
1

EE3980 Algorithms

Homework 4. Trading Stock

By 105061212 王家駿

2019/03/30

1. Introduction

In this homework, we find the maximum earning at for one-buy-one-sell stock

trading. We have N data, with each datum including the date and the price of the stock

at each date, so we can convert the prices into an array with price changes, which

indicate the price differences between a day and its previous day. Hence, the problem

becomes finding a range of the array with maximum contiguous sum. Because the

sum is as same as the price difference of the day between where the array begins and

where the array ends, the maximum sum would lead to the maximum earning. In

order to find the maximum contiguous sum, we use two methods, the brute-force

approach and the divide-and-conquer recursion, and compare the time consumed

between the two methods when executing.

2. Implementation

In the program, we first read all inputs and store them in an array with type

STKprice, which contains the information of the date, the price and the price change.

Then we use the two methods, MaxSubArrayBF and MaxSubArray, which would

2

be explained later, to implement the network connectivity, and also record the CPU

time consumed. Finally, we show the results including the date we should buy and

sell, the stock price at the dates, the total earning per share, and the CPU time on the

screen.

2.1. Brute-force approach

1. Algorithm MaxSubArrayBF(A, n, low, high)

2. {

3. max := 0; low := 1; high := n; // Initialize

4. for j := 1 to n do { // Try all possible ranges: A[j:k]

5. for k := j to n do {

6. sum := 0;

7. for i := j to k do { // Summation for A[j:k]

8. sum := sum + A[i];

9. }

10. if (sum > max) then { // Record the max value and range

11. max := sum; low := j; high := k;

12. }

13. }

14. }

15. return max;

16. }

In the function MaxSubArrayBF, we implement the brute-force approach to find

the maximum contiguous sum. The brute-force solution is to check every subarray,

i.e. to check every possible date for buying and selling, and then compare their value

to fine the largest one. So we first let j run through the array to get the date of buying,

and let k run through the array to get the date of selling, and sum up the values to get

張彌彰

3

the price differences. Then we record the value if it is the largest one until now. After

the iterations go to end, the value left must be the largest value of summation of

contiguous subarray. That is, the maximum earning of the stock.

For the time complexity, the first(outer) loop would execute N times, the second

loop N-j+1 times, and the third k-j+1 times. Since j and k are related to the problem

size N, the overall time complexity is O(𝑛3), for average case, worst case, and best

case.

For the space complexity, we need extra parameters: i, j, k, max, low, high, and

the initial array with size N, so the space complexity is N + 6 which is O(n).

Time complexity: O(𝑛3)

Space complexity: O(n)

2.2. Divide-and-conquer approach

1. Algorithm MaxSubArray(A, begin, end, low, high)

2. {

3. if (begin = end) then { // termination condition

4. low := begin; high := end; return A[begin];

5. }

6.

7. mid := (begin+end) / 2;

8. lsum := MaxSubArray(A, begin, mid, llow, lhigh); // left region

9. rsum := MaxSubArray(A, mid+1, end, rlow, rhigh); // right region

10. // cross boundary

11. xsum := MaxSubArrayXB(A, begin, mid, end, xlow, xhigh);

12.

4

13. if (lsum >= rsum and lsum >= xsum) then { // lsum is the largest

14. low := llow; high := lhigh; return lsum;

15. }

16. else if (rsum >= lsum and rsum >= xsum) then { // rsum is the largest

17. low := rlow; high := rhigh; return rsum;

18. }

19. // cross-boundary is the largest

20. low := xlow; high := xhigh; return xsum;

21. }

In the function MaxSubArray, we implement the divide-and-conquer approach to

find the maximum contiguous sum. When using this method, we divide the whole

problem to small pieces, and calculate the maximum contiguous sum of each segment

by recursion. In order to deal with the situation where the date to buy and the date to

sell are not in the same segment, we use the function MaxSubArrayXB.

