
Project. Two-day Travelling Problem
EE3980 Algorithms

104061212 馮立俞

June 15, 2018

Introduction

Given n cities and the distance between each pair of cities, a salesperson is planning a

two-day trip to visit all cities once and return to the starting city. It is also determined

to stay in a particular city at the end of the first day. In addition, in order to balance

the travelling distance of the two days, it is desired to have travelling distance of both

day as close to each other as possible. That is, given n cities, c1, c2, ..., cn, and A[1:n, 1:n]

be the distance matrix, find two paths, P1 =<p1
1, p2

1, ..., pk
1 >, and P2 = < p1

2, p2
2, ..., ph

2>

such that

1. p1
1 = ph

2 , pk
1 = p1

2 and P1 ∪ P2 is a Hamiltonian cycle.

2.| ∑k−1
i=1 A[pi

1, pi+1
1] − ∑h−1

j=1 A[pj
2, pj+2

1] | is minimum

However, efficiency is a major concern for this project, one should speed up the exe-

cution as long as possible.

1

Approach

It can be easily identified that the requirements are similar to that of Travelling Sales-

person Problem(TSP), in which a Hamitonian cycle with least travelling cost is to be

solved. Since TSP is already solved in hw11, the next thing we care is how to speed up

the performance and split the travel into two days.

Recap: Solving TSP Using Branch and Bound

We can build a N -level tree to denote the TSP traveling process. In such tree, the tree

edge from level i to level i + 1 means the salesperson’s ith movement. To reach all leaf

nodes, we can utilize DFS or BFS, yet O(N !) operations are required if we perform it

naively. However, using Branch and Bound, we can save some effort by calculating the

lower bound of a path. If the bound is higher than current shortest path, we’ll simply

skip trying the path.

Calculating Lower Bound

Given a cost matrix, it can reduced as following to calculate the lower bound.

Note that ci,j is the cost from vertex i to vertex j Thus, if ci,k = minn
j=1 ci,j , then ci,k is

the minimum cost leaving vertex i. And, if ck,j = minn
i=1 ci,j, then ck,j is the minimum

cost entering vertex j.

As we reach a not-visited node. We first add the previous edge ci,j to our current bound.

Then, mark row i and column j and cj,i as infinity as they’re no longer needed for travel.

Finally, reduce each row / each column by ci,k / ck,j and add ci,k / ck,j to current bound

to estimate the new bound.

As we include calculating bound into naive DFS, the improved DFS has following

structure.

2

1 Algorithm DFS(V, level, matrix, bound){

2 if(Having traveled all cities){

3 if(cost < minCost)

4 record new minCost and path

5 }

6 else{

7 Visit(V);

8 for (all not-visited cities){

9 compute bound(matrix, bound)

10 if(bound <= minCost)

11 DFS(new city, level +1, matrix,bound);

12 restore matrix //visit complete

13 }

14 }

15 }

It’s a recursion function with Maximum depth N , so the space complexity is O(N).

Least Cost Method

In a branch and bound algorithm, how one traverse the nodes are crucial to the effi-

ciency. It’s known that both Depth First Search (DFS) and Breadth First Search (BFS)

can guarantee to travel all reachable nodes in a graph. Therefore either we adopt DFS

or BFS will not affect the correctness of answer.

In general, DFS outperform BFS since DFS reaches the leaf node directly and is ca-

pable of updating the current minimum earlier, which can then be used to compare with

bounds, thus skips some nodes and speeds up the process. BFS, on the contrary, traverses

all the nodes in n-1 levels until it reaches a leaf node and update the current minimum.

3

As a result, a naive BFS doesn’t utilize the calculated bound much, so the efficiency is

basically no better than brute-force approach.

In hw11, I adopted DFS to solve TSP; yet it took around 200 seconds of CPU time

to solve the largest given task. To further speed up, I plan to utilize Least Cost method.

A Least Cost traversal strategy calculates the cost of traversal for all nodes in the

next level. Then picks the node with least cost to traverse. In this case, least cost is

equivalent to lowest lower bound. Since if we follow the nodes with low bounds, we are

more likely to find a smaller new current minimum, and speed up the execution in this

way. Least Cost method can be viewed as improved DFS, since it evaluate the cost of all

children and prioritize them instead of blindly choose one and traverse.

The following is the pseudocode of LC solving TSP

4

1 Algorithm LC(V, level, matrix, bound){

2 if(Having traveled all cities){

3 if(cost < minCost)

4 record new minCost and path

5 }

6 else{

7 for (all not-visited cities){

8 compute bound

9 }

10

11 Sort(boundList); // Sort the bounds in non-decreasing order

12

13 for (all not-visited cities){

14 //visit nodes according boundList

15 if(bound <= minCost)

16 LC(new city, level +1, matrix,bound);

17 }

18 }

19 }

Splitting tour into two parts

After solving TSP, we know the tour with least travel cost and the cost of such travel.

We can split the tour into two parts with minimal difference in travel cost.

The method is quite simple, just find which split point is closer to half of the minimum

cost. For instance, the following figure illustrates how to split a given tour. The rectangles

represent a tour from one city to another, the length of rectangles are proportion to the

5

cost of travel.

Figure 1: splitting a tour

To split the tour into two parts, there are two candidates for split point. It’s obvious

that candidate 2 is preferable since it’s closer to Cost / 2.

The same method can be applied to splitting into more than two parts, just find the

split point closest to k * Cost / (parts), k = 1,2,...(parts-1).

6

Results and Analysis

The execution result of t1.dat is as follows:

$time ./a.out < t1.dat

Two-day travelling plan:

Day 1:

Ann Arbor -> Iowa City

Iowa City -> Manhattan

Distance: 16

Day 2:

Manhattan -> Charlottesville

Charlottesville -> Corvallis

Corvallis -> Ann Arbor

Distance: 12

Total distance: 28

Day 1 and day 2 difference: 4

0.000u 0.003s 0:00.01 0.0% 0+0k 0+0io 0pf+0w

Then, we can compare with the result of hw11 to see how much we improved by

adopting Least Cost over DFS. The below table shows the CPU time used by each

algorithm on different task sizes.

7

Table 1: CPU time taken for two approaches. (in seconds)

N DFS LC

5 0 0
10 0.004 0
15 0.042 0.001
20 1.241 0.179
25 26.001 2.096
30 201.261 0.721

For N = 30, We can find an interesting fact that larger task size doesn’t guarantee

longer execution time for LC. This phenomenon could rise from our luckily finding a small

current minimum early during execution, and skipped many branches thanks to it. This

is more likely to happen for LC since LC skillfully picks the node with lowest bound.

Observations and Conclusion

1. Least Cost brings about noticeable speed up for branch and bound algorithms com-

pared to DFS. Because if we want to skip more nodes, finding a low current minimum

early is desired.

2. Larger task size doesn’t guarantee longer execution time for LC.

8

