EE3980 Algorithms

Homework 4. Trading Stock
By 105061212 T-ZE&
2019/03/30

1. Introduction

In this homework, we find the maximum earning at for one-buy-one-sell stock
trading. We have N data, with each datum including the date and the price of the stock
at each date, so we can convert the prices into an array with price changes, which
indicate the price differences between a day and its previous day. Hence, the problem
becomes finding a range of the array with maximum contiguous sum. Because the
sum is as same as the price difference of the day between where the array begins and
where the array ends, the maximum sum would lead to the maximum earning. In
order to find the maximum contiguous sum, we use two methods, the brute-force
approach and the divide-and-conquer recursion, and compare the time consumed

between the two methods when executing.
2. Implementation

In the program, we first read all inputs and store them in an array with type
STKprice, which contains the information of the date, the price and the price change.

Then we use the two methods, MaxSubArrayBF and MaxSubArray, which would



be explained later, to implement the network connectivity, and also record the CPU

time consumed. Finally, we show the results including the date we should buy and

sell, the stock price at the dates, the total earning per share, and the CPU time on the

screen.

2.1. Brute-force approach

10.

11.

12.

13.

14.

15.

16.

Algorithm MaxSubArrayBF(A, n, low, high)

{

max := 0; low := 1; high := n;
for j :=1 to n do {
for k := j to n do {
sum := 0;

for i := j to k do {

sum := sum + A[i];

}

if (sum > max) then {
max := sum; low := J;

}

return max;

// Initialize

// Try all possible ranges: A[j:k]

// Summation for A[j:k]

// Record the max value and range

high := k;

In the function MaxSubArrayBF, we implement the brute-force approach to find

the maximum contiguous sum. The brute-force solution is to check every subarray,

i.e. to check every possible date for buying and selling, and then compare their value

to fine the largest one. So we first let j run through the array to get the date of buying,

and let k run through the array to get the date of selling, and sum up the values to get


張彌彰



the price differences. Then we record the value if it is the largest one until now. After
the iterations go to end, the value left must be the largest value of summation of

contiguous subarray. That is, the maximum earning of the stock.

For the time complexity, the first(outer) loop would execute N times, the second
loop N-j+1 times, and the third k-j+1 times. Since j and k are related to the problem
size N, the overall time complexity is O(n®), for average case, worst case, and best

casc.

For the space complexity, we need extra parameters: i, j, k, max, low, high, and

the initial array with size N, so the space complexity is N + 6 whichis O(n).

Time complexity: O(n?)
Space complexity: O(n)

2.2. Divide-and-conquer approach

1. Algorithm MaxSubArray(A, begin, end, low, high)

2. {

3. if (begin = end) then { // termination condition
4. low := begin; high := end; return A[begin];

5 }

6.

7. mid := (begin+end) / 2;

8. lsum := MaxSubArray(A, begin, mid, llow, lhigh); // left region
9. rsum := MaxSubArray(A, mid+1l, end, rlow, rhigh); // right region
10. // cross boundary

11. xsum := MaxSubArrayXB(A, begin, mid, end, xlow, xhigh);

12.



13. if (lsum >= rsum and lsum >= xsum) then { // lsum is the largest

14. low := llow; high := lhigh; return lsum;

15. }

16. else if (rsum >= lsum and rsum >= xsum) then { // rsum is the largest
17. low := rlow; high := rhigh; return rsum;

18. }

19. // cross-boundary is the largest

20. low := xlow; high := xhigh; return xsum;

21. }

In the function MaxSubArray, we implement the divide-and-conquer approach to

find the maximum contiguous sum. When using this method, we divide the whole

problem to small pieces, and calculate the maximum contiguous sum of each segment

by recursion. In order to deal with the situation where the date to buy and the date to

sell are not in the same segment, we use the function MaxSubArrayXB.

