
1

EE3980 Algorithms

Homework 7. Linear Sort

By 105061212 王家駿

1. Introduction

In the previous homework, the best time complexity of comparison-based sorting

we got before is O(𝑛 ∗ log 𝑛). In this homework, we try to use a non-comparison-

based sorting algorithm to reach the time complexity of O(𝑛), which is linear. And

then we compare the average time consumed for sorting strings by using linear sort

and heap sort, respectively.

2. Implementation

For implementation, we first read in all the input data, and store them in a 2D

array. Then, we use the radix sort, a non-comparison-based sorting algorithm, to sort

the input strings in lexicographical order, and repeat the sorting for R times.

Moreover, we also implement the heap sort from homework 2 for R times and get the

average running time. Finally, we print out the array after sorted as well as the CPU

time consumed for the two algorithms. The details are given below.

2.1. Method of storing data

In order to store the input strings, we use a 2D array of character. The size of the

array is N*14, since there are N input strings and at most 14 characters in a string.

2

Now we examine the English characters in UTF-8 encoding rules. The lowercase

letters are encoded form 97 for “a” to 122 for “z”, so we put the characters which are

not belong to the string content, i.e. after ‘\0’, to be “`”, whose UTF-8 code is 96.

After this step, we now have 14 characters for a string, and they are at the range from

96 to 122 in UTF-8 code.

The reason why we let the rest of the characters be “`” is that for the two strings

with the same contents at the begin but one has extra letters, for example, “bit” and

“bitwise”, the lexicographical order must be “bit” before “bitwise”. So if we put the

“`” character at the end of “bit”, like “bit````”, the two words have the same number of

digits and it matches the alphabetical order in UTF-8. So, we could easily use it in the

radix sort since the number of digits are same.

Also, we use a global variable to record the maximum string length. For the

characters after the maximum string length, all of them are not the content of strings.

That is, the characters after the maximum string length are all “`”. Thus, when we use

the radix sort, we could neglect the digits after the maximum string length, since they

are all the same kind and no need to be sorted.

2.2. Radix Sort

1. Algorithm RadixSort(A, d)

2. {

3. for i := max_string_length to 1 step -1 do {

3

4. Sort array A by digit i using CountingSort;

5. }

6. }

With the input data stored in the array, we use radix sort to sort it in

lexicographical order. Radix sort applies sorting algorithm with respect to the certain

digit from the LSB to MSB, and the sorting algorithm has to be stable. Thus, when we

sort the higher digit, the lower digit we have sorted would not change its order if two

of the higher digits are same. That is, the two string would arrange in the alphabetical

order.

In our implementation, we use the counting sort for the stable sorting algorithm.

And then we seem each character as a digit to be sorted, so we apply counting sort

from the maximum string length (LSB) to the first character in the string (MSB). The

result would be all the string arranged in lexicographical order.

2.3. Counting Sort

1. Algorithm CountingSort(A,B,n,k)

2. {

3. // Initialize C to all 0

4. for i := 1 to k do {

5. C[i] := 0;

6. }

7.

8. // Count number elements in C[A[i]]

9. for i := 1 to n do {

10. C[A[i]] := C[A[i]] + 1;

11. }

4

12.

13. // C[i] is the accumulate number of elements

14. for i := 1 to k do {

15. C[i] := C[i] +C[i−1];

16. }

17.

18. // Store sorted order in array B

19. for i := n to 1 step −1 do {

20. B[C[A[i]]] := A[i];

21. C[A[i]] := C[A[i]]−1;

22. }

23. }

We use the counting sort as the stable sorting algorithm in the radix sort. First, we

construct an array B with size N to store the sorting result, and an array C with size 27

to store the number of each element.

At the next step, we iterate through the array, and record the number of times each

letter appears in C. Since we have only the lowercase letters and “`” we added, we

need 26 + 1 = 27 space to store the number of each letter in A. We use UTF-8 code to

decide where we should record. Since we have known that the characters in the

strings only have 96 to 122 in UTF-8 code. We stores the character with code 96 in

C[0], and 91 in C[1], and so on. Thus, we could get all of the 27 indexes in the array

C to record the appearing times of each letter respectively.

張彌彰

5

Then, we make the C array be the accumulation of the number of letters by adding

the value from C[1] to C[i-1]. Thus, after the additions through the whole array, the

content in the array C would be (not strictly) increasing.

