
EE3980 Algorithms

演算法

EE/NTHU

Feb. 18, 2019

演算法 (EE/NTHU) EE3980 Algorithms Feb. 18, 2019 1 / 22

Programming and Algorithm

Programming uses computer (or any mechanism) to solve problems:
Given a set of input, perform necessary processing to find the right output.
An example

Problem: find the number of 1s in a bit string.
Input: n bit binary string, B = bnbn−1 · · · b2b1, bi ∈ {0, 1}, 1 ≤ i ≤ n.
Output: c is the number of 1s in B.
Example: a instance of the problem is

Input: n = 8, B = 11010001.
Output: c = 4.

A brute-force approach can be used to solve this problem.

演算法 (Course Info) EE3980 Algorithms Feb. 18, 2019 2 / 22



Brute-force Approach – CountOne_A

Algorithm 0.0.1.
// Count the number of 1s in bit string B.
// Input: B = bnbn−1 · · · b2b1, int n > 0; Output: c, number of 1s in B.

1 Algorithm CountOne_A(B,n)
2 {
3 c := 0 ; // Init c to 0
4 for i := 1 to n step 1 do
5 c := c + bi ;
6 return c ;
7 }

Lines 4-5, loop is executed n times
Loop body consists of 1 operation: addition
Addition is executed n times.

Straightforward brute force approach.
Efficiency can be improved.

演算法 (Course Info) EE3980 Algorithms Feb. 18, 2019 3 / 22

Modified Approach – CountOne_B

The preceding algorithm can be modified as the following.

Algorithm 0.0.2.
// Count the number of 1s in bit string B.
// Input: B = bnbn−1 · · · b2b1, int n > 0; Output: c, number of 1s in B.

1 Algorithm CountOne_B(B,n)
2 {
3 c := 0 ; // Init c to 0
4 for i := 1 to n step 1 do
5 if (bi = 1) c := c + 1 ;
6 return c ;
7 }

Lines 4-5, loop is still executed n times
Loop body consists of 2 operations: equality check and addition.
Equality check executed n times and addition c times.
If addition takes more time than equality check, then CPU time can be
reduced.

This is still brute-force approach.
演算法 (Course Info) EE3980 Algorithms Feb. 18, 2019 4 / 22



Comparing Two Approaches

0 10 20 30 40 50 60
0

0.05

0.1

0.15

0.2

Number of 1s

CP
U

tim
e,

µ
s

CPU time for counting 64-bit string

CountOne_A
CountOne_B

CountOne_B is, indeed, faster for smaller c.
But for large c, it can be slower – worst-case scenario.

演算法 (Course Info) EE3980 Algorithms Feb. 18, 2019 5 / 22

A Better Approach – CountOne_C

A more efficient approach

Algorithm 0.0.3.
// Count the number of 1s in bit string B.
// Input: B = bnbn−1 · · · b2b1, int n > 0; Output: c, number of 1s in B.

1 Algorithm CountOne_C(B,n)
2 {
3 c := 0 ; // Init c to 0
4 while (B ̸= 0) do {
5 c := c + 1 ;
6 B := B & (B − 1) ; // & is bit-wise AND operation
7 }
8 return c ;
9 }

Lines 4-7, loop is executed c times, c ≤ n.
Loop body consists of 3 operations

1 addition, 1 subtraction, 1 bitwise AND
If B is sparse, few 1s, then this algorithm is very efficient.
If B is mostly ones, then it might be slower than the preceding algorithms.

演算法 (Course Info) EE3980 Algorithms Feb. 18, 2019 6 / 22



Algorithm CountOne_C Example

Algorithm CountOne_C execution example
B = 1101, 0001

Iteration 1
c: 1
B: 1101,0001

B − 1: 1101,0000
B & (B − 1): 1101,0000

Iteration 2
c: 2
B: 1101,0000

B − 1: 1100,1111
B & (B − 1): 1100,0000

Iteration 3
c: 3
B: 1100,0000

B − 1: 1011,1111
B & (B − 1): 1000,0000

Iteration 4
c: 4
B: 1000,0000

B − 1: 0111,1111
B & (B − 1): 0000,0000

Each iteration of the loop eliminates one 1 in the original B.

演算法 (Course Info) EE3980 Algorithms Feb. 18, 2019 7 / 22

Comparisons of First 3 Approaches

0 10 20 30 40 50 60
0

0.05

0.1

0.15

0.2

Number of 1s

CP
U

tim
e,

µ
s

CPU time for counting 64-bit string

CountOne_A
CountOne_B
CountOne_C

CountOne_C is shown to be the most efficient, especially for small c.
On some computers, the worst case (c = n) CPU time is larger than the first
two approaches.
演算法 (Course Info) EE3980 Algorithms Feb. 18, 2019 8 / 22



Counting 1s in a Bit String – Algorithm D
The preceding algorithm can be modified to avoid worst-case scenario.