1. Algorithm MaxSubArrayXB(A,begin,mid,end,low,high)

2. {

3. Isum := @; low := mid; sum := 0; // Initialize for lower half
4. for i := mid to begin step -1 do { // find low to maximize

5. sum := sum + A[i]; // continue to add

6. if (sum > 1lsum) then { // record if larger

7. Isum := sum; low := i;

8 }

9 }

10.

11. rsum := 0; high := mid+ 1; sum := 0; // Initialize for higher half
12 for i := mid + 1 to end do { // find high to maximize

13. sum := sum + A[i]; // Continue to add.

14. if (sum > rsum) then { // record if larger

15. rsum := sum; high := i;

16. }

17. }

18.



19. return lsum + rsum; // Overall sum.

20. }

In the function MaxSubArrayXB, we calculate the maximum contiguous sum

where the begin is at the left segment and the end is at the right segment. This is same

as finding the maximum contiguous sum of the left segment plus the maximum

contiguous sum of the right segment. Since the subarray must be contiguous, we must

find from mid to begin at the left segment, and find from mid+1 to end at the right

segment to ensure the subarray contiguous. Thus, we find the subarray both for the

two parts, and record the value when it is the largest one until now. At the end of the

iterations, we can get the maximum contiguous sum for both two parts and sum up

them, so then we could get the cross-boundary maximum contiguous sum.

Now we go back to the MaxSubArray function. At first, we define the terminal

condition to stop the recursion when begin is equal to end, i.e. the segment only has

one element. Then, at each recursion step, we divide the array in two pieces from the

middle, and call the recursive function at both left and right parts to find the sum of

each segment. We also find the cross-boundary sum. Finally, we compare the results

of the maximum contiguous sum of the three part: left segment, right segment and

cross-boundary, and choose the largest one to be the maximum contiguous sum of the

whole array.



For the time complexity, when the problem size is n for the MaxSubArray, and
the time consumed is T(n), and we let Txb(n) be the time consumed of

MaxSubArrayXB with problem size n.

For the MaxSubArrayXB function, the iterations go through the left part and the

right part, which is total n steps. Thus, we could find out that Txb(n) = n.

For the MaxSubArray function, their would be three comparison, two
MaxSubArray with problem size n/2, and a with problem MaxSubArrayXB size n.
Since the comparisons are constant time, we could just ignore them. Assume problem

sizenis 2K. So, the time consumed with n is:

T(n)=T(g)*2+TXb(n)=T(g)*2+n

=(T(g)*2+g)*2n

=T(2)*4+2n

=T(%)*2k+k*n

=n +n *log(n)

Thus, the time complexity of the divide-and-conquer method is O(n * log n).



For the space complexity, we need extra parameter like mid, sum, Isum, rsum...

And since the recursion would execute at most log(n) times, we must have extra

spaces for these parameters at each recursion step. Adding the initial array with space

n, the overall space complexity is O(logn + n) = O(logn).

This is incorrect!

Time complexity: O(n * logn)
Space complexity: O(logn)
3. Executing results
We run the testing data from s1.dat to s9.dat with different input data size by

brute-force approach one time and divide-and-conquer 1000 times, and record the

average CPU time used.

Data size Brute-force Divide-and- | Earning per

approach conquer share

10 1.907 s 2.146 i1 s 9.065

25 23.84 s 5.007 s 20.81
55 198.8 s 12.16 s 96.02
110 1.456ms 24.08 1s 103.9
220 11.35ms 49.11 us 204.1
450 84.34ms 77.01 s 371.6
910 555.1ms 140.9 11 s 641.8
1830 4.295s 292.1 us 641.8



張彌彰


張彌彰
This is incorrect!


3671 34.56s 617.0 s 1185

Average CPU time consumed

1.00E+02
1.00E+01
1.00E+00
1.00E-01

1.00E-02 -

time, s

1.00E-03
1.00E-04
1.00E-05
1.00E-06

1.00E-07

10 100 1000 10000
problem size N

—@— Brute-force Divide-and-conquer n"3 n*log(n)

4. Result analysis and conclusion

From the graph, we could observe that the brute-force approach has a trend of
n3, and the divide-and-conquer approach has a trend of n * logn , which are same as

our estimation.

