EE3980 Algorithms

Homework 2. Heap Sort report
By 105061212 F-576%

1. Introduction

In this homework, we use the structure of homework 1 which includes four
quadratic sorts, and add the heap sort function to the program. Then we compare the
efficiency of heap sort with other quadratic sorts, with best-case, worst-case, and
average-case analysis included. At the end, we also derive the time and space

complexities of the sorting algorithm, and analyze the differences between them.
2. Implementation

The program structure is based on homework 1, and modified at several places:

B Use variable size strings by allocating memories based on the string length.

B Use pointers to character while swapping.

B Add functions to implement heap sort.

B Modified the sorting algorithms from 0-based to 1-based.

張彌彰

張彌彰
?

Since the implementation of the four quadratic algorithms were described in

homework 1, we just derive the time/space complexities of them in best-cases, worst-

cases,and.average Ccascs.

2.1. Selection Sort

1. Algorithm SelectionSort(A, n)

2. {

3. for i:=1 to n do{ // for every A[i]

4. j:=1i; // initialize j to i

5. for k:=i+1 to n do{ // search for the smallest
// in A[i+1l:n]

6. if(A[k] < A[j]) then j:=k; // found, remember it in j

7. t:=A[i]; A[i]:=A[j]; A[j]:=t; // swap A[i] and A[]]

8 }

9. }

The iteration at line 3 and 5 must go through to the end no matter how the
elements of the array was arranged at the beginning. Thus, for the best-case, worst-
case, and average-case, the program has to run through the outer loop and the inner

loop, so the time complexities are all 0(n?) for the three cases mentioned above.

For the space complexity, expect the array being sorted, we only need a temporary

t to during the sorting. So the space complexity must be O(n) (the array length).

Best-case time complexity: 0(n?)

Worst-case time complexity: 0(n?)

Average-case time complexity: 0(n?)
Space complexity: O(n)

2.2. Insertion Sort

1. Algorithm InsertionSort(A, n)

2. {

3. for j:=2 to n do{ // A[1:j-1] already sorted

4, item:=A[j]; // store value of A[j]

5. ii=j-1; // intialize i to j-1

6. while(i >= 1 and item < A[i]) do{ // find i such that A[i]<=A[]]
7. A[i+1]:=A[i]; // move a[i] up by one position
8. ii=i-1;

9. }

10. A[i+1]:=item; // move A[j] to A[i+1]

11. }

12. }

The iteration at line 3 must go through to the end ,while the one at line 6 would

stop at finding out an i such that A[i] = A[j]. At the best-case, the iteration at line 6

stops at 1 = j-1, which indicates that the loop ends immediately. Thus, the time

complexity of the best-case is O(n). In the last two cases, the iteration at line 6 might

stops at somewhere in the average-case and at the end of the iteration (i = 1). Thus,

the time complexities of the worst-case and the average-case are both O(n)

For the space complexity, expect the array being sorted, we only need a temporary

item to during the sorting. So the space complexity must be O(n) (the array length).

Best-case time complexity: O(n)
Worst-case time complexity: 0(n?)
Average-case time complexity: 0(n?)
Space complexity: O(n)

2.3. Bubble Sort

1. Algorithm BubbleSort(A, n)

2. {

3. for i:=1 to n-1 do{ // find the smallest for A[i]
4, for j:=n to i+l step -1 do{

5. if(A[J] < A[3-1D{ // swap A[j] and A[]j-1]
6. t:=A[]];

7. A[3]:=A[j+1];

8. A[j+1]:=t;

9 }

10. }

11. }

12. }

The iterations of the loops at line 3 and 4 go to the end, no matter how the
elements of the array was arranged at the beginning. Thus, for the best-case, worst-
case, and average-case, the program has to run through the outer loop and the inner

loop, so the time complexities are all O(n?) for the three cases mentioned above.

The algorithm has to run through both the inner and the outer loop even when the
array is well-sorted in the beginning, whose time complexity is still 0(n?). To

minimize the executing time of the best-case, we can add an if-else statement to check

if the array is well-arranged after each outer loop iteration. For the best-case, the array

is well-sorted in the beginning, and after the check the loop goes to the end soon.

Since the outer loop only executes for one time, the time complexity can be reduced

to_ O(n). Is this correct?

For the space complexity, expect the array being sorted, we only need a temporary
t to during the sorting (in-place sorting). So the space complexity must be O(n) (the

array length).

Best-case time complexity: 0(n?) / O(n) with additional statement
Worst-case time complexity: 0(n?)