Algorithm 0.0.4.
// Count the number of 1s in bit string B.
// Input: B = bnbn−1 · · · b2b1, int n > 0; Output: c, number of 1s in B.

1 Algorithm CountOne_D(B,n)
2 {
3 BB := ∼B ; // BB is B’s complement.
4 c := 0 ; // Init c to 0
5 while (B ̸= 0 and BB ̸= 0) do {
6 c := c + 1 ;
7 B := B & (B − 1) ; // & is bit-wise AND operation
8 BB := BB & (BB − 1) ; // count number of 0’s in B.
9 }

10 if (BB = 0) c = n − c ;
11 return c ;
12 }

Use BB to count the number of 0s in B.
Algorithm stops when all 1s or 0s have been counted.
演算法 (Course Info) EE3980 Algorithms Feb. 18, 2019 9 / 22

Analyses of CountOne_C and CountOne_D

Algorithm CountOne_D
Lines 5-9, loop is executed min{c,n − c} times

Loop body consists of 5 operations: 1 addition, 2 subtractions, 2 bit-wise ANDs
Maximum 5n

2
total operations

Algorithm CountOne_C
Maximum 3n operations

Memory space needed
Algorithm CountOne_C

Local variable c is needed.
B − 1 needs to be stored.

Algorithm CountOne_D
Local variable c is needed.
B − 1 needs to be stored.
In addition, BB = ∼B and BB − 1 are needed.
Larger memory space requirement.

演算法 (Course Info) EE3980 Algorithms Feb. 18, 2019 10 / 22



Comparisons of 4 Approaches

0 10 20 30 40 50 60
0

0.05

0.1

0.15

0.2

Number of 1s

CP
U

tim
e,

µ
s

CPU time for counting 64-bit string

CountOne_A
CountOne_B
CountOne_C
CountOne_D

CountOne_D appears to be the most efficient algorithm
Or is it?

演算法 (Course Info) EE3980 Algorithms Feb. 18, 2019 11 / 22

Comparison, Average-Case Performance

Worst-case scenario, CountOne_D is faster than CountOne_C
To compare average execution time for all possible input patterns
Example, n = 4

Loop iterations Total #operations
c CountOne_C CountOne_D CountOne_C CountOne_D Frequency
0 0 0 0 0 1
1 1 1 3 5 4
2 2 2 6 10 6
3 3 1 9 5 4
4 4 0 12 0 1

Ave. 2 1.25 6 6.25

Average-case execution time
Algorithm CountOne_D is a little slower than Algorithm CountOne_C.

Need to consider which scenario is more important in a real application.
Worst-case, average-case, or best-case CPU time.

演算法 (Course Info) EE3980 Algorithms Feb. 18, 2019 12 / 22



Most Efficiency Approach – CountOne_E

A faster algorithm

Algorithm 0.0.5.
// Count the number of 1s in bit string B.
// Input: B = bnbn−1 · · · b2b1; int n = 2k; Output: B, number of 1s in bit string

1 Algorithm CountOne_E(B,n)
2 {
3 D1 := 01010101 · · · 0101 ; // alternatinve 1 and 0.
4 D2 := 00110011 · · · 0011 ; // two consecutive bits are 1s or 0s.
5 D4 := 00001111 · · · 1111 ; // four consecutive bits are 1s or 0s.
6 · · · · · · · · ·
7 Dk := 00000000 · · · 1111 ; // (n/2) 1s followed by (n/2) 0s.
8 for i := 1 to k step 1 do {
9 B := (B & Di) + ((B >> 2i−1) & Di ) ; // >>: right shift

10 }
11 return B ;
12 }

演算法 (Course Info) EE3980 Algorithms Feb. 18, 2019 13 / 22

Algorithm CountOne_E Example
Lines 10-12, loop is executed k = lg n times

Loop body consists of 4 operations
1 right-shift, 2 bitwise AND, 1 addition

For large n, this algorithm is the most efficient
Execution example of Algorithm CountOne_E
B = 1101, 0001

Iteration 1 1101,0001
B & D1: 0101,0001

B >> 1 & D1: 0100,0000
B: 1001,0001

Iteration 2 1001,0001
B & D2: 0001,0001

B >> 2 & D2: 0010,0000
B: 0011,0001

Iteration 3 0011,0001
B & D3: 0000,0001

B >> 4 & D3: 0000,0011
B: 0000,0100

演算法 (Course Info) EE3980 Algorithms Feb. 18, 2019 14 / 22



Comparisons of 5 Approaches

0 10 20 30 40 50 60
0

0.05

0.1

0.15

0.2

Number of 1s

CP
U

tim
e,

µ
s

CPU time for counting 64-bit string

CountOne_A
CountOne_B
CountOne_C
CountOne_D
CountOne_E

CountOne_E is the most efficient and it’s performance is independent to the
number of 1s in the bit string.

