Unit 1.1 Foundations

Algorithms

EE/NTHU

Feb. 21, 2019

Algorithms (EE/NTHU)

Unit 1.1 Foundations

Feb. 21, 2019

1/22

What is an Algorithm

• In short, algorithm refers to a method that can be used by a computer for the solution of a problem.

Definition 1.1.1. Algorithm

An algorithm is a finite set of instructions that, if followed, accomplishes a particular task. In addition, all algorithms must satisfy the following criteria:

- 1. Input. Zero of more quantities are externally supplied.
- 2. Output. At least one quantity is produced.
- 3. Definiteness. Each instruction is clear and unambiguous.
- 4. Finiteness. If we trace out the instructions of an algorithm, then for all cases, the algorithm terminates after a finite number of steps.
- 5. Effectiveness. Every instruction must be very basic so that it can be carried out, in principle, by a person using only pencil and paper. It is not enough that each operation be definite as in in criterion 3; it also must be feasible.
- Computational procedures have the properties of definiteness and effectiveness.
 - Operating system of a digital computer is an example.

Objectives of Studying Algorithms

- Algorithms can be implemented in different programming languages.
 - A computer program consists of one or more algorithms.
 - An algorithm can also be referred to as a procedure, a function, or a subroutines.
 - Each statement of an algorithm specifies unambiguous operations.
 - Algorithm should be independent to programming languages.
- The objectives of studying algorithms
 - 1. How to devise algorithms?
 - 2. How to validate algorithms?
 - 3. How to analyze algorithms?
 - 4. How to test a program?
- A good algorithm should be efficient for that specific problem.
 - Efficient in both CPU time and storage space.

Algorithms (Foundation)

Unit 1.1 Foundations

Feb. 21, 2019

3/22

Pseudocode Convention

- Algorithms can be implemented in many different programming languages
 - In this class, we use pseudocode to describe algorithms
- Pseudocode is not as rigorous as a programming language
 - Easier to understand by human being but still need to satisfy algorithm's requirements (definiteness, effectiveness)
- The pseudocode adopted is based on C language
 - Comments: begin with // and continue until the end of a line.
 - Statement:
 - Simple statements followed by ;
 - Compound statements are grouped within { and }, also called as a block.
 - Identifier convention follows C
 - Basic types (int, float, char, etc) are assumed.
 - struct (also called record) can also be defined.
 - Variables are not declared.
 - Pointers to struct variables and their access follow C convention.
 - Assignment: | variable := expression;
 - Boolean values: true and false exist
 - So are logical operators: and , or and not
 - And relational operators: $\langle , \leq , = , \geq ,$ and >

Loops in the Pseudocode

- Arrays postfixed by [].
 - ullet Two dimensional arrays accessed by A[i,j]
 - Array indexing starts from 1 (Thus, A[0] is usually not defined).
- Loops in the pseudocode are
- while loop

```
while (condition) do {
    statement 1;
     :
     statement n;
}
```

• repeat-until loop

```
repeat {
    statement 1;
     :
     statement n;
} until (condition);
```

Algorithms (Foundation)

Unit 1.1 Foundations

Feb. 21, 2019

5 / 22

for Loop

for loop

```
for variable := value1 to value2 step svalue do {
    statement 1;
    :
    statement n;
}
```

- ullet Note that "step svalue" is optional with svalue default to +1
- The for loop above is equivalent to the while loop below

• return exits from a function or an algorithm.

Conditional Statements and I/O

• A conditional statement has the following forms:

```
 \begin{array}{l} \texttt{if } (condition) \texttt{ then } statement \texttt{ ;} \\ \texttt{if } (condition) \texttt{ then } statement \texttt{ 1} \texttt{ ; else } statement \texttt{ 2} \texttt{ ;} \\ \end{array}
```

Cascaded-if can be written as

- Input and output of an algorithm are specified by read and write statements.
 - No format is needed for either statement.
- An error function is included to handle exception cases (error handling).

Algorithms (Foundation)

Unit 1.1 Foundations

eb. 21, 2019

7/2

Algorithm Declaration

• An algorithm consists of a heading and a body. The heading has the form:

```
{\tt Algorithm\ Name}(parameter\ list)
```

- ullet Name is the name of the algorithm and $parameter\ list$ is all the parameters.
 - Simple variables to the algorithm are passed by value or reference.
 - Arrays and structures are passed by reference.
- Body of the algorithm has one or more statements enclosed by { and }.
- A pseudocode example

Algorithm 1.1.2. Max

```
// Find the largest element of an n-element array A.

// Input: A[1:n], integer n

// Output: \max A[i], 1 \le i \le n

1 Algorithm \max(A, n)

2 {

3     Result:= A[1]; // Initialize Result.

4     for i:=2 to n do // Loop though all elements.

5         if (A[i] > Result) then Result:= A[i]; // Record the larger one.

6     return Result; // Done.

7 }
```

Algorithm Example, Selection Sort

- Sorting problem as an example.
 - To sort an array A[1:n] into nondecreasing order.
 - Approach: From those elements that are currently unsorted, find the smallest one and place it next in the sorted list.

