EE3980 Algorithms

Homework 5. Trading Stock 11
By 105061212 F-576%
2019/04/05

1. Introduction

In this homework, we improve our previous homework, trading stocks with

finding the maximum contiguous subarray by both brute-force and divide-and-
methods. . .
conquer method. As for the brute-force approach, we reduce the time complexity from
is

0(n®) to 0(n?), which might deviate from using the maximum subarray approach;
and for the divide-and-conquer with time complexity of O(n * logn), we adopt a
method called Kadane’s algorithm to make it reach just O(n). In the end, we compare

the time consumed of both methods with what we got in the last homework, and

analyze the cause of the differences.

2. Implementation

In the program, we use the main structure of the previous homework, and only
revise two parts of the code. First, we revise the MaxSubArrayBF function to make
it more efficient. Second, we replace the divide-and conquer method by Kadane’s

algorithm, which would be explained later, in the MaxSubArray function.

2.1. Brute-force approach

張彌彰
methods.

張彌彰
is

In our previous homework, we implement the brute-force approach with the time

complexity of O(n?), since it has to runs through the array with the start and end

points of the subarray, which contributes to 0O(n?), and then sum up all the items in

the subarray, which contributes to O(n).

10.

11.

12.

13.

14.

15.

16.

Algorithm MaxSubArrayBF(A, n, low, high)

{

max := 0; low := 1; high := n;
for j :=1 to n do {
for k := j to n do {
sum := 0;
for i := j to k do {
sum := sum + A[i];
}
if (sum > max) then {
max := sum; low := j; high
}
}
}

return max;

// Initialize

// Try all possible ranges: A[j:k]

// Summation for A[j:k]

// Record the max value and range

= k;

We have to implement this way since we treat it as the maximum contiguous

subarray sum problem. However, we had known the actual price of stocks at each

moment, and the contiguous subarray sum stands for the price difference between the

start point and the end point. So, we could get the sum just by calculating the

difference of the prices between the buy date and sell date, instead of summing up the

price differences through the array. Thus, we replace line 6 ~ 9 by only one assign

statement.

1. Algorithm MaxSubArrayBF_revised(A,n,low,high)

2. {

3. max := 0; low := 1; high := n; // Initialize

4. for j := 1 to n do { // Try all possible ranges: A[j:k]
5. for k := j to n do {

6. sum = A[k] - A[7]; // price diffence between k and j
7. if (sum > max) then { // Record the maximum value and range
8. max := sum; low := j; high := k;

9 }

10. }

11. }

12. return max;

13. }

For the time complexity, the outer and inner loop still contribute O(n?), where
the iterations may go through the array. And at line 6 ~ 9, there are at most only one
comparison and four assignment, which contribute a time complexity of constant

time. Thus, the overall time complexity of the brute-force approach becomes 0(n?).

For the space complexity, we also need extra parameters: 1, j, k, max, low, high,
and the initial array with size N like the previous homework. So, the space complexity

is N + 6 which is O(n).

Time complexity: 0(n?)

Space complexity: O(n)

2.2. Kadane’s algorithm

In our previous homework, we implemented the divide-and-conquer method to

solve the maximum contiguous sum problem, with the time complexity of O(n *

logn). Yet, we try to use the Kadane’s algorithm, contributed by an American

professor of computer science Joseph B. Kadane, in the MaxSubArray function to

reduce the time complexity of the problem.

1. Algorithm Kadane(A, n, start, end)

2. {

3. start := 2; end := 1; // initialize two ends

4. start_tmp := 2; // temporary start index
5. max := @; now := 0; // initialize values

6. for i := 2 to n do { // go through the array
7. now := now + A[i]; // subarray value until i
8. if (now < @) then { // if value < 0, reset

9. now := 0;

10. start_tmp := i + 1;

11. }

12. if (now > max) then { // record if value is largest
13. max := now;

14. start := start_tmp;

15. end := i;

16. }

17. }

18. return max;

19. }

The feature of Kadane’s algorithm is that the iteration only goes through the array

one time, and it doesn’t need any recursion. In the algorithm, we use two variables

max and now to record the value of the maximum contiguous sum so far and the

contiguous sum with A[i], respectively.

During each iteration step, we first add the current datum A[i] to the variable now,

which then stands for the contiguous subarray sum including A[i]. And if now is less

than zero, it means that the contiguous sum is negative. That is, the price is lower at

this point than where the sum take start. Thus, we reset the sum by assign now to zero,

and take the current index to be the new beginning of the contiguous sum.