1. Algorithm MaxSubArrayXB(A,begin,mid,end,low,high)

2. {

3. lsum := 0; low := mid; sum := 0; // Initialize for lower half

4. for i := mid to begin step −1 do { // find low to maximize

5. sum := sum + A[i]; // continue to add

6. if (sum > lsum) then { // record if larger

7. lsum := sum; low := i;

8. }

9. }

10.

11. rsum := 0; high := mid+ 1; sum := 0; // Initialize for higher half

12. for i := mid + 1 to end do { // find high to maximize

13. sum := sum + A[i]; // Continue to add.

14. if (sum > rsum) then { // record if larger

15. rsum := sum; high := i;

16. }

17. }

18.

5

19. return lsum + rsum; // Overall sum.

20. }

In the function MaxSubArrayXB, we calculate the maximum contiguous sum

where the begin is at the left segment and the end is at the right segment. This is same

as finding the maximum contiguous sum of the left segment plus the maximum

contiguous sum of the right segment. Since the subarray must be contiguous, we must

find from mid to begin at the left segment, and find from mid+1 to end at the right

segment to ensure the subarray contiguous. Thus, we find the subarray both for the

two parts, and record the value when it is the largest one until now. At the end of the

iterations, we can get the maximum contiguous sum for both two parts and sum up

them, so then we could get the cross-boundary maximum contiguous sum.

Now we go back to the MaxSubArray function. At first, we define the terminal

condition to stop the recursion when begin is equal to end, i.e. the segment only has

one element. Then, at each recursion step, we divide the array in two pieces from the

middle, and call the recursive function at both left and right parts to find the sum of

each segment. We also find the cross-boundary sum. Finally, we compare the results

of the maximum contiguous sum of the three part: left segment, right segment and

cross-boundary, and choose the largest one to be the maximum contiguous sum of the

whole array.

6

For the time complexity, when the problem size is n for the MaxSubArray, and

the time consumed is T(n), and we let Txb(n) be the time consumed of

MaxSubArrayXB with problem size n.

For the MaxSubArrayXB function, the iterations go through the left part and the

right part, which is total n steps. Thus, we could find out that Txb(n) = n.

For the MaxSubArray function, their would be three comparison, two

MaxSubArray with problem size n/2, and a with problem MaxSubArrayXB size n.

Since the comparisons are constant time, we could just ignore them. Assume problem

size n is 2k. So, the time consumed with n is:

T(n) = T (
n
2

) ∗ 2 + Txb(n) = T (
n
2

) ∗ 2 + n

= (T (
n
4

) ∗ 2 +
n
2

) ∗ 2n

= T (
n
4

) ∗ 4 + 2n

= ⋯

= T (
n
2k) ∗ 2k + k ∗ n

= n + n ∗ log (n)

Thus, the time complexity of the divide-and-conquer method is O(n ∗ log n).

7

For the space complexity, we need extra parameter like mid, sum, lsum, rsum…

And since the recursion would execute at most log(n) times, we must have extra

spaces for these parameters at each recursion step. Adding the initial array with space

n, the overall space complexity is O(log n + n) = O(log n).

Time complexity: O(n ∗ log n)

Space complexity: O(log n)

3. Executing results

We run the testing data from s1.dat to s9.dat with different input data size by

brute-force approach one time and divide-and-conquer 1000 times, and record the

average CPU time used.

Data size Brute-force
approach

Divide-and-
conquer

Earning per
share

10 1.907μs 2.146μs 9.065

25 23.84μs 5.007μs 20.81

55 198.8μs 12.16μs 96.02

110 1.456ms 24.08μs 103.9

220 11.35ms 49.11μs 204.1

450 84.34ms 77.01μs 371.6

910 555.1ms 140.9μs 641.8

1830 4.295s 292.1μs 641.8

張彌彰

張彌彰
This is incorrect!

8

3671 34.56s 617.0μs 1185

4. Result analysis and conclusion

From the graph, we could observe that the brute-force approach has a trend of

 𝑛3, and the divide-and-conquer approach has a trend of n ∗ log 𝑛 , which are same as

our estimation.

