EE3980 Algorithms

Homework 6. Power Ranking (Revised version)
By 105061212 F57E%
2019/06/05

1. Introduction

In this homework, we record each player’s name and the result of each match.
Then we use these data to create a ranking, where a player ranked high means the
player wins the contests against players whose ranks are lower. In the end, we

construct a list to represent the ranking of every players.

2. Implementation

In the program, we first read in the input data, and store them in the data structure.
We could view each player as a vertex and each game as an edge, so we could view
the whole input data as a directed graph, where the tail of edge is the winner and loser
for the head. Then, we use topological sort which includes DFS (Depth First Search)

algorithm on the graph to construct the ranking list.
2.1. Data structure

In order to store all the input data and use the DFS algorithm, we use the

adjacency list for storing the players’ names and the result of matches to represent the



directed graph. Thus, we allocate an array “list”, in which presents the start of the

linked list.

Each list[i] represents one vertex (player), and it contains a pointer to the next

node of list, which include the index of the vertex adjacent to the given vertex. With

this kind of linked list structure, we could store all the adjacent vertex information in

the adjacency list.

To store the names, we mention that all the input players’ names are two Chinese

characters. Since the space of a Chinese character is three bytes in UTF-8, we have to

allocate strings with at least seven bytes for the players’ names (including the null

character). To ensure enough space, we allocate 10 bytes for a name.

The linked list structure stores the data of the successors, which means if the

player wins the match, the loser’s index would be added at the top of the winner’s list.

Thus, we represent the directed graph by adjacency list.

Besides, we also construct two arrays visit and result for the DFS algorithm we

would use. visit stores the information of whether the vertex was visited, 0 for not

been visited and 1 for been visited. result stores the output data after topological sort.

2.2. Topological sort



After the adjacency list was constructed and all data were stored well. We use the

topological sort to find the ranking.

Topological sort uses the method of DFS. We keep find the vertex’s successor

until the finding goes to the end, and then find another successor (if any). The DFS

acts like this way until all the vertices have been found. To prevent a vertex from

being found twice, we use the visit array to check if the vertex had been found before.

When the visiting of the vertex is completed, we record the vertex into the end of

the result array. That is because in the DFS algorithm, the visiting of a vertex is

completed only when all its successors had been visited. Thus, we could ensure that

the losers would be written into the result list before the vertex itself, and get the

ranking of the visited vertices.

1. Algorithm top_sort(v) {

2. visited[v] := 1;

3. for each vertex w adjacent to v do {

4, if (visited[w] = @) then top_sort(w);
5. }

6. add v to the head of list;

7. }

After all the vertices were visited, all of them would be added to the list. So, the

ranking would include all players. Thus, we need a function call to ensure that every

vertex had been visited.



1. Algorithm topsort_call(G,list)

2. {

3. // initialize

4. for v := 1 to V do visited[v] := 0;

5. list := NULL;

6.

7. // top_sort for every vertex

8. for v := 1 to V do

9. if (visited[v] = @) then top_sort(v);
10. }

For the time complexity, in the top_sort function, the assignment at line 2 and the

addition to the list at line 6 take constant time. So, we are only interested in the

recursion part. For the loop at line 3, it would execute at most k times, where k is the

number of vertices adjacent to the vertex.

Now we examine the topsort_call function. For the loop at line 8, it would run V

times and lead to V topological sorts. However, if the vertex had been visited, the

topological sort would not be operated. Thus, we could ensure that each vertex would

been visited one time, which cause the time complexity of O(V).

Since every vertex were visited, all edges were visited, too, and each edge would

been visited once. Thus, from the conclusion we got in the last two sections, the

summation of k for all vertices is E. So, we know that the total time complexity is

O(V + E) , which is linear, since the vertices and edges are visited once.



For the space complexity, it might be O(E) to store the input data because we
construct the list nodes with a number of games. Then, we need additional space of

V*2, contributed by the two arrays visit and result.

Time complexity: O(V + E)
Space complexity: O(E) (input data) + O(V) (addition space)
3. Executing results

We run the testing data from gl.dat to g9.dat with different input data size for

100,000 times, record the average CPU time used, and compare to our estimation.

Number of Number of Data size Average time
players (V) games (E) (V+E)
8 12 20 374.4ns
16 32 48 694.0ns
32 80 112 1.372 us
64 192 256 3.267 i
128 448 576 7.665 s
256 1024 1280 18.03 s
512 2304 2816 4145 s
1024 5120 6144 96.21 i s
2048 11264 13312 254.7 1S



Average CPU time

1.00E-03

1.00E-04
%)
) .
£ 1.00E-05
]

1.00E-06 /

~
1.00E-07
10 100 1000 10000 100000

Data size (V+E)

—@— topological sort V+E

4. Result analysis and conclusion
From the graph, we could find that the result has a trend of V+E, which is O(n),
and it is same as our estimation. That is, the topological sort algorithm with DFS has a

linear time complexity.

The least time complexity of the power ranking problem must be O(V + E),
because we have to first read the input, which are V+E data, and it cause the time

complexity of O(V + E).

For a sparse graph, where the number of edges is close to the number of vertices,

the time complexity is O(V + E) = 0(2V) = O(V).



While for a dense graph, where the number of edges is close to square of the
number of vertices, the time complexity is O(V + E) = O(V + V?) = 0(V?). Since
there are many edges, it would lead to a waste of time during the operation of the
linked lists, and also a waste of space because the linked list occupies more spaces
than array when storing the same amount of data. Thus, it would be more feasible by

using arrays, and it’s also easily for coding.

All in all, there’s a trade-off between the array and linked list representation. They
might be used with regard to different input data and what we are concerned with,
time or space. So, it’s important to choose the data structure and implementation

methods under different circumstances.



