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1. Introduction 

In this homework, we find the maximum earning at for one-buy-one-sell stock 

trading. We have N data, with each datum including the date and the price of the stock 

at each date, so we can convert the prices into an array with price changes, which 

indicate the price differences between a day and its previous day. Hence, the problem 

becomes finding a range of the array with maximum contiguous sum. Because the 

sum is as same as the price difference of the day between where the array begins and 

where the array ends, the maximum sum would lead to the maximum earning. In 

order to find the maximum contiguous sum, we use two methods, the brute-force 

approach and the divide-and-conquer recursion, and compare the time consumed 

between the two methods when executing. 

2. Implementation 

In the program, we first read all inputs and store them in an array with type 

STKprice, which contains the information of the date, the price and the price change. 

Then we use the two methods, MaxSubArrayBF and MaxSubArray, which would 
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be explained later, to implement the network connectivity, and also record the CPU 

time consumed. Finally, we show the results including the date we should buy and 

sell, the stock price at the dates, the total earning per share, and the CPU time on the 

screen. 

2.1. Brute-force approach 

1. Algorithm MaxSubArrayBF(A, n, low, high)   

2. {   

3.     max := 0; low := 1; high := n;        // Initialize   

4.     for j := 1 to n do {                  // Try all possible ranges: A[j:k] 

5.         for k := j to n do {   

6.             sum := 0;    

7.             for i := j to k do {          // Summation for A[j:k]   

8.                 sum := sum + A[i];   

9.             }   

10.             if (sum > max) then {         // Record the max value and range 

11.                 max := sum; low := j; high := k;   

12.             }   

13.         }   

14.     }   

15.     return max;   

16. }   

In the function MaxSubArrayBF, we implement the brute-force approach to find 

the maximum contiguous sum. The brute-force solution is to check every subarray, 

i.e. to check every possible date for buying and selling, and then compare their value 

to fine the largest one. So we first let j run through the array to get the date of buying, 

and let k run through the array to get the date of selling, and sum up the values to get 
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the price differences. Then we record the value if it is the largest one until now. After 

the iterations go to end, the value left must be the largest value of summation of 

contiguous subarray. That is, the maximum earning of the stock. 

For the time complexity, the first(outer) loop would execute N times, the second 

loop N-j+1 times, and the third k-j+1 times. Since j and k are related to the problem 

size N, the overall time complexity is O(𝑛3), for average case, worst case, and best 

case. 

For the space complexity, we need extra parameters: i, j, k, max, low, high, and 

the initial array with size N, so the space complexity is N + 6 which is O(n). 

Time complexity:  O(𝑛3) 

Space complexity: O(n) 

2.2. Divide-and-conquer approach 

1. Algorithm MaxSubArray(A, begin, end, low, high)   

2. {   

3.     if (begin = end) then {                         // termination condition 

4.         low := begin; high := end; return A[begin];   

5.     }   

6.        

7.     mid := (begin+end) / 2;   

8.     lsum := MaxSubArray(A, begin, mid, llow, lhigh); // left region   

9.     rsum := MaxSubArray(A, mid+1, end, rlow, rhigh); // right region   

10.     // cross boundary   

11.     xsum := MaxSubArrayXB(A, begin, mid, end, xlow, xhigh);    

12.        
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13.     if (lsum >= rsum and lsum >= xsum) then {         // lsum is the largest 

14.         low := llow; high := lhigh; return lsum;   

15.     }    

16.     else if (rsum >= lsum and rsum >= xsum) then {    // rsum is the largest 

17.         low := rlow; high := rhigh; return rsum;    

18.     }   

19.     // cross-boundary is the largest   

20.     low := xlow; high := xhigh; return xsum;    

21. }   

In the function MaxSubArray, we implement the divide-and-conquer approach to 

find the maximum contiguous sum. When using this method, we divide the whole 

problem to small pieces, and calculate the maximum contiguous sum of each segment 

by recursion. In order to deal with the situation where the date to buy and the date to 

sell are not in the same segment, we use the function MaxSubArrayXB. 

1. Algorithm MaxSubArrayXB(A,begin,mid,end,low,high)   

2. {   

3.     lsum := 0; low := mid; sum := 0;        // Initialize for lower half   

4.     for i := mid to begin step −1 do {      // find low to maximize   

5.         sum := sum + A[i];                  // continue to add   

6.         if (sum > lsum) then {              // record if larger   

7.             lsum := sum; low := i;   

8.         }   

9.     }   

10.        

11.     rsum := 0; high := mid+ 1; sum := 0;    // Initialize for higher half   

12.     for i := mid + 1 to end do {            // find high to maximize   

13.         sum := sum + A[i];                  // Continue to add.   

14.         if (sum > rsum) then {              // record if larger   

15.             rsum := sum; high := i;   

16.         }   

17.     }   

18.        
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19.     return lsum + rsum;                     // Overall sum.   