Average-case time complexity: 0(n?)

Space complexity: O(n)

2.4. Shaker Sort

1. Algorithm ShakerSort(A, n)

2. {

3. 1:=1; r:=n;

4. while 1<=r do{ // exchange from r down to 1
5. for j:=r to 141 step -1 dof{ // swap A[j] and A[j-1]
6. if(A[J] < A[J-1D{

7. t:=A[J]; A[J]:=A[j-1]; A[j-1]:=t;

8 }

9. }

10. 1:=1+1;

11. for j:=1 to r-1 dof{ // exchange from 1 to r
12. if(A[F] > A[F+11){ // swap A[j] and A[j+1]
13. t:=A[j]; A[jl:=A[j+1]; A[j+1]:=t;

5

張彌彰

張彌彰
Is this correct?

14. }

15. }

16. r:=r-1;
17. }

18. }

For the outer loop, the iteration goes to the end when 1 > r. Since 1 and r have step
1 and -1 separately at each iteration step, the loop ends when | and r meet at the
middle of the array, which contributes the time complexity of O(n). Then for the two
inner loops, the iterations also have time complexities of O(n) because they have to
go through the array until 1+1 or r-1. Thus, the time complexities are all O(n?) for

the best-case, worst-case, and average-case.

For the space complexity, expect the array being sorted, we only need a temporary
t to during the sorting (in-place sorting). So the space complexity must be O(n) (the
array length).

2.5. Heapify

1. Algorithm Heapify(A, root, n)

2. {

3. t:=root; j:=root*2;

4. while j<=n do{

5. if(j < n & A[j] < A[F+1]){ // if rchild > 1lchild
6. Jji=j+1; // j is rchild

7. }

8. if(t > A[J]){ // if root > children
9. break; // done

10. }

11. else{

12. A[j/2]:=A[]]; // place child to parent
13. Jjr=j*2; // j is child, keep finding
14. }

15. }

16. A[j/2]:=t; // place the root node

17. }

18.

What is this?
This function replaces the root node to rearrange the heap to the form of maxheap.

We found the place where the root node should be inserted from the top, and keep

tracing down the children. When tracing to the node j, if the value of the root node is

larger than the children, we place the root node at node j to form a maxheap.

Otherwise, we keep finding by assign j to the child node which is the larger until

finding a right place for the root node.

The loop stops when j > n, and the j doubles itself after each iteration step. So the

loop would execute at most log, n times. Thus, the time complexity of heapify once

is O(logn).

2.6. Heap Sort

1. Algorithm HeapSort(A, n)

2. {
3. for i:=n/2 to 1 step -1 do{
4, Heapify(A, i, n); // heapify all the subtrees
to be a max heap
5 }
6.
7. for i:=n to 2 step -1 do{ // repeat n-1 times
8. t:=A[1i]; // swap the first and the last

張彌彰

張彌彰
What is this?

9. A[i]:=A[1];

10. A[1]:=t;

11. Heapify(A, 1, i-1); // make A[1:i-1] be a max heap
12. }

13. }

This algorithm rearranges the array in alphabetical order by using the heap sort. At

first, we heapify the subtrees with the nodes which have at least one child to make the

heap become a maxheap. At each iteration step, we swap the root node, whose value

is the largest, with the last node of the array. Then we heapify the tree A[1:i-1], due to

the last i nodes were already well-arranged, so the largest element would be placed at

the top of the heap, and could be swapped for the next iteration. After the iteration

goes to the end, the whole array is well-sorted.

For the two loops of this algorithm, the iterations go almost through the array.

Thus, the time complexities are O(n * logn) ,which had timed the complexities of

heapify, for the best-case, worst-case, and average-case.

For the space complexity, expect the array being sorted, we only need a temporary

t to during the sorting (in-place sorting), and the heapify function is also a in-place

function. So the space complexity must be O(n) (the array length).

Best-case time complexity: O(n * logn)

Worst-case time complexity: O(n * logn)

Average-case time complexity: O(n * logn)

Space complexity: O(n)

3. Executing results

What is this R?

ForR=5

00, run the testing data from s1.dat to s9.dat with different input data

size, and record the average CPU time used.

