EE3980 Algorithms

Homework 7. Linear Sort
By 105061212 T52E%

1. Introduction

In the previous homework, the best time complexity of comparison-based sorting
we got before is O(n * logn). In this homework, we try to use a non-comparison-
based sorting algorithm to reach the time complexity of O(n), which is linear. And
then we compare the average time consumed for sorting strings by using linear sort

and heap sort, respectively.
2. Implementation

For implementation, we first read in all the input data, and store them in a 2D
array. Then, we use the radix sort, a non-comparison-based sorting algorithm, to sort
the input strings in lexicographical order, and repeat the sorting for R times.
Moreover, we also implement the heap sort from homework 2 for R times and get the
average running time. Finally, we print out the array after sorted as well as the CPU

time consumed for the two algorithms. The details are given below.
2.1. Method of storing data

In order to store the input strings, we use a 2D array of character. The size of the

array is N*14, since there are N input strings and at most 14 characters in a string.

1

Now we examine the English characters in UTF-8 encoding rules. The lowercase
letters are encoded form 97 for “a” to 122 for “z”, so we put the characters which are
not belong to the string content, i.e. after “\0’, to be “*”, whose UTF-8 code is 96.
After this step, we now have 14 characters for a string, and they are at the range from

96 to 122 in UTF-8 code.

[I2%4]

The reason why we let the rest of the characters be “*” is that for the two strings
with the same contents at the begin but one has extra letters, for example, “bit” and
“bitwise”, the lexicographical order must be “bit” before “bitwise”. So if we put the
“*” character at the end of “bit”, like “bit" "7, the two words have the same number of

digits and it matches the alphabetical order in UTF-8. So, we could easily use it in the

radix sort since the number of digits are same.

Also, we use a global variable to record the maximum string length. For the
characters after the maximum string length, all of them are not the content of strings.
That is, the characters after the maximum string length are all “*”. Thus, when we use
the radix sort, we could neglect the digits after the maximum string length, since they

are all the same kind and no need to be sorted.

2.2. Radix Sort

1. Algorithm RadixSort(A, d)

2. {

3. for i := max_string_length to 1 step -1 do {
2

4. Sort array A by digit i using CountingSort;

With the input data stored in the array, we use radix sort to sort it in

lexicographical order. Radix sort applies sorting algorithm with respect to the certain

digit from the LSB to MSB, and the sorting algorithm has to be stable. Thus, when we

sort the higher digit, the lower digit we have sorted would not change its order if two

of the higher digits are same. That is, the two string would arrange in the alphabetical

order.

In our implementation, we use the counting sort for the stable sorting algorithm.

And then we seem each character as a digit to be sorted, so we apply counting sort

from the maximum string length (LSB) to the first character in the string (MSB). The

result would be all the string arranged in lexicographical order.

2.3. Counting Sort

1. Algorithm CountingSort(A,B,n,k)

2. {

3. // Initialize C to all ©

4, for i := 1 to k do {

5. C[i] := o;

6 }

7.

8. // Count number elements in C[A[i]]
9. for i := 1 to n do {

10. C[A[i]] := C[A[i]] + 1;

11. }

12.

13. // C[i] is the accumulate number of elements
14. for i := 1 to k do {

15. C[i] := C[i] +C[i-1];

16. }

17.

18. // Store sorted order in array B
19. for i := n to 1 step -1 do {

20. B[C[A[i]]] := A[i];

21. C[A[i]] := C[A[i]l]-1;

22. }

23. }

We use the counting sort as the stable sorting algorithm in the radix sort. First, we
construct an array B with size N to store the sorting result, and an array C with size 27

to store the number of each element.

At the next step, we iterate through the array, and record the number of times each
letter appears in C. Since we have only the lowercase letters and “*” we added, we
need 26 + 1 =27 space to store the number of each letter in A. We use UTF-8 code to
decide where we should record. Since we have known that the characters in the
strings only have 96 to 122 in UTF-8 code. We stores the character with code 96 in
C[oj, @ C[1], and so on. Thus, we could get all of the 27 indexes in the array

C to record the appearing times of each letter respectively.

張彌彰

Then, we make the C array be the accumulation of the number of letters by adding

the value from C[1] to C[i-1]. Thus, after the additions through the whole array, the

content in the array C would be (not strictly) increasing.

At the final step, because we had known how many times each letter appears in

the array, the only thing we have to do is place the string to array B directly. For a

letter Itr, we would find C[ltr] to get the accumulation of index, and the index is where

we should put the string in B. And then minus the accumulation by one, which

indicates that the next string with the same letter would be place before the previous

string. We keep executing this step until the iteration goes to the end, and it also

means every component in array A was arranged well.

