
1

EE3980 Algorithms

Homework 3. Network Connectivity problem

By 105061212 王家駿

2019/03/23

1. Introduction

In this homework, we construct an undirected graph with input vertices and edges,

and union the vertices(i,j) in a set if there exists a path from i to j. In the end, we

calculate the number of the distinct sets in the graph, and record the CPU time used

for arrange the vertices in the sets. The above steps would be executed with different

methods, including Weighted set union and Collapsing set find, so then we could

find out the difference of time consumed between these algorithms.

2. Implementation

In the program, we first read all inputs and store them in some arrays. Then we

use the three methods, Connect1, Connect2, Connect3, which would be explained

later, to implement the network connectivity, and also record the CPU time

consumed. Finally, we show the number of sets and the CPU time on the screen.

2.1. Network connectivity

In this problem, we have V vertices, numbered from 1 to V, and E edges input.

Since our final goal is to union all the connective vertices together, we could first

張彌彰

張彌彰
unite

張彌彰

張彌彰
unite

張彌彰

張彌彰
connected

2

assume that there are V sets initially with only one element (vertex) in each set. Then

for every edge, we could connect the vertices of each edge. That is, union the set of

the vertices together. After all the edges are checked, we could easily find out the sets

remained, which indicates that the vertices in the same set are connected together.

In order to implement our method, we use an array S with size V. In the array, S[i]

means i and S[i] are in the same set. Besides, if S[i] is equal to -1, that means i is the

root of the set.

The array S could also be represented like a forest, which is made up by several

trees. The i with S[i] = -1 acts like the tree root, and j pointing to the root i acts like

the child of i, and so does other nodes. So, we might use the tree representation to

explain our methods later to make them clearer.

2.2. SetFind

1. Algorithm SetFind(i)

2. {

3. while(S[i] >= 0) do i:=S[i]; // keep finding the root

4. return i;

5. }

If we want to find the set which a given element i is belong to, we could use the

SetFind function. In this function, we starting finding from the element i, and keep

iterates to the S[i] until S[i] is no less than zero. Since i and S[i] are belong to the

張彌彰

3

same set for all i, we can make sure that all the iterations go in the same set, and at the

moment S[i] is no less than zero, we could know that we find the root.

 In this function, the iteration at line 3 would execute at most h times, where h

represents the tree height of S. At its worst case, the tree is totally skewed and the

iteration execute for V times. At its best case, the given element i is the root of a set,

so the loop only executes one time.

 For the space capacity, there is no need of extra space for this algorithm, so the

space complexity is O(1).

Best-case time complexity: O(1)

Worst-case time complexity: O(𝑉)

Average-case time complexity: O(ℎ)

Space complexity: O(1)

2.3. SetUnion

1. Algorithm SetUnion(i, j)

2. {

3. S[i] := j;

4. }

By using the set union function, we could link the two different sets together. In

this function, we just assign j to S[i], so the i and j would be in the same set. Thus, all

張彌彰

4

the elements which are in the same set with i would be in the same set with j, vice

versa. We could easily union the two sets by simply an assignment.

No matter what the input vertices i and j are, all we should do is one assignment,

so the time complexity of this function in any cases is O(1), so is the space

complexity because of no extra space needed.

Time complexity: O(1)

Space complexity: O(1)

2.4. Connect1

1. Algorithm Connect1(G, R)

2. {

3. for each vi in V do S:={vi}; // one element for each set

4. NS:=number of vi; // number of disjoint sets

5.

6. for each e = (vi, vj) do{ // for each edge

7. Si:=SetFind(vi);

8. Sj:=SetFind(vj);

9.

10. if(Si != Sj) then{ // if two sets

11. NS:=NS-1;

12. SetUnion(Si, Sj); // union them

13. }

14. }

15. for each vi in V do{ // record root to R table

16. R[i]:=SetFind(vi);

17. }

18. }

5

This is the function that we implement the network connectivity. At first, we have

to initialize the array S to make the V sets containing only one element, and this could

be implemented by simply setting -1 to all the value in S. That is, set all the vertices

be the root of a set.