For the random arrangement input:

Data size Selection Insertion Bubble Shaker Heap
(V) Sort Sort Sort Sort Sort
10 19.95 s 20.04 s 3912 us 6.060 s | 5976 us
20 3391 us 2354 1s 6.062 (s 8804 s | 8130 us
40 73.73 s 72.08 1t s 12.83 us 1191 s 11.97 s
80 106.7 s 105.7 s 3845us 32.04 us 13.95us
160 2574 us 214.7 us 172.8 s 153.6 s | 3632 us
320 637.8 us 5792 us 7243 us 5926 us 86.77 (s
640 1.751ms 637.6 s 2.831ms 2.212ms 201.5us
1280 5.225ms 1.999ms 11.83ms 8.817ms 548.5 s
2560 17.76ms 7.398ms 50.77ms 40.13ms 1.078ms

張彌彰

張彌彰
What is this R?

Sorting average CPU time - random arrangement
Can use darker font.

1.00E-01
10 100 1000 10000
x-label should be placed at the bottom.
1.00E-02
1.00E-03
g
=
1.00E-04
1.00E-05
1.00E-06
input data size N
—@— Selection Sort —@— Insertion Sort —@— Bubble Sort Shaker Sort
—@— Heap Sort —@—n"2 —@— n*log(n)
For the alphabetical order input:

Data size Selection Insertion Bubble Shaker Heap
(N) Sort Sort Sort Sort Sort
10 3930 us 5.908 us 5.956 us 3984 us 5.986 us
20 3.948 us 7.028 us 5982 us 5984 us 7978 us
40 14.53 us 1122 us 16.04 s 12.00 u s 11.97 us
80 2998 us 13.96 us 24.00 s 2591 us 17.87 us
160 79.79 us 21.87 us 79.79 us 83.78 it s 2987 us
320 221.5us 4395 us 2884 s 3102 us 85.85 s
640 8202 us 1024 us 1.154ms 1.222ms 189.5us

1280 3.144ms 2069 us 5.150ms 7.465ms 3842 us
2560 11.89ms 428.6 s 32.74ms 45.15ms 823.4 s

10

張彌彰
Can use darker font.

張彌彰
x-label should be placed at the bottom.

Sorting average CPU time - alphabetical order

1.00E-01
10 100 1000 10000
1.00E-02
1.00E-03
g 1.00E-04
1.00E-05
1.00E-06
1.00E-07
input data size N
—@— Selection Sort —@—Insertion Sort —@®— Bubble Sort Shaker Sort
—@— Heap Sort —8—n ——n"2 —@— n*log(n)
For the reverse alphabetical order input:

Data size Selection Insertion Bubble Shaker Heap
V) Sort Sort Sort Sort Sort
10 6.854 s 6.108 i s 6.220 1 s 7.982 s 4712 s
20 7.998 s 7.980 s 7.980 s 7.962 (1s 5982 us
40 9.510 s 1251 us 13.89 us 1427 s 11.90 s
80 2393 us 2994 us 32.69 us 28.00 s 1825 us
160 71.87 s 79.79 s 97.73 s 107.7 s 3391 us
320 251.6 us 2714 s 361.1 us 349.1 s 80.72 s
640 939.6 s 922.1us 1.305ms 1.287ms 193.5us

11

1280 4.001ms 3.531ms 5.105ms 4.857ms 4341 us
2560 19.66ms 13.64ms 45.79ms 43.37ms 900.5 s
Sorting average CPU time - reverse alphabetical order
1.00E-01
10 100 1000 10000

1.00E-02

1.00E-03

1.00E-04

1.00E-05

1.00E-06

1.00E-07

Shaker Sort

—@— Selection Sort —@— Insertion Sort —®— Bubble Sort

—@— Heap Sort @

Is this needed?

—@—n"2 —@—n*log(n)

4. Result analysis and conclusion

For the selection sort, we could observe that all of the three input orders lead to

the time complexities of 0(n?) from the graph. With a large number of data input,

the average CPU runtime doesn’t differ too much (from 11.89ms to 19.66ms). Thus,

張彌彰

張彌彰
Is this needed?

there exists a difference, but not too much, on CPU time consumed between the best-

case and the worst-case.

For the insertion sort, we could observe that the time complexities are 0(n?) for
the average case and the worst-case, while it can reach the time complexity of O(n)
for the best case (the strings were arranged in alphabetical order at the first). Thus,

there is a large scale of decreasing at the time consumed in the best-case.

For the bubble sort, we could observe that all of the three input orders lead to the
time complexities of O(n?) from the graph. With a large number of data input, the
algorithm would be slightly fast at the best-case (alphabetical order), but it is still

slower than almost all the other algorithms.

