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Homework 3. Network Connectivity problem 
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1. Introduction 

In this homework, we construct an undirected graph with input vertices and edges, 

and union the vertices(i,j) in a set if there exists a path from i to j. In the end, we 

calculate the number of the distinct sets in the graph, and record the CPU time used 

for arrange the vertices in the sets. The above steps would be executed with different 

methods, including Weighted set union and Collapsing set find, so then we could 

find out the difference of time consumed between these algorithms. 

2. Implementation 

In the program, we first read all inputs and store them in some arrays. Then we 

use the three methods, Connect1, Connect2, Connect3, which would be explained 

later, to implement the network connectivity, and also record the CPU time 

consumed. Finally, we show the number of sets and the CPU time on the screen. 

2.1. Network connectivity 

In this problem, we have V vertices, numbered from 1 to V, and E edges input. 

Since our final goal is to union all the connective vertices together, we could first 
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assume that there are V sets initially with only one element (vertex) in each set. Then 

for every edge, we could connect the vertices of each edge. That is, union the set of 

the vertices together. After all the edges are checked, we could easily find out the sets 

remained, which indicates that the vertices in the same set are connected together. 

In order to implement our method, we use an array S with size V. In the array, S[i] 

means i and S[i] are in the same set. Besides, if S[i] is equal to -1, that means i is the 

root of the set. 

The array S could also be represented like a forest, which is made up by several 

trees. The i with S[i] = -1 acts like the tree root, and j pointing to the root i acts like 

the child of i, and so does other nodes. So, we might use the tree representation to 

explain our methods later to make them clearer. 

2.2. SetFind 

1. Algorithm SetFind(i)   

2. {   

3.     while(S[i] >= 0) do i:=S[i];     // keep finding the root   

4.     return i;   

5. }   

If we want to find the set which a given element i is belong to, we could use the 

SetFind function. In this function, we starting finding from the element i, and keep 

iterates to the S[i] until S[i] is no less than zero. Since i and S[i] are belong to the 
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same set for all i, we can make sure that all the iterations go in the same set, and at the 

moment S[i] is no less than zero, we could know that we find the root. 

 In this function, the iteration at line 3 would execute at most h times, where h 

represents the tree height of S. At its worst case, the tree is totally skewed and the 

iteration execute for V times. At its best case, the given element i is the root of a set, 

so the loop only executes one time. 

 For the space capacity, there is no need of extra space for this algorithm, so the 

space complexity is O(1). 

Best-case time complexity: O(1)  

Worst-case time complexity: O(𝑉) 

Average-case time complexity: O(ℎ) 

Space complexity: O(1) 

2.3. SetUnion 

1. Algorithm SetUnion(i, j)   

2. {   

3.     S[i] := j;   

4. }   

By using the set union function, we could link the two different sets together. In 

this function, we just assign j to S[i], so the i and j would be in the same set. Thus, all 
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the elements which are in the same set with i would be in the same set with j, vice 

versa. We could easily union the two sets by simply an assignment. 

No matter what the input vertices i and j are, all we should do is one assignment, 

so the time complexity of this function in any cases is O(1), so is the space 

complexity because of no extra space needed. 

Time complexity: O(1)  

Space complexity: O(1) 

2.4. Connect1 

1. Algorithm Connect1(G, R)   

2. {   

3.     for each vi in V do S:={vi};        // one element for each set   

4.     NS:=number of vi;                   // number of disjoint sets   

5.        

6.     for each e = (vi, vj) do{           // for each edge       

7.         Si:=SetFind(vi);   

8.         Sj:=SetFind(vj);   

9.            

10.         if(Si != Sj) then{              // if two sets   

11.             NS:=NS-1;   

12.             SetUnion(Si, Sj);           // union them   

13.         }   

14.     }   

15.     for each vi in V do{                // record root to R table   

16.         R[i]:=SetFind(vi);   

17.     }   

18. }  
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This is the function that we implement the network connectivity. At first, we have 

to initialize the array S to make the V sets containing only one element, and this could 

be implemented by simply setting -1 to all the value in S. That is, set all the vertices 

be the root of a set.  

Then for each edge, we would decide whether we have to union the two sets of the 

vertices or not. With the two vertices, we use the SetFind function to find out the sets 

which the vertices are belong to. If they are in the same set, we don’t have to do 

anything and go to the next iteration; otherwise, we link the two sets together by the 

SetUnion function mentioned above. After the iteration, the sets remain are the results 

of network connectivity. 