Note that for the problem size 10, the brute-force approach is faster than the
divide-and-conquer. It might be the effect that the divide-and-conquer approach use
recursive functions, which might consume a lot of time while the function calls. Thus,
the iteration methods might be faster than the recursion method for the small input

data size. However, when the problem size grows up, the time consumed of the brute-



force grows too fast so that the function calls take less time with compared to the

brute-force approach.

Compare the space complexities of the two methods. The brute-force approach

takes O(n) and O(logn) for the divide-and-conquer method, which means that the

later would need more memories for operating than the former. Thus, it is a trade-off

between time and space efficiency at the two methods. Since the nowadays techniques

have great improvement at the computer memories, we would often emphasize the

time efficiency than the space, so we usually take the divide-and-conquer approach to

reduce the time used.

To use the algorithm in real stock trading, we must to know the stock price on

every day, and we could calculate the time when we should buy and sell efficiently by

the divide-and-conquer approach. However, due to the fact that all the prices have to

be known at first, we couldn’t predict the stock price in the future, what we can only

do is to calculate the time for maximum earning for the past. Perhaps there’s someone

or someway that could correctly predict the stock market by the past data. Then we

could use the algorithm to analyze the past data efficiently to make money.



Score: &7

0. See return.
[Analysis| space complexity of the divide-and-conquer approach is not correct!

[Coding] Can use space characters more effectively to make your codes more legible.



hw04.c

/* EE3980 HW04 Trading Stock
* 105061212, Chia-Chun Wang
* 2019/03/30
*/

#include <stdio.h>
#include <stdlib.h>
#include <sys/time.h>

typedef struct sSTKprice // stock data structure
{

int year, month, day;

double price, change;

Can use comments to explain the purpose of each item.
} STKprice;

typedef struct sResult // max contiguous sum structure
{

int buy;

int sell;

double earning;

} Result;

void readInput(void); // read data input
double GetTime(void); // get current CPU time
Result MaxSubArrayBF (void); // brute-force approach
Result MaxSubArray(int begin, int end); // divide-and-conquer

// find maxsubArray with cross boundary

Result MaxSubArrayXB(int begin, int mid, int end);

// print out results

void printResult(double t_BF, double t_DandC, Result r_BF, Result r_DandC);

int N; // number of data input
int Nrepeat = 1000; // number of repetitions
STKprice* data; // Array to store input data

int main()
int main(void)

{
int i; // loop index
double t0, t1, t2; // CPU time
double t_BF, t_DandC; // average CPU time
Result r_BF, r_DandC; // max contigous sum results
contigous
readInput(); // read data input
t0 = GetTime(); // get current CPU time



r_BF = MaxSubArrayBF(); // find result by brute-force
tl = GetTime(); // get current CPU time
for (i = 1; i <= Nrepeat; i++){ // repeat Nrepeat times
for (i = 1; i <= Nrepeat; i++) {
// find result by devide-and-conquer
r_DandC = MaxSubArray(1, N);
t2 = GetTime(); // get current CPU time
// calculate average CPU time
t_BF = t1 - t0;

t_DandC = (t2 - t1) / Nrepeat;

printResult(t_BF, t_DandC, r_BF, r_DandC); // print out results

free(data); // free dynamic memories
return O;
}
void readInput(void) // read data input
{
int i; // loop index
scanf ("%d", &N); // number of data
// allocate dynamic memories for data input
data = (STKpricex*)malloc(sizeof (STKprice) * (N+1));
// read the first data
scanf ("%d", &datall].year);
scanf ("%d", &datal[1] .month);
scanf ("/d", &datal1l].day);
scanf (")1f", &data[l].price);
datal[1] .change = 0; // change of the first data = 0
for (i = 2; i <= N; i++){ // read the rest data
for (i = 2; 1 <= N; i++) {
scanf ("%d", &datali].year);
scanf ("%d", &datal[i] .month);
scanf ("%d", &datali].day);
scanf ("}1f", &datal[i].price);
// calcute the price changes
data[i] .change = datal[i] .price - datal[i-1].price;
}
}



double GetTime(void)