Note that for the problem size 10, the brute-force approach is faster than the

divide-and-conquer. It might be the effect that the divide-and-conquer approach use

recursive functions, which might consume a lot of time while the function calls. Thus,

the iteration methods might be faster than the recursion method for the small input

data size. However, when the problem size grows up, the time consumed of the brute-

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

1.00E+01

1.00E+02

10 100 1000 10000

tim
e,

 s

problem size N

Average CPU time consumed

Brute-force Divide-and-conquer n^3 n*log(n)

9

force grows too fast so that the function calls take less time with compared to the

brute-force approach.

Compare the space complexities of the two methods. The brute-force approach

takes O(n) and O(log n) for the divide-and-conquer method, which means that the

later would need more memories for operating than the former. Thus, it is a trade-off

between time and space efficiency at the two methods. Since the nowadays techniques

have great improvement at the computer memories, we would often emphasize the

time efficiency than the space, so we usually take the divide-and-conquer approach to

reduce the time used.

To use the algorithm in real stock trading, we must to know the stock price on

every day, and we could calculate the time when we should buy and sell efficiently by

the divide-and-conquer approach. However, due to the fact that all the prices have to

be known at first, we couldn’t predict the stock price in the future, what we can only

do is to calculate the time for maximum earning for the past. Perhaps there’s someone

or someway that could correctly predict the stock market by the past data. Then we

could use the algorithm to analyze the past data efficiently to make money.

a+Q`2, 3d
ěěě@

QX a22 `2im`MX

(�M�HvbBb) bT�+2 +QKTH2tBiv Q7 i?2 /BpB/2@�M/@+QM[m2` �TT`Q�+? Bb MQi +Q``2+i5

(*Q/BM;) *�M mb2 bT�+2 +?�`�+i2`b KQ`2 2z2+iBp2Hv iQ K�F2 vQm` +Q/2b KQ`2 H2;B#H2X

R

?ry9X+

R f 11jN3y >qy9 h`�/BM; aiQ+F
k Ry8yeRkRk- *?B�@*?mM q�M;
j kyRNfyjfjy
9 f
8
e OBM+Hm/2 Ibi/BQX?=
d OBM+Hm/2 Ibi/HB#X?=
3 OBM+Hm/2 IbvbfiBK2X?=
N

Ry ivT2/27 bi`m+i bahET`B+2 ff biQ+F /�i� bi`m+im`2
RR &
Rk BMi v2�`- KQMi?- /�vc
Rj /Qm#H2 T`B+2- +?�M;2c

*�M mb2 +QKK2Mib iQ 2tTH�BM i?2 Tm`TQb2 Q7 2�+? Bi2KX
R9 ' ahET`B+2c
R8
Re ivT2/27 bi`m+i b_2bmHi ff K�t +QMiB;mQmb bmK bi`m+im`2
Rd &
R3 BMi #mvc
RN BMi b2HHc
ky /Qm#H2 2�`MBM;c
kR ' _2bmHic
kk
kj pQB/ `2�/AMTmiUpQB/Vc ff `2�/ /�i� BMTmi
k9 /Qm#H2 :2ihBK2UpQB/Vc ff ;2i +m``2Mi *Sl iBK2
k8 _2bmHi J�tam#�``�v"6UpQB/Vc ff #`mi2@7Q`+2 �TT`Q�+?
ke _2bmHi J�tam#�``�vUBMi #2;BM- BMi 2M/Vc ff /BpB/2@�M/@+QM[m2`
kd ff 7BM/ K�tbm#�``�v rBi? +`Qbb #QmM/�`v
k3 _2bmHi J�tam#�``�vs"UBMi #2;BM- BMi KB/- BMi 2M/Vc
kN ff T`BMi Qmi `2bmHib
jy pQB/ T`BMi_2bmHiU/Qm#H2 in"6- /Qm#H2 in.�M/*- _2bmHi `n"6- _2bmHi `n.�M/*Vc
jR
jk BMi Lc ff MmK#2` Q7 /�i� BMTmi
jj BMi L`2T2�i 4 Ryyyc ff MmK#2` Q7 `2T2iBiBQMb
j9 ahET`B+2 /�i�c ff �``�v iQ biQ`2 BMTmi /�i�
j8
je BMi K�BMUV