In the end, we store the sets which each vertex belongs to into an array R by using 

SetFind function. And we called it the set table. 

To estimate the time complexity, first we check the loops at line 3, 6, and 15. The 

iteration goes V times at line 3 and 15, E times at line 6. In the loop of line 3 and 15, 

the time complexity is O(𝑉). While in the loop of line 6, each iteration would do at 

most two SetFind and one SetUnion. According to the time complexity of these 

functions we estimate before, the time complexity is O(ℎ) for the average case. 

Thus, the overall complexity must be O(ℎ ∗ 𝐸 + 2V). For the ten testing data, the 
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number of vertices and edges do not differ too much, and we could roughly estimate 

that the time complexity is O(ℎ ∗ 𝐸). 

For the space complexity, we only need extra spaces in the loop of line 6, so the 

space complexity for this algorithm is O(𝐸). 

Time complexity: O(h ∗ E)  

Space complexity: O(E) 

Furthermore, we revise the SetFind and SetUnion algorithms to have a better 

performance on time. In Connect2, we replace the SetUnion by WeightedUnion; 

while in Connect3, we not only use the WeightedUnion but replace the SetUnion by 

CollapsingFind. Then we measure the time used by the revised algorithms. 

2.5. WeightedUnion 

1. Algorithm WeightedUnion(i, j)   

2. {   

3.     temp:=S[i]+S[j];                    // two sets element sum   

4.        

5.     if(S[i] > S[j]) then{               // if i has fewer elements   

6.         S[i]:=j; S[j]:=temp;            // link i to j   

7.     }   

8.     else{                               // if j has fewer elements   

9.         S[j]:=i; S[i]:=temp;            // link j to i   

10.     }   

11. }   
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This function would replace the SetUnion function. Unlike the SetUnion, in 

which i always link to j, this function would either link i to j or j to i, depending on the 

number of elements in the set. If set i has the fewer element, link set i to set j (make 

the root of set i point to a node of set j); and if j has the fewer element, link set j to set 

i.  

The time complexity would still be O(1) since the algorithm takes only three 

assignments, but it might work faster than the previous one. In order to get a better 

performance on time consumed, we should prevent the tree from being skewed, which 

would spend more time at iterating to find root in SetFind. Thus, by using the 

WeightedUnion, we could choose the smaller set to be linked, and prevent the tree 

from skewing one side. 

Since the maximum tree height is log2 𝑉 + 1 by using weighted set union, which 

is derived from the handout of the class, we could find out that the iteration only goes 

at most log2 𝑉 + 1 steps in the function SetFind, if this algorithm is applied. Thus, 

the total time complexity of Connect1 could become O(E ∗ log2 𝑉) = O(V ∗ log2 𝑉), 

and it is implemented in Connect2. 

2.6. CollapsingFind 

1. Algorithm CollapsingFind(i)   

2. {   

3.     r:=i;   
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4.        

5.     while(S[r] > 0) do r:=S[r];         // find the root   

6.     while(i != r) do {                  // collapse the elements on the path 

7.         temp:=p[i]; S[i]:=r; i:=temp;   

8.     }   

9.        

10.     return r;   

11. }    

This revised algorithm makes more improvement on time consumed by collapsing 

the elements while finding. At first, the algorithm finds the root of the set as the same 

way in SetFind. And for each element i on the finding path, we replace S[i] by the 

root value (collapsing). Although the time consumed for each execution, we could 

find the root immediately later if the given node has been collapsed before since it 

points to the root. Thus, the time consumed would decrease if we would do set finding 

many times. 

The time complexity after applying this function is still O(V ∗ log2 𝑉), since it 

doesn’t decrease any iteration step. However, the program may run faster because the 

next time we find for the root of an element, the time complexity of finding becomes 

O(1). Thus, the time complexity of some iterations for each edge might become 

O(1). And the input data size seems to have less influence on the complexity, what 

matters is how the vertices connect and the input edges arrangement order. 

3. Executing results 
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For repeating 100 times, run the testing data from g1.dat to g10.dat with different 

input data size, and record the average CPU time used. 