Then for each edge, we would decide whether we have to union the two sets of the

vertices or not. With the two vertices, we use the SetFind function to find out the sets

which the vertices are belong to. If they are in the same set, we don’t have to do

anything and go to the next iteration; otherwise, we link the two sets together by the

SetUnion function mentioned above. After the iteration, the sets remain are the results

of network connectivity.

In the end, we store the sets which each vertex belongs to into an array R by using

SetFind function. And we called it the set table.

To estimate the time complexity, first we check the loops at line 3, 6, and 15. The

iteration goes V times at line 3 and 15, E times at line 6. In the loop of line 3 and 15,

the time complexity is O(𝑉). While in the loop of line 6, each iteration would do at

most two SetFind and one SetUnion. According to the time complexity of these

functions we estimate before, the time complexity is O(ℎ) for the average case.

Thus, the overall complexity must be O(ℎ ∗ 𝐸 + 2V). For the ten testing data, the

6

number of vertices and edges do not differ too much, and we could roughly estimate

that the time complexity is O(ℎ ∗ 𝐸).

For the space complexity, we only need extra spaces in the loop of line 6, so the

space complexity for this algorithm is O(𝐸).

Time complexity: O(h ∗ E)

Space complexity: O(E)

Furthermore, we revise the SetFind and SetUnion algorithms to have a better

performance on time. In Connect2, we replace the SetUnion by WeightedUnion;

while in Connect3, we not only use the WeightedUnion but replace the SetUnion by

CollapsingFind. Then we measure the time used by the revised algorithms.

2.5. WeightedUnion

1. Algorithm WeightedUnion(i, j)

2. {

3. temp:=S[i]+S[j]; // two sets element sum

4.

5. if(S[i] > S[j]) then{ // if i has fewer elements

6. S[i]:=j; S[j]:=temp; // link i to j

7. }

8. else{ // if j has fewer elements

9. S[j]:=i; S[i]:=temp; // link j to i

10. }

11. }

7

This function would replace the SetUnion function. Unlike the SetUnion, in

which i always link to j, this function would either link i to j or j to i, depending on the

number of elements in the set. If set i has the fewer element, link set i to set j (make

the root of set i point to a node of set j); and if j has the fewer element, link set j to set

i.

The time complexity would still be O(1) since the algorithm takes only three

assignments, but it might work faster than the previous one. In order to get a better

performance on time consumed, we should prevent the tree from being skewed, which

would spend more time at iterating to find root in SetFind. Thus, by using the

WeightedUnion, we could choose the smaller set to be linked, and prevent the tree

from skewing one side.

Since the maximum tree height is log2 𝑉 + 1 by using weighted set union, which

is derived from the handout of the class, we could find out that the iteration only goes

at most log2 𝑉 + 1 steps in the function SetFind, if this algorithm is applied. Thus,

the total time complexity of Connect1 could become O(E ∗ log2 𝑉) = O(V ∗ log2 𝑉),

and it is implemented in Connect2.

2.6. CollapsingFind

1. Algorithm CollapsingFind(i)

2. {

3. r:=i;

8

4.

5. while(S[r] > 0) do r:=S[r]; // find the root

6. while(i != r) do { // collapse the elements on the path

7. temp:=p[i]; S[i]:=r; i:=temp;

8. }

9.

10. return r;

11. }

This revised algorithm makes more improvement on time consumed by collapsing

the elements while finding. At first, the algorithm finds the root of the set as the same

way in SetFind. And for each element i on the finding path, we replace S[i] by the

root value (collapsing). Although the time consumed for each execution, we could

find the root immediately later if the given node has been collapsed before since it

points to the root. Thus, the time consumed would decrease if we would do set finding

many times.