Finally, we copy the content in array B to A and finish the sorting of the digit.

2.4. Complexity analysis

For the time complexity, first in the radix sort function, the iteration at line 3

would run at most the time of maximum string length, which is no greater than 14.

And at each iteration step, the counting would run for one time. Thus, the time

complexity of radix sort is 14 * time complexity of counting sort.

In the counting sort function, the iteration at line 4 and 14 would run for k times,

where k is the number of possible values = 27. The iteration at line 9 and 19 would

5

run for n times. And there are only assignments and additions in the four loops. Thus,
the time complexity is 0(4 * max(n,k)) = 0(4 * n) = O(n) since the data size n is
often larger than k. Hence, the overall time complexity is 14 * O(n) = O(n), which

is linear.

For the space complexity, we need two extra arrays B and C with size n and k for
each counting sort, and the counting sort would execute for at most 14 times. Thus,

the space complexity is 0(14 * (n +k)) = 0(14 * 2n) = O(n).

Time complexity: O(n)

Space complexity: O(n)
3. Executing results

For repeating 500 times, we run the testing data from wll.dat to wl9.dat with

different input data size, and record the average CPU time used.

Data size (V) Linear Sort Heap Sort
40 60.74 i1 s 8.036 s

80 100.8 i s 1772 us

160 196.7 11 s 3341 us

320 3585 us 69.90 1 s

640 663.8 s 163.0 s
1280 1.271ms 3584 us

6

2560 2.588ms 7954 s

5120 5.187ms 1.944ms

10240 10.88ms 4.119ms

Average CPU time

1.00E-01

1.00E-02

1.00E-03
v
)
£
=]

1.00E-04 vt

a"
1.00E-05
1.00E-06
10 100 1000 10000 100000
data size (N)
—@— Linear Sort Heap Sort n n*log(n)

4. Result analysis and conclusion
From the graph, we could observe that the radix sort has linear trend, and the heap

sort has the trend of O(n * log(n)), which are same as our estimation.

However, for the case N<10000, the radix sort is slower than the heap sort in spite
of the face that it has the lower time complexity. It may be the effect that at the each
counting sort step in the radix sort, we have to construct two new arrays, and apply

assignment through the whole array at least four times. These steps make the radix

sort slower than the heap sort in a small input data size. Yet, since the heap sort has a
faster growing trend, it may become slower with regard to the radix sort if the input

size keeps growing up.

We get the time complexity of O(n) by neglecting the effect of string length.
That is, assume the string length is far smaller than input data size. However, if the
string length is close to, or greater than the data size, the time complexity would
become O(n * string length) = 0(n?). So, it the algorithm would become slower
than the non-comparison-based sorting algorithm we used. Thus, the radix sort is only

suitable when a small string length.

For the space complexity, the radix sort is O(n), while the heap sortis O(1)
since it is in-place sorting, so the radix sort would take more space than the latter. In
the end, we have to choose the algorithm carefully to be suitable for different

problems.

Score: 92

0. See return.
[Coding] hw07.c spelling errors: initailize(1)
[Coding] can be more efficient.

[Coding] can be improved.

hw07.c

/* EE3980 HWO7 Linear Sort
* 105061212, FZREE

* 2019/04/20

*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/time.h>

int N; // data size

int max_size; // maximum string length

int R = 500; // repeat times

char** data; // input data

char** A; // array to be sorted

void readInput(void); // read all input

double GetTime(void); // get local time in seconds
void copyArray(char** data, char*x* A); // copy data to array A
void radixSort(char** A); // linear radix sort

void countingSort(char** A, int d); // stable counting sort

void HeapSort(char** list, int n); // in-place heap sort

void Heapify(char** list, int root, int n); // rearrange to form max heap
void printResult(); // print out the result

int main(void)

{
int i; // loop index
double t0, t1, t2, t_radix, t_heap; // CPU time
readInputQ); // read all input
t0 = GetTime(); // get current CPU time
for (i = 1; 1 <= R; i++) { // repeat R times
copyArray(data, A);
radixSort(A); // linear sort
if (i == 1) printResult(); // print out the result
}
tl = GetTime(); // get current CPU time
for (i =1; 1 <= R; i++) { // repeat R times
copyArray(data, A);
HeapSort (A, N); // in-place heap sort
}
t2 = GetTime(); // get current CPU time