BMi K�BMUpQB/V
jd &
j3 BMi Bc ff HQQT BM/2t
jN /Qm#H2 iy- iR- ikc ff *Sl iBK2
9y /Qm#H2 in"6- in.�M/*c ff �p2`�;2 *Sl iBK2
9R _2bmHi `n"6- `n.�M/*c ff K�t +QMiB;Qmb bmK `2bmHib

+QMiB;Qmb
9k
9j `2�/AMTmiUVc ff `2�/ /�i� BMTmi
99
98 iy 4 :2ihBK2UVc ff ;2i +m``2Mi *Sl iBK2

R

9e
9d `n"6 4 J�tam#�``�v"6UVc ff 7BM/ `2bmHi #v #`mi2@7Q`+2
93
9N iR 4 :2ihBK2UVc ff ;2i +m``2Mi *Sl iBK2
8y
8R 7Q` UB 4 Rc B I4 L`2T2�ic BYYV& ff `2T2�i L`2T2�i iBK2b

7Q` UB 4 Rc B I4 L`2T2�ic BYYV &
8k ff 7BM/ `2bmHi #v /2pB/2@�M/@+QM[m2`
8j `n.�M/* 4 J�tam#�``�vUR- LVc
89 '
88
8e ik 4 :2ihBK2UVc ff ;2i +m``2Mi *Sl iBK2
8d
83 ff +�H+mH�i2 �p2`�;2 *Sl iBK2
8N in"6 4 iR @ iyc
ey in.�M/* 4 Uik @ iRV f L`2T2�ic
eR
ek T`BMi_2bmHiUin"6- in.�M/*- `n"6- `n.�M/*Vc ff T`BMi Qmi `2bmHib
ej
e9 7`22U/�i�Vc ff 7`22 /vM�KB+ K2KQ`B2b
e8
ee `2im`M yc
ed '
e3
eN pQB/ `2�/AMTmiUpQB/V ff `2�/ /�i� BMTmi
dy &
dR BMi Bc ff HQQT BM/2t
dk
dj b+�M7U]W/]- �LVc ff MmK#2` Q7 /�i�
d9
d8 ff �HHQ+�i2 /vM�KB+ K2KQ`B2b 7Q` /�i� BMTmi
de /�i� 4 UahET`B+2 VK�HHQ+UbBx2Q7UahET`B+2V ULYRVVc
dd
d3 ff `2�/ i?2 7B`bi /�i�
dN b+�M7U]W/]- �/�i�(R)Xv2�`Vc
3y b+�M7U]W/]- �/�i�(R)XKQMi?Vc
3R b+�M7U]W/]- �/�i�(R)X/�vVc
3k b+�M7U]WH7]- �/�i�(R)XT`B+2Vc
3j /�i�(R)X+?�M;2 4 yc ff +?�M;2 Q7 i?2 7B`bi /�i� 4 y
39
38 7Q` UB 4 kc B I4 Lc BYYV& ff `2�/ i?2 `2bi /�i�

7Q` UB 4 kc B I4 Lc BYYV &
3e b+�M7U]W/]- �/�i�(B)Xv2�`Vc
3d b+�M7U]W/]- �/�i�(B)XKQMi?Vc
33 b+�M7U]W/]- �/�i�(B)X/�vVc
3N b+�M7U]WH7]- �/�i�(B)XT`B+2Vc
Ny ff +�H+mi2 i?2 T`B+2 +?�M;2b
NR /�i�(B)X+?�M;2 4 /�i�(B)XT`B+2 @ /�i�(B@R)XT`B+2c
Nk '
Nj '