演算法 (Course Info) EE3980 Algorithms Feb. 18, 2019 15 / 22

Counting Ones in a Bit String – Summary

Five different ways to count 1s in a bit string

Number of Operations Worst-case Local
Algorithm iterations per iteration #operations memory
CountOne_A n 1 n c, i
CountOne_B n 2 n + c c, i
CountOne_C c 3 3n c
CountOne_D min{c,n − c} 5 5n/2 c,BB
CountOne_E lg n 4 4 lg n i,D1, · · · ,Dk

CountOne_D and CountOne_E need more local memory
Shifted and AND results are assumed to store in registers.

演算法 (Course Info) EE3980 Algorithms Feb. 18, 2019 16 / 22



Study Algorithms

Given a problem, there might be more than one way to solve it.
Which algorithm is more efficient?

Time and memory space.
Are there general methods to develop algorithms?
Some problems have been solved, one should adopt the best approach for
one’s application.

More aggressive goals
What is the best algorithm for a particular problem?
Can we find one, or is it possible?
What if there is no algorithm that can solve the problem in reasonable time?

演算法 (Course Info) EE3980 Algorithms Feb. 18, 2019 17 / 22

Algorithms – Course Information
Class time: M3,M4,R3: lectures and discussions.
Class room: Dalta 208.
Text books

Computer Algorithms, by E. Horowitz, S. Sahni, and S. Rajasekeran, 2nd
edition, Silicon Press, 2008.
Introduction to Algorithms, T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C.
Stein, 3rd edition, MIT Press, 2009.

Office hours: Wednesday 10 - 11:30 AM.
Or by appointment (michang@ee.nthu.edu.tw).

演算法 (Course Info) EE3980 Algorithms Feb. 18, 2019 18 / 22



Algorithms – Syllabus

Course Info
Unit 1. Analysis

1.1 Foundations
1.2 Analysis
1.3 Analysis, II
1.4 Mathematical backgrounds

Unit 2. Data structures
2.1 Stack and queue
2.2 Trees
2.3 Sets and graphs

Unit 3. Divide and conquer
3.1 Divide and conquer
3.2 Sorts
3.3 More on divide and conquer

Unit 4. Tree and graph traversal
4.1 Breadth first Search
4.2 Depth first Search

Unit 5. All-space searching methods
5.1 Backtracking
5.2 Branch and bound

Unit 6. Dynamic programming
6.1 Dynamic programming
6.2 Dynamic programming, II
6.3 Dynamic programming, III

Unit 7. The greedy method
7.1 The greedy method
7.2 The greedy method, II
7.3 The greedy method, III

Unit 8. Lower bound theory
Unit 9. NP-hard and NP-complete
Unit 10. Approximation algorithms
Unit 11. Randomized algorithms
Unit 12. Algebraic problems

演算法 (Course Info) EE3980 Algorithms Feb. 18, 2019 19 / 22

Evaluation

Evaluation
Category % each Number Total
Homework 4.5 12 54
Midterm 14 2 28
Final 18 1 18
Absence -1 - -

Homework:
Could be a significant loading,
C programming and report writing.

Mid-term exams:
Apr. 15,
May 13,
Machine tests at EECS 406

Final exam:
Jun. 17,
Machine test at EECS 406

演算法 (Course Info) EE3980 Algorithms Feb. 18, 2019 20 / 22



Homework
Homework is designed for you to practice what you have learned in class.
Grading criteria:

On time submission (20%),
Due on 11:59 PM of the day specified on the announcement.

Solution correctness (50%),
Program and report writing (30%),

Legibility and efficiency,
Clearness and logic,
Solution approach and comments.

Download and submit on EE workstations.
Discussions with classmates encouraged but no plagiarism.

Write your own programs.
Algorithms are solving specific problems

They should be language independent.
When implemented they become functions, procedures, or subroutines.
Applicable in structure programming and object oriented programming.

We will practice implementing algorithms in more basic C programming
language.

Programming guidelines are also the same as before.
演算法 (Course Info) EE3980 Algorithms Feb. 18, 2019 21 / 22

Handouts and Homework

Class handouts can be found on EE workstation.
Download (ftp) through daisy (140.114.24.31).
Directory: ∼ee3980/notes

lec10.pdf,
lec11.pdf,
lec21.pdf, ...

Homework can be found in each homework directory.
∼ee3980/hw01,
∼ee3980/hw02, ….

Homework should be turned in on EE workstations.
Submission command:

$ ∼ee3980/bin/submit hw01 hw01.c hw01a.pdf

To check homework or exam grades:

$ ∼ee3980/bin/score

演算法 (Course Info) EE3980 Algorithms Feb. 18, 2019 22 / 22