For the shaker sort, we could observe that all of the three input orders lead to the
time complexities of 0(n?) from the graph, and it is also time-consumed as the
bubble sort. However, with a large number of data input, the average CPU runtime
doesn’t differ too much (from 40.13ms to 45.15ms). The reason might be that the
shaker sort finds the elements both from the beginning to the end and from the end to
the beginning, so the order where the string arranged initially doesn’t matter too much

for the average CPU time.

13

For the heap sort, we could observe that all of the three input orders lead to the

time complexities of O(n * log(n)) from the graph. We could also find that the

average CPU time measured doesn’t differ too much.

When the heap sort operates, we place the last node of the unsorted tree to the

root, and keep finding down where it should be placed during heapify. It is hard to

minimize the time consumed in this step, because the last node we take is usually in

the smaller half of the unsorted part according to the structure of max heap. Thus, the

iteration almost has to go through the end of the loop to place the root with small

value. In the end, it’s difficult to figure out the exact arrangement for the best-case

and the worst-case of heap sort. That’s why the CPU time consumed doesn’t differ

too much at the three arrangement orders mentioned above.

The measured results are similar as we predicted before. For the average case and

the worst-case, we can use the heap sort whose time complexity is O(n * log(n)) to

minimize the time consumed. And for the best-case, where the strings were already

well-arranged, we can use the insertion sort to have the time complexity of O(n).

14

Score: 79

0. See return.

[Writing] can elaborate more on heap property and heap sort.
[Writing] should be self-contained and clear.

[Results| plot can be improved.

[Analysis| what is the best-case complexity for bubble sort?
[Coding] "A[i]’ stores pointer to string, and need no malloc

[Coding] Comments need proper indentation as well.

hw02.c

/* EE3980 HWO2 Heap Sort
* 105061212, =®a Q@

* 2019/03/13

*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/time.h>

#define SORTING_ALGORITHM O
/* modify the value to choose the sorting algorithm

* 0: Selection Sort

* 1: Insertion Sort

* 2: Bubble Sort

* 3: Shaker Sort

* 4 or others: Heap Sort

*/

int N; // input size

char** data; // input data

charx* A; // array to be sorted

int R = 500; // number of repetitions

int sorting_algorithm; // type of sorting algorithm

void readInput(void); // read all inputs

void printArray(char** A); // print the content of array A
void copyArray(char** data, char*x A); // copy data to array A
double GetTime(void); // get local time in seconds

void SelectionSort(char** list, int n); // in-place selection sort
void InsertionSort(char** list, int n); // in-place insertion sort
void BubbleSort(char** list, int n); // in-place bubble sort
void ShakerSort(char** list, int n); // in-place shaker sort
void HeapSort(char** list, int n); // in-place heap sort

void Heapify(char** list, int root, int n); // rearrange to form max heap
void freeMemory(void) ; // free all dynamic memories

int main(void)

{
int i; // loop index
double t; // for CPU time tracking
readInput(); // read input data

sorting_algorithm = SORTING_ALGORITHM; // type of sorting algorithm

t = GetTime(); // initialize time counter

for(i = 0; i < R; i++){
for (1 = 0; 1 < R; i++) {
copyArray(data, A); // initialize array for sorting

// execute sorting based on the algorithm chosen
switch(sorting_algorithm){
case O:
SelectionSort(A, N);
break;
case 1:
InsertionSort(A, N);
break;
case 2:
BubbleSort (A, N);
break;
case 3:
ShakerSort (A, N);
break;
default:
HeapSort (A, N);

if (i == 0) printArray(A); // print sorted results

t = (GetTime() - t) / R; // calculate CPU time
// per iteration
printf(" CPU time = %e seconds\n",t); // print out CPU time

freeMemory () ; // free dynamic memories
return O;

}

void readInput(void) // read all inputs

{
int i; // loop index
char s[50]; // temporary string for input
scanf ("%d4d",&N) ; // read input size

// allocate dynamic memories for the two arrays
data = (char**)malloc(sizeof (char*) * (N+1));
A = (char**)malloc(sizeof (charx) * (N+1));

for(i = 1; i <= N; i++){
scanf ("%s",s); // read input string to s

//allocate dynamic memories based on the input string size
data[i] = (char*)malloc(sizeof (char) * (strlen(s) + 1));