Then, we check whether the contiguous sum now is larger than the contiguous

sum so far. If yes, we refresh the value of max to record the maximum sum since we

want to get the maximum value until now. At the end of each iteration step, we can

get the maximum contiguous sum from 1 to the iteration index i, which is either the

maximum contiguous sum we recorded before or the contiguous sum including A[i].

Therefore, when the iteration goes to end, we could find the maximum contiguous

sum from 1 to n.

For the time complexity, the loop at line 6 goes through the whole array with size

n, which contribute the time complexity of O(n). In the loop, there are only

comparisons, addition, and assignment operations, which would take constant time.

Thus, the overall time complexity is O(n), and that means we can solve the

maximum contiguous sum problem by using Kadane’s algorithm with linear time.

As for the space complexity, we need extra parameters: i, start, start tmp, end,
max, now and the initial array with size N. So, the space complexity is N + 6 which

is O(n).

Time complexity: O(n)
Space complexity: O(n)
3. Executing results
We run the testing data from s1.dat to s9.dat with different input data size by

revised brute-force approach and Kadane’s algorithm for 500 times, record the

average CPU time used, and compare to the results we got in the previous homework.

Data Brute-force | Brute-force = Divide-and- Kadane’s | Earning
size approach approach conquer algorithm per
(revised) share
10 1.907 s 616.1ns 2.146 1 s 97.75ns 9.065
25 23.84 us 3222 us 5.007 s 315.7ns 20.81
55 198.8 s 9.306 1 s 12.16 s 608.0ns 96.02
110 1.456ms 5225 us 24.08 1s 1.372 s 103.9
220 11.35ms 177.0 i s 49.11 us 2280 us 204.1
450 84.34ms 622.69 s 77.01 us 3.902 i s 371.6

910

555.1ms

2.315ms

1409 1 s

7176 1’

641.8

1830

4.295s

9.386ms

292.1us

12.58 u's

641.8

3671

34.56s

37.41ms

617.0 s

24.46 1’

1185

Average CPU time consumed

anu arker fonts.
1.00E+02 ¢ se darker fonts

1.00E+01
1.00E+00
1.00E-01
1.00E-02

1.00E-03

time, s

1.00E-04
1.00E-05
1.00E-06
1.00E-07

1.00E-08
10 100 1000 10000

problem size N

—@— brute-force —@— brute-force (revised) —@— divide-and-conquer

Kanade's —@—n"3 —®—n*log(n)

—@—n"2 —@—n

4. Result analysis and conclusion

From the graph, we could observe that the advised brute-force approach has a
trend of n?, and the Kadane’s algorithm has a trend of n, which are same as our

estimation.

張彌彰
Can use darker fonts.

Compared to the previous homework, the time complexity of the brute-force
approach successfully reduces from 0(n3) to 0(n?), and we had found an algorithm
whose time complexity is lower than O(n * logn). There are large scales of

improvements on both the methods.

The Kadane’s algorithm is the fastest on all input data. It might be the fact that it
runs through the array for only one time, and it doesn’t need any recursive function
calls. Thus, the algorithm could be used on a wide range of input data size, making it
faster than all other methods we mentioned above. Furthermore, if we just want to
know the contiguous sum instead of the indexes, we could take off the start,

start tmp, end variables in the algorithm, which could be much faster.

The least time complexity of solving maximum contiguous sum we got so far is
O(n), and it might not be less. Since we must know the content of each index in the
array with size n to solve the problem, we have to run through the array to get the
values, which contributes the time complexity with O(n). Thus, O(n) must be the

least time complexity of the maximum contiguous sum problem.

Score: 97

0. See return.

[Writing] minor corrections.

hw05.c

/* EE3980 HWO5 Trading Stock II
* 105061212, Chia-Chun Wang

* 2019/04/05

*/

#include <stdio.h>
#include <stdlib.h>
#include <sys/time.h>

typedef struct sSTKprice // stock data structure
{

int year, month, day;

double price, change;

can add comments to explain the purpose of each item.