20. }    

In the function MaxSubArrayXB, we calculate the maximum contiguous sum 

where the begin is at the left segment and the end is at the right segment. This is same 

as finding the maximum contiguous sum of the left segment plus the maximum 

contiguous sum of the right segment. Since the subarray must be contiguous, we must 

find from mid to begin at the left segment, and find from mid+1 to end at the right 

segment to ensure the subarray contiguous. Thus, we find the subarray both for the 

two parts, and record the value when it is the largest one until now. At the end of the 

iterations, we can get the maximum contiguous sum for both two parts and sum up 

them, so then we could get the cross-boundary maximum contiguous sum. 

Now we go back to the MaxSubArray function. At first, we define the terminal 

condition to stop the recursion when begin is equal to end, i.e. the segment only has 

one element. Then, at each recursion step, we divide the array in two pieces from the 

middle, and call the recursive function at both left and right parts to find the sum of 

each segment. We also find the cross-boundary sum.  Finally, we compare the results 

of the maximum contiguous sum of the three part: left segment, right segment and 

cross-boundary, and choose the largest one to be the maximum contiguous sum of the 

whole array. 
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For the time complexity, when the problem size is n for the MaxSubArray, and 

the time consumed is T(n), and we let Txb(n) be the time consumed of 

MaxSubArrayXB with problem size n. 

For the MaxSubArrayXB function, the iterations go through the left part and the 

right part, which is total n steps. Thus, we could find out that Txb(n) = n. 

For the MaxSubArray function, their would be three comparison, two 

MaxSubArray with problem size n/2, and a with problem MaxSubArrayXB size n. 

Since the comparisons are constant time, we could just ignore them. Assume problem 

size n is 2k. So, the time consumed with n is: 

T(n) = T (
n
2

) ∗ 2 + Txb(n) = T (
n
2

) ∗ 2 + n   

= (T (
n
4

) ∗ 2 +
n
2

) ∗ 2n

= T (
n
4

) ∗ 4 + 2n

= ⋯

= T (
n
2k) ∗ 2k + k ∗ n

= n + n ∗ log (n) 

Thus, the time complexity of the divide-and-conquer method is O(n ∗ log n). 
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For the space complexity, we need extra parameter like mid, sum, lsum, rsum… 

And since the recursion would execute at most log(n) times, we must have extra 

spaces for these parameters at each recursion step. Adding the initial array with space 

n, the overall space complexity is O(log n + n) = O(log n). 

Time complexity: O(n ∗ log n) 

Space complexity: O(log n) 

3. Executing results 

We run the testing data from s1.dat to s9.dat with different input data size by 

brute-force approach one time and divide-and-conquer 1000 times, and record the 

average CPU time used. 

Data size  Brute-force 
approach 

Divide-and-
conquer 

Earning per 
share 

10 1.907μs 2.146μs 9.065 

25 23.84μs 5.007μs 20.81 

55 198.8μs 12.16μs 96.02 

110 1.456ms 24.08μs 103.9 

220 11.35ms 49.11μs 204.1 

450 84.34ms 77.01μs 371.6 

910 555.1ms 140.9μs 641.8 

1830 4.295s 292.1μs 641.8 
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3671 34.56s 617.0μs 1185 

 

4. Result analysis and conclusion 

From the graph, we could observe that the brute-force approach has a trend of 

 𝑛3, and the divide-and-conquer approach has a trend of n ∗ log 𝑛 , which are same as 

our estimation. 

Note that for the problem size 10, the brute-force approach is faster than the 

divide-and-conquer. It might be the effect that the divide-and-conquer approach use 

recursive functions, which might consume a lot of time while the function calls. Thus, 

the iteration methods might be faster than the recursion method for the small input 

data size. However, when the problem size grows up, the time consumed of the brute-
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force grows too fast so that the function calls take less time with compared to the 

brute-force approach. 

Compare the space complexities of the two methods. The brute-force approach 

takes O(n) and O(log n) for the divide-and-conquer method, which means that the 

later would need more memories for operating than the former. Thus, it is a trade-off 

between time and space efficiency at the two methods. Since the nowadays techniques 

have great improvement at the computer memories, we would often emphasize the 

time efficiency than the space, so we usually take the divide-and-conquer approach to 

reduce the time used. 

To use the algorithm in real stock trading, we must to know the stock price on 

every day, and we could calculate the time when we should buy and sell efficiently by 

the divide-and-conquer approach. However, due to the fact that all the prices have to 

be known at first, we couldn’t predict the stock price in the future, what we can only 

do is to calculate the time for maximum earning for the past. Perhaps there’s someone 

or someway that could correctly predict the stock market by the past data. Then we 

could use the algorithm to analyze the past data efficiently to make money. 
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