At the final step, because we had known how many times each letter appears in

the array, the only thing we have to do is place the string to array B directly. For a

letter ltr, we would find C[ltr] to get the accumulation of index, and the index is where

we should put the string in B. And then minus the accumulation by one, which

indicates that the next string with the same letter would be place before the previous

string. We keep executing this step until the iteration goes to the end, and it also

means every component in array A was arranged well.

Finally, we copy the content in array B to A and finish the sorting of the digit.

2.4. Complexity analysis

For the time complexity, first in the radix sort function, the iteration at line 3

would run at most the time of maximum string length, which is no greater than 14.

And at each iteration step, the counting would run for one time. Thus, the time

complexity of radix sort is 14 ∗ time complexity of counting sort.

In the counting sort function, the iteration at line 4 and 14 would run for k times,

where k is the number of possible values = 27. The iteration at line 9 and 19 would

6

run for n times. And there are only assignments and additions in the four loops. Thus,

the time complexity is O(4 ∗ max(n, k)) = O(4 ∗ n) = O(n) since the data size n is

often larger than k. Hence, the overall time complexity is 14 ∗ O(n) = O(n), which

is linear.

For the space complexity, we need two extra arrays B and C with size n and k for

each counting sort, and the counting sort would execute for at most 14 times. Thus,

the space complexity is O(14 ∗ (n + k)) = O(14 ∗ 2n) = O(n).

Time complexity: O(n)

Space complexity: O(n)

3. Executing results

For repeating 500 times, we run the testing data from wl1.dat to wl9.dat with

different input data size, and record the average CPU time used.

Data size (N) Linear Sort Heap Sort

40 60.74μs 8.036μs

80 100.8μs 17.72μs

160 196.7μs 33.41μs

320 358.5μs 69.90μs

640 663.8μs 163.0μs

1280 1.271ms 358.4μs

7

2560 2.588ms 795.4μs

5120 5.187ms 1.944ms

10240 10.88ms 4.119ms

4. Result analysis and conclusion

From the graph, we could observe that the radix sort has linear trend, and the heap

sort has the trend of O(n ∗ log (n)), which are same as our estimation.

However, for the case N<10000, the radix sort is slower than the heap sort in spite

of the face that it has the lower time complexity. It may be the effect that at the each

counting sort step in the radix sort, we have to construct two new arrays, and apply

assignment through the whole array at least four times. These steps make the radix

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

10 100 1000 10000 100000

tim
e

,s

data size (N)

Average CPU time

Linear Sort Heap Sort n n*log(n)

8

sort slower than the heap sort in a small input data size. Yet, since the heap sort has a

faster growing trend, it may become slower with regard to the radix sort if the input

size keeps growing up.

We get the time complexity of O(n) by neglecting the effect of string length.

That is, assume the string length is far smaller than input data size. However, if the

string length is close to, or greater than the data size, the time complexity would

become O(n ∗ string length) = O(𝑛2). So, it the algorithm would become slower

than the non-comparison-based sorting algorithm we used. Thus, the radix sort is only

suitable when a small string length.

For the space complexity, the radix sort is O(n), while the heap sort is O(1)

since it is in-place sorting, so the radix sort would take more space than the latter. In

the end, we have to choose the algorithm carefully to be suitable for different

problems.

a+Q`2, Nk
ěěě@

QX a22 `2im`MX

(*Q/BM;) ?rydX+ bT2HHBM; 2``Q`b, BMBi�BHBx2URV

(*Q/BM;) +�M #2 KQ`2 2{+B2MiX

(*Q/BM;) +�M #2 BKT`Qp2/X

R

?rydX+

R f 11jN3y >qyd GBM2�` aQ`i
k Ry8yeRkRk- 王家駿
j kyRNfy9fky
9 f
8
e OBM+Hm/2 Ibi/BQX?=
d OBM+Hm/2 Ibi/HB#X?=
3 OBM+Hm/2 Ibi`BM;X?=
N OBM+Hm/2 IbvbfiBK2X?=