The time complexity after applying this function is still O(V ∗ log2 𝑉), since it

doesn’t decrease any iteration step. However, the program may run faster because the

next time we find for the root of an element, the time complexity of finding becomes

O(1). Thus, the time complexity of some iterations for each edge might become

O(1). And the input data size seems to have less influence on the complexity, what

matters is how the vertices connect and the input edges arrangement order.

3. Executing results

張彌彰

9

For repeating 100 times, run the testing data from g1.dat to g10.dat with different

input data size, and record the average CPU time used.

Data size
(V/E)

Connect1 Connect2 Connect3 Number of
sets

100/147 29.03μs 16.79μs 17.68μs 1

196/287 70.84μs 36.13μs 36.21μs 1

400/608 163.7μs 76.76μs 76.59μs 1

784/1213 575.6μs 129.3μs 117.3μs 3

1600/2489 1.701ms 207.4μs 201.4μs 5

3136/4883 4.678ms 422.4μs 401.9μs 9

6400/10130 16.45ms 930.3μs 851.5μs 14

12769/20251 63.38ms 1.838ms 1.719ms 18

25600/40727 324.2ms 3.916ms 3.517ms 45

51076/81499 1.486s 8.270ms 7.381ms 80

10

4. Result analysis and conclusion

From the graph, we could observe that Connect2 and Connect3 have a trend of

n ∗ log (n), which is same as our estimation. Yet, it seems that Connect1 doesn’t have

a trend of neither n ∗ log (n) or 𝑛2, the line is like staying between them. It makes

sense since the worst-case time complexity is O(𝑛2) with the tree height h=V.

However, it’s still hard to estimate what the average time complexity because it’s also

difficult to find out how the tree skews.

How the tree skews might depend on the input edges and its arrangement. We can

find it at SetUnion , where we assign j to S[i], and it means that we put the tree of set

i under the node of set j. If the edges of input data have been arranged well, that is, vi

< vj for the edge(vi,vj), then we always let the set with smaller index be the subtree of

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

1.00E+01

100 1000 10000 100000

tim
e,

 s

Input data size (V)

Average CPU time consumed

Connect1 Connect2 Connect3 n*log(n) n^2

11

the set with larger index. This would cause the tree skew and increase the tree height,

and lead to a time complexity closed to O(𝑛2). If the arrangement of (vi,vj) is placed

randomly, the tree structure would be like a complete tree, so the tree height would

decrease and the time complexity would be closed to O(n ∗ log n).

In our previous estimation, we predict that the time consumed by Connect3 would

be less than Connect2, but it doesn’t hold for the input vertices fewer than 196. It

might occur when the number of edges input is small, because the CollapsingFind

spends more time at the collapsing, in order to make the next fetching of elements be

quicker. And if the element isn’t fetched again, that would be just a waste of time.

Thus, if the vertices aren’t fetched for enough times, the Connect3 would spend more

time than Connect2.

a+Q`2, 3R
ěěě@

QX a22 `2im`MX

(q`BiBM;) M22/ KQ`2 T`�+iB+2 BM 1M;HBb? r`BiBM;X

(�TT`Q�+?) +�M b?Qr KQ`2 Tb2m/Q +Q/2b U7Q` *QMM2+ik- *QMM2+ij �M/ K�BMVX

(_2bmHib) +�M /`�r +QM+HmbBQMbX

(*Q/BM;) M22/ T`QT2` BM/2Mi�iBQMX

(*Q/BM;) T�v �ii2MiBQM iQ bT2HHBM;X

R

?ryjX+

R f 11jN3y >qyj >2�T aQ`i
k Ry8yeRkRk- *?B�@*?mM q�M;
j kyRNfyjfkj
9 f
8
e OBM+Hm/2 Ibi/BQX?=
d OBM+Hm/2 Ibi/HB#X?=
3 OBM+Hm/2 IbvbfiBK2X?=
N

