EE3980 Algorithms

Homework 3. Network Connectivity problem
By 105061212 F-576%
2019/03/23

1. Introduction

In this homework, we construct an undirected graph with input vertices and edges,
unite
and union the vertices(i,j) in a set if there exists a path from i to j. In the end, we
calculate the number of the distinct sets in the graph, and record the CPU time used
for arrange the vertices in the sets. The above steps would be executed with different

methods, including Weighted set union and Collapsing set find, so then we could

find out the difference of time consumed between these algorithms.
2. Implementation

In the program, we first read all inputs and store them in some arrays. Then we
use the three methods, Connectl, Connect2, Connect3, which would be explained
later, to implement the network connectivity, and also record the CPU time

consumed. Finally, we show the number of sets and the CPU time on the screen.
2.1. Network connectivity

In this problem, we have V vertices, numbered from 1 to V, and E edges input.

. . unjte connected .
Since our final goal is to union all the connective vertices together, we could first

張彌彰

張彌彰
unite

張彌彰

張彌彰
unite

張彌彰

張彌彰
connected

assume that there are V sets initially with only one element (vertex) in each set. Then

for every edge, we could connect the vertices of each edge. That is, union the set of

the vertices together. After all the edges are checked, we could easily find out the sets

remained, which indicates that the vertices in the same set are connected together.

In order to implement our method, we use an array S with size V. In the array, S[i]

means i and S[i] are in the same set. Besides, if S[i] is equal to -1, that means i is the

root of the set.

The array S could also be represented like a forest, which is made up by several

trees. The 1 with S[1] = -1 acts like the tree root, and j pointing to the root 1 acts like

the child of 1, and so does other nodes. So, we might use the tree representation to

explain our methods later to make them clearer.

2.2. SetFind

1. Algorithm SetFind(i)

2. {

3. while(S[i] >= @) do i:=S[i]; // keep finding the root
4. return i;

5. }

If we want to find the set which a given element 1 is belong to, we could use the

SetFind function. In this function, we starting finding from the element i, and keep

iterates to the S[i] until S[i] is no less than zero. Since 1 and S[i] are belong to the

張彌彰

same set for all i, we can make sure that all the iterations go in the same set, and at the

moment S[i] is no less than zero, we could know that we find the root.

In this function, the iteration at line 3 would execute at most h times, where h

represents the tree height of S. At its worst case, the tree is totally skewed and the

iteration execute for V times. At its best case, the given element i is the root of a set,

so the loop only executes one time.

For the space capacity, there is no need of extra space for this algorithm, so the

space complexity is O(1).

Best-case time complexity: 0(1)

Worst-case time complexity: O(V)

Average-case time complexity: O(h)

Space complexity: O0(1)

2.3. SetUnion

1. Algorithm SetUnion(i, j)

2. {

w

S[i] := 3;

By using the set union function, we could link the two different sets together. In

this function, we just assign j to S[i], so the i and j would be in the same set. Thus, all

張彌彰

the elements which are in the same set with 1 would be in the same set with j, vice

versa. We could easily union the two sets by simply an assignment.

No matter what the input vertices 1 and j are, all we should do is one assignment,

so the time complexity of this function in any cases is 0(1), so is the space

complexity because of no extra space needed.

Time complexity: O(1)

Space complexity: O0(1)

2.4. Connectl

1. Algorithm Connectl(G, R)

2. {

3. for each vi in V do S:={vi}; // one element for each set
4. NS :=number of vi; // number of disjoint sets
5.

6. for each e = (vi, vj) do{ // for each edge

7. Si:=SetFind(vi);

8. Sj:=SetFind(vj);

9.

10. if(Si != Sj) then{ // if two sets

11. NS:=NS-1;

12. SetUnion(Si, Sj); // union them

13. }

14. }

15. for each vi in V do{ // record root to R table
16. R[i]:=SetFind(vi);

17. }

18. }

This is the function that we implement the network connectivity. At first, we have

to initialize the array S to make the V sets containing only one element, and this could

be implemented by simply setting -1 to all the value in S. That is, set all the vertices

be the root of a set.

Then for each edge, we would decide whether we have to union the two sets of the

vertices or not. With the two vertices, we use the SetFind function to find out the sets

which the vertices are belong to. If they are in the same set, we don’t have to do

anything and go to the next iteration; otherwise, we link the two sets together by the

SetUnion function mentioned above. After the iteration, the sets remain are the results

of network connectivity.