{

struct timeval tv;

gettimeofday (&tv, NULL);

return tv.tv_sec + tv.tv_usec * 0.000001;

Result MaxSubArrayBF(void)

{

int i, j, k;
double sum;
Result r;

r.earning = 0;

for (j = 1; j <= N; j++){
for (j = 1; j <= N; j++) {
for (k = j; k <= N; k++){
for (k = j; k <= N; k++) {
sum = 0;
for (i = j; i <= k; i++){
sum += datali].change;
}
if (sum > r.earning){
if (sum > r.earning) {
r.earning = sum;
r.buy = j;
r.sell = k;

return r;

Result MaxSubArray(int begin, int end)

{

int mid;
Result r, lsum, rsum, xsum;

if (begin == end){
r.buy = begin;
r.sell = end;
r.earning = data[begin].change;
return r;

// get local time in seconds
// time interval structure
// write local time into tv

// return time with microsecond

// brute-force approach
// loop index

// temporary sum

// result

// initialize r

// try begin from 1 to N

// try end from begin to N

// summation from begin to end

// record max value and range

// devide-and-conquer

// middle point
// result

// terminal condition



mid = (begin + end) / 2;

lsum = MaxSubArray(begin, mid);
rsum = MaxSubArray(mid+1, end);
xsum = MaxSubArrayXB(begin, mid, end);

//
//
//

left region
right region
cross boundary region

if (1sum.earning >= rsum.earning &% lsum.earning >= xsum.earning){

return lsum;

}

//

lsum is the largest

if (rsum.earning >= lsum.earning && rsum.earning >= xsum.earning){

return rsum;
}

return xsum;

// find max subarray with cross boundary
Result MaxSubArrayXB(int begin, int mid, int end)

{

int 1i;
double sum, lsum, rsum;
Result r;

lsum = 0; sum = 0; r.buy = mid;
for (i = mid; i >= begin; i--){
sum += datal[i].change;
if (sum >= 1lsum){

lsum = sum;
r.buy = i;

rsum = 0; sum = O0; r.sell = mid + 1;
for (i = mid+1; i <= end; i++){
sum += datal[i].change;
if (sum >= rsum){
rsum = sum;
r.sell = i;

r.earning = lsum + rsum;
return r;

// print out the results
void printResult(double t_BF, double t_DandC, Result r_BF, Result r_DandC)

{

// the buy/sell date data

//

//

//
//
//

//
//
//
//

//
//
//
//

//

rsum is the largest

xsum is the largest

loop index
summation
result

initialize

go through the left region
continue to add

record if larger

initialize

go the the right region
continue to add

record if larger

overall sum

STKprice BF_buy, BF_sell, DandC_buy, DandC_sell;

// find data by the results we got



BF_buy = datalr_BF.buyl;

BF_sell = datal[r_BF.sell];
DandC_buy = data[r_DandC.buy];
DandC_sell = data[r_DandC.sell];

// print out all the results

printf ("N = %d\n", N);

printf ("Brute-force approach: time %e s\n", t_BF);

printf ("Buy: %d/%d/%d at %1f\n", BF_buy.year, BF_buy.month,
BF_buy.day, BF_buy.price);

printf("Sell: %d/%d/%d at %1f\n", BF_sell.year, BF_sell.month,
BF_sell.day, BF_sell.price);

printf ("Earning: %1f per share.\n", r_BF.earning);

printf("Divide and Conquer: time %e s\n", t_DandC);

printf ("Buy: %d/%d/%d at %1f\n", DandC_buy.year, DandC_buy.month,
DandC_buy.day, DandC_buy.price);

printf ("Sell: %d/%d/%d at %1f\n", DandC_sell.year, DandC_sell.month,
DandC_sell.day, DandC_sell.price);

printf ("Earning: %1f per share.\n", r_DandC.earning);