Ry pQB/ `2�/:`�T?UpQB/Vc ff `2�/ �M/ biQ`2 �HH BMTmi
RR /Qm#H2 :2ihBK2UpQB/Vc ff ;2i +m``2Mi *Sl iBK2
Rk pQB/ *QMM2+iRUpQB/Vc ff M2irQ`F +QMM2+iBpBiv
Rj pQB/ *QMM2+ikUpQB/Vc ff M2irQ`F +QMM2+iBpBiv rBi?
R9 ff r2B;?i2/ b2i mMBQM
R8 pQB/ *QMM2+ijUpQB/Vc ff M2irQ`F +QMM2+iBpBiv rBi?
Re ff +QHH�TbBM; b2i 7BM/
Rd BMi a2i6BM/UBMi BMVc ff 7BM/ i?2 b2i Q7 i?2 2H2K2Mi
R3 pQB/ a2ilMBQMUBMi B- BMi DVc ff mMBQM irQ b2ib
RN pQB/ q2B;?i2/lMBQMUBMi B- BMi DVc ff mMBQM irQ b2ib #v r2B;?i
ky BMi *QHH�TbBM;6BM/UBMi BMVc ff 7BM/ i?2 b2i Q7 i?2 2H2K2Mi
kR ff �M/ +QHH�bTb2 i?2 i`22

+QHH�bTb2
kk pQB/ 7`22J2KQ`vUpQB/Vc ff 7`22 /vM�KB+ K2KQ`B2b
kj
k9 BMi oc ff MmK#2` Q7 p2`iB+2b
k8 BMi 1c ff MmK#2` Q7 2/;2b
ke BMi ac ff �``�v Q7 b2ib
kd BMi 2/;2c ff k. �``�v Q7 2/;2b
k3 BMi _c ff i?2 b2i i�#H2
kN BMi Lac ff MmK#2` Q7 b2ib
jy BMi L`2T2�i 4 Ryyc ff MmK#2` Q7 `2T2iBiBQMb
jR
jk BMi K�BMUpQB/V
jj &
j9 BMi Bc ff HQQT BM/2t
j8 /Qm#H2 iy- iR- ik- ijc ff +m``2Mi *Sl iBK2
je /Qm#H2 iRn�p;- ikn�p;- ijn�p;c ff �p2`�;2 iBK2 T2` 2t2+miBQM
jd BMi LbR- Lbk- Lbjc ff MmK#2` Q7 b2ib
j3
jN `2�/:`�T?UVc ff `2�/ �M/ biQ`2 �HH BMTmi
9y
9R iy 4 :2ihBK2UVc ff ;2i +m``2Mi *Sl iBK2
9k
9j 7Q`UB 4 Rc B I4 L`2T2�ic BYYV& ff `2T2�i L`2T2�i iBK2b
99 *QMM2+iRUVc ff /Q +QMM2+iR
98 '
9e
9d iR 4 :2ihBK2UVc ff ;2i +m``2Mi *Sl iBK2

R

93 LbR 4 Lac ff `2+Q`/ i?2 MmK#2` Q7 b2ib
9N
8y 7Q`UB 4 Rc B I4 L`2T2�ic BYYV& ff `2T2�i L`2T2�i iBK2b
8R *QMM2+ikUVc ff /Q +QMM2+ik