 

Data size 
(V/E) 

Connect1 Connect2 Connect3 Number of 
sets 

100/147 29.03μs 16.79μs 17.68μs 1 

196/287 70.84μs 36.13μs 36.21μs 1 

400/608 163.7μs 76.76μs 76.59μs 1 

784/1213 575.6μs 129.3μs 117.3μs 3 

1600/2489 1.701ms 207.4μs 201.4μs 5 

3136/4883 4.678ms 422.4μs 401.9μs 9 

6400/10130 16.45ms 930.3μs 851.5μs 14 

12769/20251 63.38ms 1.838ms 1.719ms 18 

25600/40727 324.2ms 3.916ms 3.517ms 45 

51076/81499 1.486s 8.270ms 7.381ms 80 
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4. Result analysis and conclusion 

From the graph, we could observe that Connect2 and Connect3 have a trend of 

n ∗ log (n), which is same as our estimation. Yet, it seems that Connect1 doesn’t have 

a trend of neither n ∗ log (n) or 𝑛2, the line is like staying between them. It makes 

sense since the worst-case time complexity is O(𝑛2) with the tree height h=V. 

However, it’s still hard to estimate what the average time complexity because it’s also 

difficult to find out how the tree skews. 

How the tree skews might depend on the input edges and its arrangement. We can 

find it at SetUnion , where we assign j to S[i], and it means that we put the tree of set 

i under the node of set j. If the edges of input data have been arranged well, that is, vi 

< vj for the edge(vi,vj), then we always let the set with smaller index be the subtree of 
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the set with larger index. This would cause the tree skew and increase the tree height, 

and lead to a time complexity closed to O(𝑛2). If the arrangement of (vi,vj) is placed 

randomly, the tree structure would be like a complete tree, so the tree height would 

decrease and the time complexity would be closed to O(n ∗ log n). 

In our previous estimation, we predict that the time consumed by Connect3 would 

be less than Connect2, but it doesn’t hold for the input vertices fewer than 196. It 

might occur when the number of edges input is small, because the CollapsingFind 

spends more time at the collapsing, in order to make the next fetching of elements be 

quicker. And if the element isn’t fetched again, that would be just a waste of time. 

Thus, if the vertices aren’t fetched for enough times, the Connect3 would spend more 

time than Connect2. 
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kRe i2KT 4 a(B) Y a(D)c ff bmK i?2 MmK#2` Q7 2H2K2Mib
kRd
kR3 B7Ua(B) = a(D)V& ff B7 B ?�b 72r2` 2H2K2Mib
kRN ff �bbB;M b2i B iQ D
kky a(B) 4 Dc
kkR a(D) 4 i2KTc
kkk '
kkj 2Hb2& ff B7 B ?�b KQ`2 2H2K2Mib
kk9 ff �bbB;M b2i D iQ B
kk8 a(D) 4 Bc
kke a(B) 4 i2KTc
kkd '
kk3 '
kkN
kjy ff 7BM/ i?2 b2i Q7 �M 2H2K2Mi �M/ +QHH�Tb2 i?2 i`22
kjR BMi *QHH�TbBM;6BM/UBMi BMV
kjk &
kjj BMi Bc ff BMTmi 2H2K2Mi
kj9 BMi `c ff `QQi iQ #2 7QmM/
kj8 BMi i2KTc ff i2KTQ`�`v BMi2;2`
kje
kjd B 4 BMc ff 7BM/ bi�`i 7`QK BMTmi
kj3 ` 4 BMc
kjN
k9y r?BH2Ua(`) = yV& ff B7 MQi i?2 `QQi
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k9R ` 4 a(`)c ff F22T 7BM/BM;
k9k '
k9j
k99 r?BH2UB 54 `V& ff B7 MQi i?2 `QQi
k98 ff K�F2 i?2 2H2K2Mi TQBMi iQ `QQi
k9e i2KT 4 a(B)c
k9d a(B) 4 `c
k93 B 4 i2KTc
k9N '
k8y
k8R `2im`M `c
k8k '
k8j
k89 pQB/ 7`22J2KQ`vUpQB/V ff `2H2�b2 /vM�KB+ K2KQ`B2b
k88 &
k8e BMi Bc ff HQQT BM/2t
k8d
k83 ff 7`22 �HH /vM�KB+ K2KQ`B2b �HHQ+�i2/ #27Q`2
k8N 7`22UaVc
key 7`22U_Vc
keR
kek 7Q`UB 4 yc B I4 1c BYYV&
kej 7`22U2/;2(B)Vc
ke9 '
ke8 7`22U2/;2Vc
kee '

e