Algorithm 1.1.3. Selection Sort.

```
// Sort the array A[1:n] into nondecreasing order.
  // Input: array A[1:n], integer n.
  // Output: A is rearranged into nondecreasing order.
1 Algorithm SelectionSort(A, n)
2 {
       for i := 1 to n do \{ // \text{ for every } A[i] \}
3
            j := i; // Initialize j to i
4
            for k := i + 1 to n do // Search for the smallest in A[i + 1 : n].
5
                 if (A[k] < A[j]) then j := k; // Found, remember it in j.
6
            t := A[i]; A[i] := A[j]; A[j] := t; // Swap A[i] and A[j].
       }
8
9 }
```

Algorithms (Foundation)

Unit 1.1 Foundations

Feb. 21, 2019

9 / 2

Selection Sort — Correctness

Theorem 1.1.4.

Algorithm SelectionSort(A, n) correctly sorts a set of $n \ge 1$ elements; the result remains in A[1:n] such that $A[1] \le A[2] \le \cdots \le A[n]$.

Proof. For any i, $1 \le i \le n$, lines 4-7 select the smallest element among A[i:n] and place it to A[i], thus, A[i] < A[j] for j > i.

In addition, these operations does not affect A[1:i-1], which is already arranged in nondecreasing order with value less than or equal to A[i]. Thus, when i=n the entire A is arranged in the nondecreasing order. $\hfill\Box$

- Note that the upper limit of the for loop in line 3 can be changed to n-1 without effecting the correctness of the algorithm.
- The two examples above are both brute-force approach algorithms.
 - Algorithm derived from the definition of the problem.
 - You should be able to write this kind of algorithm with ease.

Recursive Algorithms

- A recursive function is a function that is defined in terms of itself.
- An algorithm is said to be recursive if the algorithm is invoked in the body of the algorithm.
 - An algorithm that calls itself is direct recursive.
 - An algorithm \mathcal{A} is said to be indirect recursive if it calls another function which in turns calls \mathcal{A} .
- A recursive function operates a finite set of objects and has the following 3 elements.
 - 1. Same operation for the set (and reduced set).
 - 2. It needs to terminate in finite steps, thus, the successive function calls should reduce the size of the set.
 - 3. To avoid going into infinite loop, a recursive function needs a termination condition.
- Using recursion, computer algorithm can be developed quickly.

Algorithms (Foundation)

Unit 1.1 Foundations

Feb. 21, 2019

11/22

Recursive Algorithm Example - factorial function

- Example of recursive function:
 - Factorial function can be defined in mathematical form as

$$n! = 1,$$
 if $n = 1,$
= $n \times (n-1)!.$

• Then the brute-force approach implementation:

Algorithm 1.1.5. Factorial.

```
// Generate n!.
// Input: integer n \ge 1.
// Output: n!.

1 Algorithm Factorial(n)

2 {

3         if (n=1) return 1; // Termination check.

4         return n \times Factorial(n-1); // Recursion formula.

5 }
```

- Note that
 - Same operation multiplication with result of reduced set.
 - line 3: termination condition,
 - line 4: size reduction for the next recursive call.

Tower of Hanoi

- The Tower of Hanoi consists of three rods and n disks of different radius, which can slide onto any rod. All disks are placed in a one stack in ascending order of size on one rod, the smallest at the top, originally. This entire stack is to move to another rod obeying the following rules:
 - 1. Only one disk can be moved at a time.
 - 2. Only the top disk of any stack can be moved onto another stack and placed at the top.
 - 3. No disk can be placed onto a smaller disk.
- Example of 3-disk Tower of Hanoi

Initial condition.

Final state.

Tower of Hanoi – Algorithm

- The solution, move sequence, shown in the preceding page, is complicated to code.
- Using recursive function Tower of Hanoi problem can be solved easily.
- Assuming n disks to be moved.
- x, y, and z are three rods.

Algorithm 1.1.6. Tower of Hanoi.

```
// Move the top n disks from rod x to rod y using rod z.
  // Input: n disks; rods: x, y, z
  // Output: Legal move sequence.
1 Algorithm TowerOfHanoi(n, x, y, z)
2 {
       if (n \ge 1) then \{ // \text{ If there are disks to be moved.} \}
3
4
            TowerOfHanoi(n-1, x, z, y); // move n-1 disks from x to z using y.
            write (" Move disk ", n, " from rod ", x, " to rod ", y);
5
6
            TowerOfHanoi(n-1, z, y, x); // move n-1 disks from z to y using x.
7
       }
8 }
```

Algorithms (Foundation)

Unit 1.1 Foundations

Feb. 21, 2019

15 / 2

Tower of Hanoi – Description

- For the 3-disk case, as shown in the preceding figure,
 - At the end of line 4, disks are shown as Step 3,
 - Step 4 corresponds to line 5,
 - And line 6 calls itself recursively to reach Step 7.
- Note the elements of recursion
 - 1. Same operation: to move bottom disk from x and y after removing the reduced set,
 - 2. Size reduction: must move n-1 disks to z first, and then move them to y after disk n is in place,
 - 3. Termination condition: n=0, no disk to move, no recursive call.
- To prove the correctness of Algorithm 1.1.6 note that
 - 1. Only one disk is moved in line 5.
 - 2. Only top disk is moved in line 5 since all smaller disks have been moved to rod z in line 4.
 - 3. No disk is placed onto a smaller disk, since all smaller disks are moved to rod z.
 - 4. At the end of the algorithm, line 6, entire stack is moved to rod y.
- It can also be proved using induction.