L22/ BM/2Mi�iBQMX
8k '
8j
89 ik 4 :2ihBK2UVc ff ;2i +m``2Mi *Sl iBK2
88 Lbk 4 Lac ff `2+Q`/ i?2 MmK#2` Q7 b2ib
8e
8d 7Q`UB 4 Rc B I4 L`2T2�ic BYYV& ff `2T2�i L`2T2�i iBK2b
83 *QMM2+ijUVc ff /Q +QMM2+ij
8N '
ey
eR ij 4 :2ihBK2UVc ff ;2i +m``2Mi *Sl iBK2
ek Lbj 4 Lac ff `2+Q`/ i?2 MmK#2` Q7 b2ib
ej
e9 ff +�H+mH�i2 i?2 �p2`�;2 *Sl iBK2 T2` 2t2+miBQM
e8 iRn�p; 4 UiR@iyV f L`2T2�ic
ee ikn�p; 4 Uik@iRV f L`2T2�ic
ed ijn�p; 4 Uij@ikV f L`2T2�ic
e3
eN ff T`BMi Qmi i?2 `2bmHib
dy T`BMi7U]*QMM2+iR,$M hBK2, W2 b$M LmK#2` Q7 a2i, W/$M]- iRn�p;- LbRVc
dR T`BMi7U]*QMM2+ik,$M hBK2, W2 b$M LmK#2` Q7 a2i, W/$M]- ikn�p;- LbkVc
dk T`BMi7U]*QMM2+ij,$M hBK2, W2 b$M LmK#2` Q7 a2i, W/$M]- ijn�p;- LbjVc
dj
d9 7`22J2KQ`vUVc ff 7`22 /vM�KB+ K2KQ`B2b
d8
de `2im`M yc
dd '
d3
dN pQB/ `2�/:`�T?UpQB/V ff `2�/ �M/ biQ`2 �HH BMTmi
3y &
3R BMi Bc ff HQQT BM/2t
3k
3j b+�M7U]W/]- �oVc ff MmK#2` Q7 p2`iB+2b
39 b+�M7U]W/]- �1Vc ff MmK#2` Q7 2/;2b
38
3e ff �HHQ+�i2 /vM�KB+ K2KQ`B2b
3d a 4 UBMi VK�HHQ+UbBx2Q7UBMiV UoYRVVc
33 _ 4 UBMi VK�HHQ+UbBx2Q7UBMiV UoYRVVc
3N
Ny 2/;2 4 UBMi VK�HHQ+UbBx2Q7UBMi V U1YRVVc
NR 7Q`UB 4 Rc B I4 1c BYYV&

7Q` UB 4 Rc B I4 1c BYYV &
Nk 2/;2(B) 4 UBMi VK�HHQ+UbBx2Q7UBMiV kVc

L22/ BM/2Mi�iBQMX
Nj '
N9

k

N8 ff biQ`2 �HH 2/;2b rBi? � k. �``�v
Ne 7Q`UB 4 Rc B I4 1c BYYV&

7Q` UB 4 Rc B I4 1c BYYV &
Nd b+�M7U]W/ W/]- �2/;2(B)(y)- �2/;2(B)(R)Vc
N3 '
NN '
Ryy
RyR /Qm#H2 :2ihBK2UpQB/V ff ;2i HQ+�H iBK2 BM b2+QM/b
Ryk &
Ryj bi`m+i iBK2p�H ipc ff iBK2 BMi2`p�H bi`m+im`2
Ry9
Ry8 ;2iiBK2Q7/�vU�ip- LlGGVc ff r`Bi2 HQ+�H iBK2 BMiQ ip
Rye
Ryd `2im`M ipXipnb2+ Y ipXipnmb2+ yXyyyyyRc ff `2im`M iBK2 rBi? KB+`Qb2+QM/
Ry3 '
RyN
RRy ff M2irQ`F +QMM2+iBpBiv
RRR pQB/ *QMM2+iRUpQB/V
RRk &
RRj BMi Bc ff HQQT BM/2t
RR9 BMi aB- aDc ff b2i `QQi
RR8
RRe 7Q`UB 4 Rc B I4 oc BYYV& ff BMBi�BHx2 i?2 b2i