Ry
RR BMi Lc ff /�i� bBx2
Rk BMi K�tnbBx2c ff K�tBKmK bi`BM; H2M;i?
Rj BMi _ 4 8yyc ff `2T2�i iBK2b
R9 +?�` /�i�c ff BMTmi /�i�
R8 +?�` �c ff �``�v iQ #2 bQ`i2/
Re
Rd pQB/ `2�/AMTmiUpQB/Vc ff `2�/ �HH BMTmi
R3 /Qm#H2 :2ihBK2UpQB/Vc ff ;2i HQ+�H iBK2 BM b2+QM/b
RN pQB/ +QTv�``�vU+?�` /�i�- +?�` �Vc ff +QTv /�i� iQ �``�v �
ky pQB/ `�/BtaQ`iU+?�` �Vc ff HBM2�` `�/Bt bQ`i
kR pQB/ +QmMiBM;aQ`iU+?�` �- BMi /Vc ff bi�#H2 +QmMiBM; bQ`i
kk pQB/ >2�TaQ`iU+?�` HBbi- BMi MVc ff BM@TH�+2 ?2�T bQ`i
kj pQB/ >2�TB7vU+?�` HBbi- BMi `QQi- BMi MVc ff `2�``�M;2 iQ 7Q`K K�t ?2�T
k9 pQB/ T`BMi_2bmHiUVc ff T`BMi Qmi i?2 `2bmHi
k8
ke BMi K�BMUpQB/V
kd &
k3 BMi Bc ff HQQT BM/2t
kN /Qm#H2 iy- iR- ik- in`�/Bt- in?2�Tc ff *Sl iBK2
jy
jR `2�/AMTmiUVc ff `2�/ �HH BMTmi
jk
jj iy 4 :2ihBK2UVc ff ;2i +m``2Mi *Sl iBK2
j9
j8 7Q` UB 4 Rc B I4 _c BYYV & ff `2T2�i _ iBK2b
je +QTv�``�vU/�i�- �Vc
jd `�/BtaQ`iU�Vc ff HBM2�` bQ`i
j3 B7 UB 44 RV T`BMi_2bmHiUVc ff T`BMi Qmi i?2 `2bmHi
jN '
9y
9R iR 4 :2ihBK2UVc ff ;2i +m``2Mi *Sl iBK2
9k
9j 7Q` UB 4 Rc B I4 _c BYYV & ff `2T2�i _ iBK2b
99 +QTv�``�vU/�i�- �Vc
98 >2�TaQ`iU�- LVc ff BM@TH�+2 ?2�T bQ`i
9e '
9d
93 ik 4 :2ihBK2UVc ff ;2i +m``2Mi *Sl iBK2

R

9N
8y ff +�H+mH�i2 �p2`�;2 iBK2 +QMbmK2/
8R in`�/Bt 4 UiR @ iyV f _c
8k in?2�T 4 Uik @ iRV f _c
8j
89 ff T`BMi Qmi iBK2 `2bmHib
88 T`BMi7U]L 4 W/$M]- LVc
8e T`BMi7U] GBM2�` aQ`i *Sl iBK2 4 W2 b2+QM/b$M]- in`�/BtVc
8d T`BMi7U] >2�T aQ`i *Sl iBK2 4 W2 b2+QM/b$M]- in?2�TVc
83
8N ff 7`22 /vM�KB+ K2KQ`B2b
ey 7`22U�Vc
eR 7`22U/�i�Vc
ek
ej `2im`M yc
e9 '
e8
ee pQB/ `2�/AMTmiUpQB/V ff `2�/ �HH BMTmi
ed &
e3 BMi B- Dc ff HQQT BM/2t
eN BMi +?2+Fc ff +?2+F 7Q` i?2 2M/ Q7 bi`BM;
dy +?�` b(R8)c ff i2KTQ`�`v bi`BM;
dR
dk b+�M7U]W/]- �LVc ff /�i� bBx2
dj
d9 ff �HHQ+�i2 /vM�KB+ K2KQ`B2b
d8 /�i� 4 U+?�` VK�HHQ+UbBx2Q7U+?�` V ULYRVVc
de � 4 U+?�` VK�HHQ+UbBx2Q7U+?�` V ULYRVVc
dd
d3 K�tnbBx2 4 yc ff BMBi�BHBx2 K�tBKmK bi`BM; bBx2
dN
3y 7Q` UB 4 Rc B I4 Lc BYYV & ff 7Q` �HH /�i�
3R ff �HHQ+�i2 /vM�KB+ K2KQ`B2b
3k /�i�(B) 4 U+?�` VK�HHQ+UbBx2Q7U+?�`V R8Vc
3j �(B) 4 U+?�` VK�HHQ+UbBx2Q7U+?�`V R8Vc
39
38 b+�M7U]Wb]- bVc ff BMTmi bi`BM;
3e
3d ff 7BM/ 7Q` i?2 K�tBKmK bi`BM; H2M;i?
33 B7Ubi`H2MUbV = K�tnbBx2V K�tnbBx2 4 bi`H2MUbVc