In the end, we store the sets which each vertex belongs to into an array R by using

SetFind function. And we called it the set table.

To estimate the time complexity, first we check the loops at line 3, 6, and 15. The

iteration goes V times at line 3 and 15, E times at line 6. In the loop of line 3 and 15,

the time complexity is O(V). While in the loop of line 6, each iteration would do at

most two SetFind and one SetUnion. According to the time complexity of these

functions we estimate before, the time complexity is O(h) for the average case.

Thus, the overall complexity must be O(h * E + 2V). For the ten testing data, the

number of vertices and edges do not differ too much, and we could roughly estimate

that the time complexity is O(h * E).

For the space complexity, we only need extra spaces in the loop of line 6, so the

space complexity for this algorithm is O(E).

Time complexity: O(h * E)

Space complexity: O(E)

Furthermore, we revise the SetFind and SetUnion algorithms to have a better

performance on time. In Connect2, we replace the SetUnion by WeightedUnion;

while in Connect3, we not only use the WeightedUnion but replace the SetUnion by

CollapsingFind. Then we measure the time used by the revised algorithms.

2.5. WeightedUnion

1. Algorithm WeightedUnion(i, j)

2. {

3. temp:=S[i]+S[j]; // two sets element sum

4.

5. if(S[i] > S[j]) then{ // if i has fewer elements
6. S[i]:=3j; S[j]:=temp; // link i to j

7. }

8. else{ // if j has fewer elements
9. S[j]:=i; S[i]:=temp; // link j to i

10. }

11. }

This function would replace the SetUnion function. Unlike the SetUnion, in

which i always link to j, this function would either link i to j or j to i, depending on the

number of elements in the set. If set i has the fewer element, link set i to set j (make

the root of set i point to a node of set j); and if j has the fewer element, link set j to set

The time complexity would still be O(1) since the algorithm takes only three

assignments, but it might work faster than the previous one. In order to get a better

performance on time consumed, we should prevent the tree from being skewed, which

would spend more time at iterating to find root in SetFind. Thus, by using the

WeightedUnion, we could choose the smaller set to be linked, and prevent the tree

from skewing one side.

Since the maximum tree height is log, V + 1 by using weighted set union, which

is derived from the handout of the class, we could find out that the iteration only goes

at most log, V + 1 steps in the function SetFind, if this algorithm is applied. Thus,

the total time complexity of Connectl could become O(E * log, V) = O(V * log, V),

and it is implemented in Connect2.

2.6. CollapsingFind

1. Algorithm CollapsingFind(i)
2. {

3. r:=i;

5. while(S[r] > @) do r:=S[r]; // find the root

6. while(i != r) do { // collapse the elements on the path
7. temp:=p[i]; S[i]:=r; i:=temp;

8 }

9.

10. return r;

11. }

This revised algorithm makes more improvement on time consumed by collapsing
the elements while finding. At first, the algorithm finds the root of the set as the same
way in SetFind. And for each element i on the finding path, we replace S[i] by the
root value (collapsing). Although the time consumed for each execution, we could
find the root immediately later if the given node has been collapsed before since it
points to the root. Thus, the time consumed would decrease if we would do set finding

many times.

The time complexity after applying this function is still O(V * log, V), since it
doesn’t decrease any iteration step. However, the program may run faster because the
next time we find for the root of an element, the time complexity of finding becomes
0(1). Thus, the time complexity of some iterations for each edge might become
0(1). And the input data size seems to have less influence on the complexity, what

matters is how the vertices connect and the input edges arrangement order.

3. Executing results

張彌彰

For repeating 100 times, run the testing data from gl.dat to g10.dat with different

input data size, and record the average CPU time used.

Data size Connectl Connect2 Connect3 = Number of
(V/E) sets
100/147 29.03 s 16.79 1s 17.68 s 1
196/287 70.84 1 s 36.13 s 36.21 us 1
400/608 163.7 s 76.76 (s 76.59 1 s 1
784/1213 575.6 s 1293 us 1173 us 3
1600/2489 1.701ms 207.4 11s 2014 us 5
3136/4883 4.678ms 4224 us 4019 s 9
6400/10130 16.45ms 930.3 s 851.5us 14
12769/20251 63.38ms 1.838ms 1.719ms 18
25600/40727 | 324.2ms 3.916ms 3.517ms 45
51076/81499 1.486s 8.270ms 7.381ms 80