A[i] = (char*)malloc(sizeof(char) * (strlen(s) + 1));
A[i] can store pointer to string, and need no malloc

strcpy(datalil, s); // put the string s into data
}
}
void printArray(char*x A) // print the content of array A
{
int i; // loop index
for(i = 1; i <= N; i++){
printf ("%d %s\n",i ,A[il); // print the index and words
// after sorted
}
// print the type of sorting algorithm
switch(sorting_algorithm){
case O:
printf("Selection sort:\n");
break;
case 1:
printf ("Insertion sort:\n");
break;
case 2:
printf ("Bubble sort:\n");
break;
case 3:
printf ("Shaker sort:\n");
break;
default:
printf ("Heap sort:\n");
}
printf(" N = %d\n",N); // print the input size
}
void copyArray(char** data, char** A) // copy data to array A
{
int i; // loop index
for(i = 1; i <= N; i++){
A[i] = datalil; // assign the pointer A[i] to
// point to the data array
}
}
double GetTime(void) // get local time in seconds
{
struct timeval tv; // time interval structure

gettimeofday(&tv, NULL); // write local time into tv

return tv.tv_sec + tv.tv_usec * 0.000001; // return time with microsecond
}
void SelectionSort(char** list,int n) // in-place selection sort
{
int i, j, k; // loop index
char* tp; // temporary pointer for swap
for(i = 1; i <= n; i++){ // i runs through the array
for (i = 1; i <= n; i++) {
j=1;
for(k = i+1l; k <= n; k++){ // search for the smallest
// from list[i+1] to list[n]
if (stremp(list[k], list[jl) < 0){
j = k; // if found, remember it in j
}
}
// swap list[i] and list[j] by using the pointer
Comments should also be indented properly.
tp = list[i];
list[i] = list[j];
list[j] = tp;
}
}
void InsertionSort(char*x list,int n) // in-place insertion sort
{
int i, j; // loop index
char* tp; // temporary pointer for swap
for(j = 2; j <= n; j+H{ // j runs through the array
tp = list[j]; // save content of list[j]
i=j-1;
// from list[j-1], find i for list[i] > tp
Indentation.
while(i >= 1 && stremp(tp, list[i]) < 0){
list[i+1] = 1list[i];
i--;
¥
list[i+1] = tp; // place tp to the proper place
}
}
void BubbleSort(char** list,int n) // in-place bubble sort
{
int i, j; // loop index
char* tp; // temporary pointer for swap

for(i = 1; i <= n-1; i++){ // i runs through the array
for(j = n; j >= i+1; j——){ // j runs from n to i+l
// if list[j] < list[j-1], swap them
if (stremp(1ist[j1, list[j-11) < 0){
tp = list[j];
list[j] = 1list[j-11;
list[j-1] = tp;

}
}
}
}
void ShakerSort(char** list,int n) // in-place shaker sort
{
int j; // loop index
int 1 = 1; // loop index
int r = n; // loop index
char* tp; // temporary pointer for swap
while(l <= r){
for(j = r; j >= 1+1; j——){ // word exchange from r to 1+1
if (stremp(1ist[j1, 1list[j-11) < 0){
// swap list[j] and list[j-1]
tp = list[j];
list[j] = list[j-11;
list[j-1] = tp;
}
}
1++;
for(j = 1; j <= r-1; j++){ // word exchange from 1 to r-1
if (stremp(1ist[j1, list[j+11) > 0){
// swap list[j] and list[j+1]
tp = list[j];
list[j] = list[j+1]1;
list[j+1] = tp;
}
}
r--;
}
}
void HeapSort(char** list,int n) // in-place heap sort
{
int i; // loop index
char* tp; // temporary pointer for swap

// heapify all the subtrees and be a max heap
for(i = n/2; i >=1; i-—-){

Heapify(list, i, n);

for(i = n; i >= 2; i--){ // repeat n-1 times
//swap the first node and the last node

tp = list[i];

list[i] = 1list[1];

list[1] = tp;

// make list[1:i-1] be a max heap
Heapify(list, 1, i-1);

void Heapify(char** list, int root, int n) // rearrange to form max heap

{

charx tp = list[root]; // assign root value to tp
int j; // loop index
for(j = root*2; j <= n; j = j*2){ // j is the 1lchild of root and

// keeps finding its lchild
if(j < n && stremp(list[jl, list[j+1]) < 0){
j++; // j is the rchild
// if rchild > 1lchild

}
if (stremp(tp, list[jl) > 0){
break; // done if root > children
}
else{
list[j/2] = list[j]; // place child node to parent
3
}
list[j/2] = tp; // put root to the proper place
}
void freeMemory(void) // free all dynamic memories
{
int i; // loop index
for(i = 0; i <= N; i++){ // free memories of array data
free(datal[i]);
}
free(data);
free(d); // free memories of array A
}