B7 Ubi`H2MUbV = K�tnbBx2V K�tnbBx2 4 bi`H2MUbVc ff bT�+2
3N
Ny +?2+F 4 yc
NR 7Q` UD 4 yc D I4 R9c DYYV &
Nk ff K�`F +?�`�+i2`b �7i2` i?2 bi`BM; iQ #2 ^<^
Nj B7 Ub(D) 44 ^$y^V +?2+F 4 Rc
N9 B7 U+?2+F 44 RV /�i�(B)(D) 4 ^<^c
N8 2Hb2 /�i�(B)(D) 4 b(D)c
Ne '
Nd '

k

N3 '
NN
Ryy /Qm#H2 :2ihBK2UpQB/V ff ;2i HQ+�H iBK2 BM b2+QM/b
RyR &
Ryk bi`m+i iBK2p�H ipc ff iBK2 BMi2`p�H bi`m+im`2
Ryj
Ry9 ;2iiBK2Q7/�vU�ip- LlGGVc ff r`Bi2 HQ+�H iBK2 BMiQ ip
Ry8
Rye ff `2im`M iBK2 rBi? KB+`Qb2+QM/
Ryd `2im`M ipXipnb2+ Y ipXipnmb2+ yXyyyyyRc
Ry3 '
RyN
RRy pQB/ +QTv�``�vU+?�` /�i�- +?�` �V ff +QTv /�i� iQ �``�v �
RRR &
RRk BMi Bc ff HQQT BM/2t
RRj
RR9 7Q`UB 4 Rc B I4 Lc BYYV&

7Q` UB 4 Rc B I4 Lc BYYV & ff bT�+2
RR8 �(B) 4 /�i�(B)c
RRe ff �bbB;M i?2 TQBMi2` �(B) iQ TQBMi iQ i?2 /�i� �``�v
RRd '
RR3 '
RRN
Rky pQB/ `�/BtaQ`iU+?�` �V ff HBM2�` `�/Bt bQ`i
RkR &
Rkk BMi Bc ff HQQT BM/2t
Rkj
Rk9 7Q` UB 4 K�tnbBx2@Rc B =4 yc B@@V & ff 7Q` �HH +?�`�+i2`b
Rk8 +QmMiBM;aQ`iU�- BVc ff bi�#H2 +QmMiBM; bQ`i
Rke '
Rkd '
Rk3
RkN pQB/ +QmMiBM;aQ`iU+?�` �- BMi /V ff bi�#H2 +QmMiBM; bQ`i
Rjy &
RjR BMi Bc ff HQQT BM/2t
Rjk +?�` "c ff �``�v iQ biQ`2 `2bmHi
Rjj BMi *c ff �``�v iQ +QmMi i?2 MmK#2`
Rj9 BMi ic ff i2KTQ`�`v BM/2t
Rj8
Rje ff �HHQ+�i2 /vM�KB+ K2KQ`B2b
Rjd " 4 U+?�` VK�HHQ+UbBx2Q7U+?�` V ULYRVVc
Rj3 7Q` UB 4 Rc B I4 Lc BYYV &
RjN "(B) 4 U+?�` VK�HHQ+UbBx2Q7U+?�`V R8Vc
R9y '
R9R
R9k ff �HHQ+�i2 /vM�KB+ K2KQ`B2b
R9j * 4 UBMi VK�HHQ+UbBx2Q7UBMiV kdVc
R99
R98 ff BMBiB�HBx2 *
R9e 7Q` UB 4 yc B I4 kec BYYV &