// calculate average time consumed
t_radix = (t1 - t0) / R;
t_heap = (t2 - t1) / R;

// print out time results

printf ("N = %d\n", N);

printf(" Linear Sort CPU time = %e seconds\n", t_radix);
printf(" Heap Sort CPU time = e seconds\n", t_heap);

// free dynamic memories
free(A);
free(data);

return O;
}
void readInput(void) // read all input
{
int i, j; // loop index
int check; // check for the end of string
char s[15]; // temporary string
scanf ("%d", &N); // data size

// allocate dynamic memories
data = (char**)malloc(sizeof (char*) * (N+1));
A = (char**)malloc(sizeof (charx) * (N+1));

max_size = 0; // initailize maximum string size

for (i = 1; 1 <= N; i++) { // for all data
// allocate dynamic memories
datal[i] = (char*)malloc(sizeof(char) * 15);
A[i] = (char*)malloc(sizeof(char) * 15);

scanf ("%s", s); // input string

// find for the maximum string length
if(strlen(s) > max_size) max_size = strlen(s);
if (strlen(s) > max_size) max_size = strlen(s); // space

check = 0;
for (j = 0; j <= 14; j++) {
// mark characters after the string to be '™'
if (s[j] == '\0') check = 1;
if (check == 1) datalil[j] = '*';
else datalil[j] = s[j];

//

//

//

double GetTime(void)
{

struct timeval tv;

gettimeofday (&tv, NULL);

// return time with microsecond

return tv.tv_sec + tv.tv_usec * 0.000001;
}

void copyArray(char** data, char** A)
{

int i;

for(i = 1; i <= N; i++){
for (i = 1; 1 <= N; i++) { // space
A[i] = datalil;

//

//

// assign the pointer A[i] to point to

}
}
void radixSort(char** A)
{
int i;
for (i = max_size-1; i >= 0; i-—-) {
countingSort (A, i);
}
}

void countingSort(char** A, int d)
{

int i;

char*x* B;

int* C;

int t;

// allocate dynamic memories

//

//

//

//

//
//
//
//

B = (char**)malloc(sizeof (char*) * (N+1));

for (i = 1; 1 <= N; i++) {

get local time in seconds

time interval structure

write local time into tv

copy data to array A

loop index

the data array

linear radix sort

loop index

for all characters
stable counting sort

stable counting sort

loop index

array to store result
array to count the number
temporary index

B[i] = (char*)malloc(sizeof(char) * 15);

// allocate dynamic memories
C = (int*)malloc(sizeof (int) * 27);

// initialize C
for (i = 0; i <= 26; i++) {

C[i]l = 0;

// count number of elements in C[A[i]]
for (i = 1; i <= N; i++) {

t = A[i][d] - 96;

Cltl++;

// C[i] is the accumulate number of elements
for (i = 1; i <= 26; i++) {
C[il = Cc[i] + C[i-1]1;

// store sorted order in B
for (i = N; i >=1; i--) {
t = A[i][d] - 96;
B[C[t]] = A[il;

Cclt]l--;

// assign B to A
for (i = 1; i <= N; i++) {
Ali] = BI[il;

// free dynamic memories
free(B);
free(C);

void HeapSort(char** list,int n) // in-place heap sort
{
int i; // loop index
char* tp; // temporary pointer for swap

// heapify all the subtrees and be a max heap
for(i = n/2; i >=1; i--){
Heapify(list, i, n);

}
for(i =n; i >= 2; i—-){ // repeat n-1 times
//swap the first node and the last node
tp = list[il;
list[i] = list[1];
list[1] = tp;
// make list[1:i-1] be a max heap
Heapify(list, 1, i-1);
}

void Heapify(char** list, int root, int n)

{

char* tp = list[root];

int j;

int done 0;

//

//
//
//

rearrange to form max heap

assign root value to tp
loop index
check if heapify ends

// j is the leftchild of root and keeps finding its leftchild
for(j = root*2; j <= n &% done == 0; j = j*2){
if(j < n && stremp(list[jl, list[j+1]1) < 0){
// j is the rchild if rchild > 1child

j++;

}

if (stremp(tp, list[jl) > 0){

done = 1;
}
elseq{

list[j/2] = list[jl;

list[j/2] = tp;

void printResult()
{

int i, j;

for (i = 1; i <= N; i++) {
for (j = 0; j < 15 && A[i][j]
// print out results
printf("%c", A[i]1[i1);

}
printf ("\n");

//

//

//

//

//

//

done if root > children

place child node to parent

put root to the proper place

print out the result

loop index

for all data

i AL