} STKprice;
typedef struct sResult // max contiguous sum structure
{

int buy; // date to buy

int sell; // date to sell

double earning; // price difference
} Result;
void readInput(void); // read data input
double GetTime(void); // get current CPU time
Result MaxSubArrayBF (void); // brute-force approach
Result MaxSubArray(void) ; // Kadane's method

// print out results
void printResult(double t_BF, double t_DandC, Result r_BF, Result r_DandC);

int N; // number of data input
int Nrepeat = 500; // number of repetitions
STKprice* data; // Array to store input data

int main(void)

{
int i; // loop index
double t0, t1, t2; // CPU time
double t_BF, t_Kadane; // average CPU time
Result r_BF, r_Kadane; // max contiguous sum results
readInputQ); // read data input
t0 = GetTime(); // get current CPU time
for (i = 1; i <= Nrepeat; i++) { // repeat Nrepeat times
r_BF = MaxSubArrayBF(); // find result by brute-force
}

tl = GetTime(); // get current CPU time

for (i = 1; i <= Nrepeat; i++) { // repeat Nrepeat times
r_Kadane = MaxSubArray() ; // find result by Kadane

}

t2 = GetTime(); // get current CPU time

// calculate average CPU time
t_BF = (t1 - t0) / Nrepeat;
t_Kadane = (t2 - tl1) / Nrepeat;

printResult (t_BF, t_Kadane, r_BF, r_Kadane);// print out results

free(data); // free dynamic memories
return O;
}
void readInput(void) // read data input
{
int i; // loop index
scanf ("%d", &N); // number of data
// allocate dynamic memories for data input
data = (STKpricex*)malloc(sizeof (STKprice) * (N+1));
// read the first data
scanf ("%d", &datall].year);
scanf ("%d", &datal[1l] .month);
scanf ("/d", &datall].day);
scanf (")1f", &data[l].price);
datal[1] .change = 0; // change of the first data = 0
for (i = 2; 1 <= N; i++) { // read the rest data
scanf ("%d", &datali].year);
scanf ("%d", &datali] .month);
scanf ("%d", &datali].day);
scanf (")1f", &datali].price);
// calcute the price changes
datali].change = datal[i].price - datal[i-1].price;
}
}
double GetTime(void) // get local time in seconds
{
struct timeval tv; // time interval structure
gettimeofday(&tv, NULL); // write local time into tv

return tv.tv_sec + tv.tv_usec * 0.000001; // return time with microsecond

}
Result MaxSubArrayBF(void) // brute-force approach
{
int j, k; // loop index
double sum; // temporary sum
Result r; // result
r.earning = 0; // initialize r
for (j = 1; j <= N; j++) { // try begin from 1 to N
for (k = j; k <= N; k++) { // try end from begin to N
sum = datalk].price - dataljl.price;// sum is the price difference
if (sum > r.earning) { // record max value and range
r.earning = sum;
r.buy = j;
r.sell = k;
}
}
}
return r;
}
Result MaxSubArray(void) // Kadane's method
{
int i; // loop index
int start = 2, end = 1; // two ends of max subarray
int start_tmp = 2; // temporary start point
double max = O; // max value of subarray so far
double now = 0; // max value of subarray now
Result r; // result returned
for (i = 2; i <= N; i++) { // go through the array
now = now + datali].change; // subarray value until i
if (now < 0) { // if value < 0, reset
now = 0;
start_tmp = 1 + 1;
¥
if (now > max) { // record if value is largest
max = now;
start = start_tmp;
end = i;
3
}

// return the result
r.buy = start - 1;

r.sell = end;
r.earning = max;

return r;

// print out the results
void printResult(double t_BF, double t_Kadane, Result r_BF, Result r_Kadane)
{

// the buy/sell date data

STKprice BF_buy, BF_sell, Kadane_buy, Kadane_sell;

// find data by the results we got
BF_buy = datal[r_BF.buy];

BF_sell = datal[r_BF.sell];
Kadane_buy = data[r_Kadane.buy];
Kadane_sell = data[r_Kadane.selll];

// print out all the results

printf ("N = %d\n", N);

printf ("Brute-force approach: time %e s\n", t_BF);

printf ("Buy: %d/%d/%d at %1lf\n", BF_buy.year, BF_buy.month,
BF_buy.day, BF_buy.price);

printf ("Sell: %d/%d/%d at %lf\n", BF_sell.year, BF_sell.month,
BF_sell.day, BF_sell.price);

printf ("Earning: %1f per share.\n", r_BF.earning);

printf ("Divide and Conquer: time %e s\n", t_Kadane);

printf ("Buy: %d/%d/%d at %1f\n", Kadane_buy.year, Kadane_buy.month,
Kadane_buy.day, Kadane_buy.price);

printf("Sell: %d/%d/%d at %1f\n", Kadane_sell.year, Kadane_sell.month,
Kadane_sell.day, Kadane_sell.price);

printf ("Earning: %1f per share.\n", r_Kadane.earning);