k

N9
N8 /Qm#H2 :2ihBK2UpQB/V ff ;2i HQ+�H iBK2 BM b2+QM/b
Ne &
Nd bi`m+i iBK2p�H ipc ff iBK2 BMi2`p�H bi`m+im`2
N3
NN ;2iiBK2Q7/�vU�ip- LlGGVc ff r`Bi2 HQ+�H iBK2 BMiQ ip
Ryy
RyR `2im`M ipXipnb2+ Y ipXipnmb2+ yXyyyyyRc ff `2im`M iBK2 rBi? KB+`Qb2+QM/
Ryk '
Ryj
Ry9 _2bmHi J�tam#�``�v"6UpQB/V ff #`mi2@7Q`+2 �TT`Q�+?
Ry8 &
Rye BMi B- D- Fc ff HQQT BM/2t
Ryd /Qm#H2 bmKc ff i2KTQ`�`v bmK
Ry3 _2bmHi `c ff `2bmHi
RyN
RRy `X2�`MBM; 4 yc ff BMBiB�HBx2 `
RRR
RRk 7Q` UD 4 Rc D I4 Lc DYYV& ff i`v #2;BM 7`QK R iQ L

7Q` UD 4 Rc D I4 Lc DYYV &
RRj 7Q` UF 4 Dc F I4 Lc FYYV& ff i`v 2M/ 7`QK #2;BM iQ L

7Q` UF 4 Dc F I4 Lc FYYV &
RR9 bmK 4 yc
RR8 7Q` UB 4 Dc B I4 Fc BYYV& ff bmKK�iBQM 7`QK #2;BM iQ 2M/
RRe bmK Y4 /�i�(B)X+?�M;2c
RRd '
RR3 B7UbmK = `X2�`MBM;V& ff `2+Q`/ K�t p�Hm2 �M/ `�M;2

B7 UbmK = `X2�`MBM;V &
RRN `X2�`MBM; 4 bmKc
Rky `X#mv 4 Dc
RkR `Xb2HH 4 Fc
Rkk '
Rkj '
Rk9 '
Rk8
Rke `2im`M `c
Rkd '
Rk3
RkN _2bmHi J�tam#�``�vUBMi #2;BM- BMi 2M/V ff /2pB/2@�M/@+QM[m2`
Rjy &
RjR BMi KB/c ff KB//H2 TQBMi
Rjk _2bmHi `- HbmK- `bmK- tbmKc ff `2bmHi
Rjj
Rj9 B7U#2;BM 44 2M/V& ff i2`KBM�H +QM/BiBQM
Rj8 `X#mv 4 #2;BMc
Rje `Xb2HH 4 2M/c
Rjd `X2�`MBM; 4 /�i�(#2;BM)X+?�M;2c
Rj3 `2im`M `c
RjN '
R9y