Tower of Hanoi – Analysis

- The algorithm description is simple, the execution can be lengthy.
- How many times the function TowerOfHanoi needs to be executed?
 - Let the disks be numbered from 1 to n. Disk n is the largest disk.
 - Disk n needs to be moved only once.
 - But in order to move disk n, disk n-1 needs to be moved twice.
 - Thus, disk n-2 needs to be moved four times.
 - The total number of movements for *n*-disk problem is

$$\sum_{i=0}^{n-1} 2^i = 2^n - 1. \tag{1.1.1}$$

- The legend has it that when 64-disk Tower of Hanoi is solved, the world would end.
 - Do we need to worry this problem?

Algorithms (Foundation)

Unit 1.1 Foundation

Feb. 21, 2019

17 / 22

Permutations

- ullet Given a set, A, of n distinct elements, then there are n! permutations.
- For example, given the set $\{1,2,3\}$ all possible permutations are:
 - $\langle 1, 2, 3 \rangle$, $\langle 1, 3, 2 \rangle$, $\langle 2, 1, 3 \rangle$, $\langle 2, 3, 1 \rangle$, $\langle 3, 1, 2 \rangle$, $\langle 3, 2, 1 \rangle$.
- Using recursive function, all permutation can be generated easily.

Algorithm 1.1.7. Permutation.

```
// Given an array A[1:n] of distinct elements, generate all permutations.
   // Input: A[1:n], positive integer n.
   // Output: All permutations of A.
 1 Algorithm Permutation (A, k, n)
 2 {
        if (k = n) then write (A[1:n]); // output one permutation.
 3
 4
        else //A[k:n] has more permutation, generate them recursively.
             for i := k to n do {
 5
                 t := A[k]; A[k] := A[i]; A[i] := t; // Swap A[i] with A[k].
 6
                 Permutation(A, k+1, n); // All permutations of a[k+1, n]
 7
                 t := A[k]; A[k] := A[i]; A[i] := t; // Swap back A[i] and A[k].
 8
             }
 9
10 }
```

Permutation - Analysis

- A call of Permutation(A, 1, n) will generate all permutations.
- Note that recursion elements
 - 1. Same operation: swap elements in line 6.
 - 2. Reduction in size: permute k+1 to n subarray, in line 7.
 - 3. Termination condition in line 3.
- Number of operations for Permutation(A, 1, n)
 - The recursion depth is n. Permutation $(A,1,n) \to \operatorname{Permutation}(A,2,n) \to \cdots \to \operatorname{Permutation}(A,n,n)$
 - For $\operatorname{Permutation}(A,1,n)$, the loop on lines 5-9 is executed (n-k+1) times.
 - Thus, the total number of operation is $n \times (n-1) \times (n-2) \times \cdots \times 1 = n!$.
- Note that none of the swap operation exchange the same elements, thus no repeated permutation is generated.

Algorithms (Foundation)

Unit 1.1 Foundations

Feb. 21, 2019

19 / 22

Loops vs. Recursion

- Simple loops can be viewed as
 - Performing the same operation on a finite set.
 - Each iteration reduces the size of the set.
 - When the condition is met, the loop terminates.
- Thus, simple loops can be easily converted to a recursive function.
- Example

```
// Simple loop to get array sum. sum := 0 \; ; \; // \; \text{init sum to 0}. for \; i := 1 \; \text{to } n \; \text{do} sum := sum + A[i] \; ;
```

```
// Recursive function to get array sum.  
1 Algorithm \operatorname{ArraySum}(A, n)  
2 { 
3         if (n=1) return A[1];  
4         else return A[n]+ \operatorname{ArraySum}(A, n-1);  
5 }
```

• But a recursive function has a larger execution overhead.

Recursive Algorithm Overhead

- A recursive function call need to store the following information in stack space
 - Function arguments and return address,
 - All local variables.
- If the recursion depth is R, then there are R copies of information stored.
- Thus, a recursive function has a larger execution overhead.
- Keeping the overhead in mind, recursive functions are powerful and elegant.
- Good recursive algorithms tend to
 - Short in coding
 - Easier to understand
- A good tool to solve a large number of problems.

Algorithms (Foundation)

Jnit 1.1 Foundation

eb. 21, 2019

21 / 22

Summary

- What is an algorithm?
- Objectives of studying algorithms
- Pseudocode conventions
- Brute force approach
 - Selection sort
 - Proof of correctness
- Recursive algorithms
 - The first method to develop an algorithm
 - Factorial function
 - Tower of Hanoi
 - Permutations