Average CPU time consumed

1.00E+01

1.00E+00

1.00E-01

1.00E-02

time, s

1.00E-03

1.00E-04

1.00E-05

100 1000 10000 100000
Input data size (V)

—@— Connectl —@— Connect2 Connect3 n*log(n) —@—n”2

4. Result analysis and conclusion

From the graph, we could observe that Connect2 and Connect3 have a trend of
n * log(n), which is same as our estimation. Yet, it seems that Connectl doesn’t have
a trend of neither n *log(n) or n?, the line is like staying between them. It makes
sense since the worst-case time complexity is O(n?) with the tree height h=V.
However, it’s still hard to estimate what the average time complexity because it’s also

difficult to find out how the tree skews.

How the tree skews might depend on the input edges and its arrangement. We can
find it at SetUnion , where we assign j to S[i], and it means that we put the tree of set
1 under the node of set j. If the edges of input data have been arranged well, that is, vi

<j for the edge(vi,vj), then we always let the set with smaller index be the subtree of

10

the set with larger index. This would cause the tree skew and increase the tree height,
and lead to a time complexity closed to O(n?). If the arrangement of (vi,vj) is placed
randomly, the tree structure would be like a complete tree, so the tree height would

decrease and the time complexity would be closed to O(n * logn).

In our previous estimation, we predict that the time consumed by Connect3 would
be less than Connect2, but it doesn’t hold for the input vertices fewer than 196. It
might occur when the number of edges input is small, because the CollapsingFind
spends more time at the collapsing, in order to make the next fetching of elements be
quicker. And if the element isn’t fetched again, that would be just a waste of time.
Thus, if the vertices aren’t fetched for enough times, the Connect3 would spend more

time than Connect?2.

11

Score: 81

0. See return.

[Writing] need more practice in English writing.

[Approach] can show more pseudo codes (for Connect2, Connect3 and main).
[Results] can draw conclusions.

[Coding] need proper indentation.

[Coding] pay attention to spelling.

hw03.c

/* EE3980 HWO3 Heap Sort

* 105061212, Chia-Chun Wang
* 2019/03/23

*/

#include <stdio.h>
#include <stdlib.h>
#include <sys/time.h>

void readGraph(void); // read and store all input
double GetTime(void); // get current CPU time
void Connectl(void); // network connectivity
void Connect2(void); // network connectivity with
// weighted set union
void Connect3(void); // network connectivity with
// collapsing set find
int SetFind(int in); // find the set of the element
void SetUnion(int i, int j); // union two sets
void WeightedUnion(int i, int j); // union two sets by weight
int CollapsingFind(int in); // find the set of the element
// and collaspse the tree
collaspse
void freeMemory(void); // free dynamic memories
int V; // number of vertices
int E; // number of edges
int* S; // array of sets
int** edge; // 2D array of edges
int* R; // the set table
int NS; // number of sets
int Nrepeat = 100; // number of repetitions
int main(void)
{
int i; // loop index
double t0, t1, t2, t3; // current CPU time
double tl_avg, t2_avg, t3_avg; // average time per execution
int Ns1, Ns2, Ns3; // number of sets
readGraphQ) ; // read and store all input
t0 = GetTime(); // get current CPU time
for(i = 1; i <= Nrepeat; i++){ // repeat Nrepeat times
Connect1(); // do connectl
}
tl = GetTime(); // get current CPU time

Ns1 = NS; // record the number of sets

for(i = 1; i <= Nrepeat; i++){ // repeat Nrepeat times

Connect2(); // do connect2

Need indentation.

}

t2 = GetTime(); // get current CPU time

Ns2 = NS; // record the number of sets

for(i = 1; i <= Nrepeat; i++){ // repeat Nrepeat times
Connect3(); // do connect3

}

t3 = GetTime(); // get current CPU time

Ns3 = NS; // record the number of sets

// calculate the average CPU time per execution

tl_avg = (t1-t0) / Nrepeat;
t2_avg = (t2-tl1) / Nrepeat;
t3_avg = (t3-t2) / Nrepeat;

// print out the results

printf ("Connectl:\n Time: %e s\n Number of Set: %d\n", tl_avg, Nsl);
printf ("Connect2:\n Time: %e s\n Number of Set: ’d\n", t2_avg, Ns2);
printf ("Connect3:\n Time: %e s\n Number of Set: %d\n", t3_avg, Ns3);

freeMemory () ; // free dynamic memories
return O;
}
void readGraph(void) // read and store all input
{
int i; // loop index
scanf ("%d", &V); // number of vertices
scanf ("%d", &E); // number of edges

// allocate dynamic memories
S = (int*)malloc(sizeof (int) * (V+1));
R = (int*)malloc(sizeof (int) * (V+1));

edge = (int**)malloc(sizeof (int*) * (E+1));
for(i = 1; i <= E; i++){

for (i = 1; 1 <= E; i++) {

edge[i] = (int*)malloc(sizeof(int) * 2);
Need indentation.