j

R9R KB/ 4 U#2;BM Y 2M/V f kc
R9k HbmK 4 J�tam#�``�vU#2;BM- KB/Vc ff H27i `2;BQM
R9j `bmK 4 J�tam#�``�vUKB/YR- 2M/Vc ff `B;?i `2;BQM
R99 tbmK 4 J�tam#�``�vs"U#2;BM- KB/- 2M/Vc ff +`Qbb #QmM/�`v `2;BQM
R98
R9e B7UHbmKX2�`MBM; =4 `bmKX2�`MBM; �� HbmKX2�`MBM; =4 tbmKX2�`MBM;V&
R9d `2im`M HbmKc ff HbmK Bb i?2 H�`;2bi
R93 '
R9N B7U`bmKX2�`MBM; =4 HbmKX2�`MBM; �� `bmKX2�`MBM; =4 tbmKX2�`MBM;V&
R8y `2im`M `bmKc ff `bmK Bb i?2 H�`;2bi
R8R '
R8k `2im`M tbmKc ff tbmK Bb i?2 H�`;2bi
R8j '
R89
R88 ff 7BM/ K�t bm#�``�v rBi? +`Qbb #QmM/�`v
R8e _2bmHi J�tam#�``�vs"UBMi #2;BM- BMi KB/- BMi 2M/V
R8d &
R83 BMi Bc ff HQQT BM/2t
R8N /Qm#H2 bmK- HbmK- `bmKc ff bmKK�iBQM
Rey _2bmHi `c ff `2bmHi
ReR
Rek HbmK 4 yc bmK 4 yc `X#mv 4 KB/c ff BMBiB�HBx2
Rej 7Q` UB 4 KB/c B =4 #2;BMc B@@V& ff ;Q i?`Qm;? i?2 H27i `2;BQM
Re9 bmK Y4 /�i�(B)X+?�M;2c ff +QMiBMm2 iQ �//
Re8 B7UbmK =4 HbmKV& ff `2+Q`/ B7 H�`;2`
Ree HbmK 4 bmKc
Red `X#mv 4 Bc
Re3 '
ReN '
Rdy
RdR `bmK 4 yc bmK 4 yc `Xb2HH 4 KB/ Y Rc ff BMBiB�HBx2
Rdk 7Q` UB 4 KB/YRc B I4 2M/c BYYV& ff ;Q i?2 i?2 `B;?i `2;BQM
Rdj bmK Y4 /�i�(B)X+?�M;2c ff +QMiBMm2 iQ �//
Rd9 B7UbmK =4 `bmKV& ff `2+Q`/ B7 H�`;2`
Rd8 `bmK 4 bmKc
Rde `Xb2HH 4 Bc
Rdd '
Rd3 '
RdN
R3y `X2�`MBM; 4 HbmK Y `bmKc ff Qp2`�HH bmK
R3R `2im`M `c
R3k '
R3j
R39 ff T`BMi Qmi i?2 `2bmHib
R38 pQB/ T`BMi_2bmHiU/Qm#H2 in"6- /Qm#H2 in.�M/*- _2bmHi `n"6- _2bmHi `n.�M/*V
R3e &
R3d ff i?2 #mvfb2HH /�i2 /�i�
R33 ahET`B+2 "6n#mv- "6nb2HH- .�M/*n#mv- .�M/*nb2HHc
R3N
RNy ff 7BM/ /�i� #v i?2 `2bmHib r2 ;Qi

9

RNR "6n#mv 4 /�i�(`n"6X#mv)c
RNk "6nb2HH 4 /�i�(`n"6Xb2HH)c
RNj .�M/*n#mv 4 /�i�(`n.�M/*X#mv)c
RN9 .�M/*nb2HH 4 /�i�(`n.�M/*Xb2HH)c
RN8
RNe ff T`BMi Qmi �HH i?2 `2bmHib
RNd T`BMi7U]L 4 W/$M]- LVc
RN3 T`BMi7U]"`mi2@7Q`+2 �TT`Q�+?, iBK2 W2 b$M]- in"6Vc
RNN T`BMi7U]"mv, W/fW/fW/ �i WH7$M]- "6n#mvXv2�`- "6n#mvXKQMi?-
kyy "6n#mvX/�v- "6n#mvXT`B+2Vc
kyR T`BMi7U]a2HH, W/fW/fW/ �i WH7$M]- "6nb2HHXv2�`- "6nb2HHXKQMi?-
kyk "6nb2HHX/�v- "6nb2HHXT`B+2Vc
kyj T`BMi7U]1�`MBM;, WH7 T2` b?�`2X$M]- `n"6X2�`MBM;Vc
ky9 T`BMi7U].BpB/2 �M/ *QM[m2`, iBK2 W2 b$M]- in.�M/*Vc
ky8 T`BMi7U]"mv, W/fW/fW/ �i WH7$M]- .�M/*n#mvXv2�`- .�M/*n#mvXKQMi?-
kye .�M/*n#mvX/�v- .�M/*n#mvXT`B+2Vc
kyd T`BMi7U]a2HH, W/fW/fW/ �i WH7$M]- .�M/*nb2HHXv2�`- .�M/*nb2HHXKQMi?-
ky3 .�M/*nb2HHX/�v- .�M/*nb2HHXT`B+2Vc
kyN T`BMi7U]1�`MBM;, WH7 T2` b?�`2X$M]- `n.�M/*X2�`MBM;Vc
kRy '

8