BMBi�BHx2
RRd a(B) 4 @Rc ff QMHv QM2 2H2K2Mi BM 2�+? b2i

L22/ BM/2Mi�iBQMX
RR3 '
RRN
Rky La 4 oc ff MmK#2` Q7 b2ib 4 p2`iB+2b
RkR
Rkk 7Q`UB 4 Rc B I4 1c BYYV& ff 7Q` 2p2`v 2/;2b
Rkj ff 7BM/ i?2 b2i `QQi Q7 p2`iB+2b Q7 2�+? 2/;2
Rk9 aB 4 a2i6BM/U2/;2(B)(y)Vc
Rk8 aD 4 a2i6BM/U2/;2(B)(R)Vc
Rke
Rkd B7UaB 54 aDV& ff B7 MQi BM i?2 b�K2 b2i
Rk3 La@@c ff MmK#2` Q7 b2ib @ R
RkN a2ilMBQMUaB- aDVc ff mMBQM irQ b2ib
Rjy '
RjR '
Rjk
Rjj 7Q`UB 4 Rc B I4 oc BYYV& ff 7Q` 2�+? p2`iB+2

p2`iB+2
Rj9 _(B) 4 a2i6BM/UBVc ff `2+Q`/ i?2 b2i #2HQM;
Rj8 '
Rje '
Rjd
Rj3 ff M2irQ`F +QMM2+iBpBiv rBi? r2B;?i2/ b2i mMBQM
RjN pQB/ *QMM2+ikUpQB/V
R9y &

j

R9R BMi Bc ff HQQT BM/2t
R9k BMi aB- aDc ff b2i `QQi
R9j
R99 7Q`UB 4 Rc B I4 oc BYYV& ff BMBi�BHx2 i?2 b2i
R98 a(B) 4 @Rc ff QMHv QM2 2H2K2Mi BM 2�+? b2i
R9e '
R9d
R93 La 4 oc ff MmK#2` Q7 b2ib 4 p2`iB+2b
R9N
R8y 7Q`UB 4 Rc B I4 1c BYYV& ff 7Q` 2p2`v 2/;2b
R8R ff 7BM/ i?2 b2i `QQi Q7 p2`iB+2b Q7 2�+? 2/;2
R8k aB 4 a2i6BM/U2/;2(B)(y)Vc
R8j aD 4 a2i6BM/U2/;2(B)(R)Vc
R89
R88 B7UaB 54 aDV& ff B7 MQi BM i?2 b�K2 b2i
R8e La@@c ff MmK#2` Q7 b2ib @ R
R8d q2B;?i2/lMBQMUaB- aDVc ff mMBQM irQ b2ib
R83 '
R8N '
Rey
ReR 7Q`UB 4 Rc B I4 oc BYYV& ff 7Q` 2�+? p2`iB+2
Rek _(B) 4 a2i6BM/UBVc ff `2+Q`/ i?2 b2i #2HQM;
Rej '
Re9 '
Re8
Ree ff M2irQ`F +QMM2+iBpBiv rBi? r2B;?i2/ b2i mMBQM �M/ +QHH�TbBM; b2i 7BM/
Red pQB/ *QMM2+ijUpQB/V
Re3 &
ReN BMi Bc ff HQQT BM/2t
Rdy BMi aB- aDc ff b2i `QQi
RdR
Rdk 7Q`UB 4 Rc B I4 oc BYYV& ff BMBi�BHx2 i?2 b2i
Rdj a(B) 4 @Rc ff QMHv QM2 2H2K2Mi BM 2�+? b2i
Rd9 '
Rd8
Rde La 4 oc ff MmK#2` Q7 b2ib 4 p2`iB+2b
Rdd
Rd3 7Q`UB 4 Rc B I4 1c BYYV& ff 7Q` 2p2`v 2/;2b
RdN ff 7BM/ i?2 b2i `QQi Q7 p2`iB+2b Q7 2�+? 2/;2
R3y aB 4 *QHH�TbBM;6BM/U2/;2(B)(y)Vc
R3R aD 4 *QHH�TbBM;6BM/U2/;2(B)(R)Vc
R3k
R3j B7UaB 54 aDV& ff B7 MQi BM i?2 b�K2 b2i
R39 La@@c ff MmK#2` Q7 b2ib @ R
R38 q2B;?i2/lMBQMUaB- aDVc ff mMBQM irQ b2ib
R3e '
R3d '
R33
R3N 7Q`UB 4 Rc B I4 oc BYYV& ff 7Q` 2�+? p2`iB+2
RNy _(B) 4 a2i6BM/UBVc ff `2+Q`/ i?2 b2i #2HQM;