}

// store all edges with a 2D array

for(i = 1; i <= E; i++){

for (i = 1; i <= E; i++) {

scanf ("%d %d", &edgel[i][0], &edgelil[1]1);

}
}
double GetTime(void) // get local time in seconds
{
struct timeval tv; // time interval structure
gettimeofday (&tv, NULL); // write local time into tv
return tv.tv_sec + tv.tv_usec * 0.000001; // return time with microsecond
}

// network connectivity
void Connectl(void)

{

int i; // loop index

int Si, Sj; // set root

for(i =1; 1 <=V; i++){ // initailze the set

initailze

S[i] = -1; // only one element in each set

Need indentation.

}

NS = V; // number of sets = vertices

for(i = 1; i <= E; i++H){ // for every edges

// find the set root of vertices of each edge
Si = SetFind(edge[i] [0]);

Sj = SetFind(edgel[il[11);

if(Si = Sj){ // if not in the same set
NS--; // number of sets - 1
SetUnion(Si, Sj); // union two sets

}

}

for(i =1; 1 <=V; i++){ // for each vertice

vertice

R[i] = SetFind(i); // record the set belong

}

}

// network connectivity with weighted set union
void Connect2(void)

{

int i; // loop index

int Si, Sj; // set root

for(i = 1; 1 <=V; i++){ // initailze the set
S[i] = -1; // only one element in each set

T

NS = V; // number of sets = vertices

for(i = 1; i <= E; i++){ // for every edges

// find the set root of vertices of each edge
Si = SetFind(edgel[i] [0]);
Sj = SetFind(edge[il[1]1);

if(Si !'= Sj){ // if not in the same set
NS--; // number of sets - 1
WeightedUnion(Si, Sj); // union two sets
}
}
for(i = 1; i <= V; i++){ // for each vertice
R[i] = SetFind(i); // record the set belong
}

// network connectivity with weighted set union and collapsing set find
void Connect3(void)

{
int i; // loop index
int Si, Sj; // set root
for(i =1; 1 <=V; i++){ // initailze the set
S[i] = -1; // only one element in each set
}
NS = V; // number of sets = vertices
for(i = 1; i <= E; i++H){ // for every edges

// find the set root of vertices of each edge
Si = CollapsingFind(edge[i] [0]);
Sj = CollapsingFind(edgel[i] [1]);

if(Si !'= 8j){ // if not in the same set
NS--; // number of sets - 1
WeightedUnion(Si, Sj); // union two sets
3
}
for(i = 1; i <=V; i++){ // for each vertice
R[i] = SetFind(i); // record the set belong

}
int SetFind(int in) // find the set of the element
{
int i; // input element
i = in;
while(S[i] >= 0){ // if the element is not root
i = S[il; // keep finding
}
return i;
}
void SetUnion(int i, int j) // union two sets
{
S[il = j; // assign one set to another
}
void WeightedUnion(int i, int j) // union two sets by weight
{
int temp; // temporary integer
temp = S[i] + S[jl; // sum the number of elements
if (S[i] > S[iD{ // if i has fewer elements
// assign set i to j
Shil = j;
S[j] = temp;
}
elseq{ // if i has more elements
// assign set j to i
S[i1 = i;
S[i] = temp;
}
}

// find the set of an element and collapse the tree
int CollapsingFind(int in)

{
int i; // input element
int r; // root to be found
int temp; // temporary integer
i = in; // find start from input
r = in;
while(S[r] > 0){ // if not the root

r = S[r]; // keep finding

}

while(i !'= r){ // if not the root
// make the element point to root

temp = S[il;

S[i] = r;

i = temp;

}

return r;

void freeMemory(void) // release dynamic memories

{

int i; // loop index

// free all dynamic memories allocated before
free(S);
free(R);

for(i = 0; i <= E; i++){
free(edge[il);

}

free(edge);