j

R9d *(B) 4 yc
R93 '
R9N
R8y ff +QmMi MmK#2` Q7 2H2K2Mib BM *(�(B))
R8R 7Q` UB 4 Rc B I4 Lc BYYV &
R8k i 4 �(B)(/) @ Nec
R8j *(i)YYc
R89 '
R88
R8e ff *(B) Bb i?2 �++mKmH�i2 MmK#2` Q7 2H2K2Mib
R8d 7Q` UB 4 Rc B I4 kec BYYV &
R83 *(B) 4 *(B) Y *(B@R)c
R8N '
Rey
ReR ff biQ`2 bQ`i2/ Q`/2` BM "
Rek 7Q` UB 4 Lc B =4 Rc B@@V &
Rej i 4 �(B)(/) @ Nec
Re9 "(*(i)) 4 �(B)c
Re8 *(i)@@c
Ree '
Red
Re3 ff �bbB;M " iQ �
ReN 7Q` UB 4 Rc B I4 Lc BYYV &
Rdy �(B) 4 "(B)c
RdR '
Rdk
Rdj ff 7`22 /vM�KB+ K2KQ`B2b
Rd9 7`22U"Vc
Rd8 7`22U*Vc
Rde '
Rdd
Rd3 pQB/ >2�TaQ`iU+?�` HBbi-BMi MV ff BM@TH�+2 ?2�T bQ`i
RdN &
R3y BMi Bc ff HQQT BM/2t
R3R +?�` iTc ff i2KTQ`�`v TQBMi2` 7Q` br�T
R3k
R3j ff ?2�TB7v �HH i?2 bm#i`22b �M/ #2 � K�t ?2�T
R39 7Q`UB 4 Mfkc B =4 Rc B@@V&
R38 >2�TB7vUHBbi- B- MVc
R3e '
R3d
R33 7Q`UB 4 Mc B =4 kc B@@V& ff `2T2�i M@R iBK2b
R3N ffbr�T i?2 7B`bi MQ/2 �M/ i?2 H�bi MQ/2
RNy iT 4 HBbi(B)c
RNR HBbi(B) 4 HBbi(R)c
RNk HBbi(R) 4 iTc
RNj
RN9 ff K�F2 HBbi(R,B@R) #2 � K�t ?2�T
RN8 >2�TB7vUHBbi- R- B@RVc
RNe '

9

RNd '
RN3
RNN pQB/ >2�TB7vU+?�` HBbi- BMi `QQi- BMi MV ff `2�``�M;2 iQ 7Q`K K�t ?2�T
kyy &
kyR +?�` iT 4 HBbi(`QQi)c ff �bbB;M `QQi p�Hm2 iQ iT
kyk BMi Dc ff HQQT BM/2t
kyj BMi /QM2 4 yc ff +?2+F B7 ?2�TB7v 2M/b
ky9
ky8 ff D Bb i?2 H27i+?BH/ Q7 `QQi �M/ F22Tb 7BM/BM; Bib H27i+?BH/
kye 7Q`UD 4 `QQi kc D I4 M �� /QM2 44 yc D 4 D kV&
kyd B7UD I M �� bi`+KTUHBbi(D)- HBbi(DYR)V I yV&
ky3 ff D Bb i?2 `+?BH/ B7 `+?BH/ = H+?BH/
kyN DYYc
kRy '
kRR B7Ubi`+KTUiT- HBbi(D)V = yV&
kRk /QM2 4 Rc ff /QM2 B7 `QQi = +?BH/`2M
kRj '
kR9 2Hb2&
kR8 HBbi(Dfk) 4 HBbi(D)c ff TH�+2 +?BH/ MQ/2 iQ T�`2Mi
kRe '
kRd '
kR3
kRN HBbi(Dfk) 4 iTc ff Tmi `QQi iQ i?2 T`QT2` TH�+2
kky '
kkR
kkk pQB/ T`BMi_2bmHiUV ff T`BMi Qmi i?2 `2bmHi
kkj &
kk9 BMi B- Dc ff HQQT BM/2t
kk8
kke 7Q` UB 4 Rc B I4 Lc BYYV & ff 7Q` �HH /�i�
kkd 7Q` UD 4 yc D I R8 �� �(B)(D) 54 ^<^c DYYV &
kk3 ff T`BMi Qmi `2bmHib
kkN T`BMi7U]W+]- �(B)(D)Vc
kjy '
kjR T`BMi7U]$M]Vc
kjk '
kjj '

8