9

RNR '
RNk '
RNj
RN9 BMi a2i6BM/UBMi BMV ff 7BM/ i?2 b2i Q7 i?2 2H2K2Mi
RN8 &
RNe BMi Bc ff BMTmi 2H2K2Mi
RNd
RN3 B 4 BMc
RNN
kyy r?BH2Ua(B) =4 yV& ff B7 i?2 2H2K2Mi Bb MQi `QQi
kyR B 4 a(B)c ff F22T 7BM/BM;
kyk '
kyj
ky9 `2im`M Bc
ky8 '
kye
kyd pQB/ a2ilMBQMUBMi B- BMi DV ff mMBQM irQ b2ib
ky3 &
kyN a(B) 4 Dc ff �bbB;M QM2 b2i iQ �MQi?2`
kRy '
kRR
kRk pQB/ q2B;?i2/lMBQMUBMi B- BMi DV ff mMBQM irQ b2ib #v r2B;?i
kRj &
kR9 BMi i2KTc ff i2KTQ`�`v BMi2;2`
kR8
kRe i2KT 4 a(B) Y a(D)c ff bmK i?2 MmK#2` Q7 2H2K2Mib
kRd
kR3 B7Ua(B) = a(D)V& ff B7 B ?�b 72r2` 2H2K2Mib
kRN ff �bbB;M b2i B iQ D
kky a(B) 4 Dc
kkR a(D) 4 i2KTc
kkk '
kkj 2Hb2& ff B7 B ?�b KQ`2 2H2K2Mib
kk9 ff �bbB;M b2i D iQ B
kk8 a(D) 4 Bc
kke a(B) 4 i2KTc
kkd '
kk3 '
kkN
kjy ff 7BM/ i?2 b2i Q7 �M 2H2K2Mi �M/ +QHH�Tb2 i?2 i`22
kjR BMi *QHH�TbBM;6BM/UBMi BMV
kjk &
kjj BMi Bc ff BMTmi 2H2K2Mi
kj9 BMi `c ff `QQi iQ #2 7QmM/
kj8 BMi i2KTc ff i2KTQ`�`v BMi2;2`
kje
kjd B 4 BMc ff 7BM/ bi�`i 7`QK BMTmi
kj3 ` 4 BMc
kjN
k9y r?BH2Ua(`) = yV& ff B7 MQi i?2 `QQi

8

k9R ` 4 a(`)c ff F22T 7BM/BM;
k9k '
k9j
k99 r?BH2UB 54 `V& ff B7 MQi i?2 `QQi
k98 ff K�F2 i?2 2H2K2Mi TQBMi iQ `QQi
k9e i2KT 4 a(B)c
k9d a(B) 4 `c
k93 B 4 i2KTc
k9N '
k8y
k8R `2im`M `c
k8k '
k8j
k89 pQB/ 7`22J2KQ`vUpQB/V ff `2H2�b2 /vM�KB+ K2KQ`B2b
k88 &
k8e BMi Bc ff HQQT BM/2t
k8d
k83 ff 7`22 �HH /vM�KB+ K2KQ`B2b �HHQ+�i2/ #27Q`2
k8N 7`22UaVc
key 7`22U_Vc
keR
kek 7Q`UB 4 yc B I4 1c BYYV&
kej 7`22U2/;2(B)Vc
ke9 '
ke8 7`22U2/;2Vc
kee '

e

