Asymptotic notations.
 - $\mathcal{O}(f(n))$, $\Omega(f(n))$, $\Theta(f(n))$, o(f(n)), $\omega(f(n))$
- Some practical complexities.
- Performance measurement.
 - Worst-case performance
 - Average-case performance
 - Best-case performance