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String Editing Problem

e Given two strings X ="2125---x,” and Y="y192 - yn,', where x;,

1 <i<m, and y;, 1 <j< m, are members of a finite set of symbols known
as the alphabet.

@ The string editing problem is to transform X into Y using the following
editing operations with corresponding cost and to find the sequence of
operations that minimizes the total cost.

o Delete the symbol z; from X with cost D(x;),
o Insert the symbol y; to Y with cost I(y;),
o Change the symbol z; of X into y; with cost C(z;, y;).
o Note that keep z; to become y; has no cost.
@ Example, X ="elate” and Y ="later". Total cost to transform X into Y is

D(e) + I(r).

Step X h% Cost
1 elate D(e)
elate 1

2 0
3 elate la 0
4 elate lat 0
5 0
6

elate  late
elate  later I(r)

D(e) + I(r
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String Editing — Algorithm

Algorithm 6.3.1. Wagner Fischer Algorithm

1 Algorithm WagnerFischer(n, m, X, Y, D, I, C, M)
2 // Transform X into Y with minimum cost using matrix M.

4 M][0,0] :=0;
for ¢:=1 to ndo M[i 0] := M[¢— 1,0] + D(X[i]);
for j:=1 to m do MI0,j]:= M[0,5— 1] + I(Y[j]);
for j:=1 to mdo {

5
6
7 for i:=1 to ndo {
8
9 if (X[7] = Y[j]) then my :=0; else m; := C(X[i], Y[j]);

10 mg := D[i—1,7] + D(X[¢]);

11 mg := Dli, j— 1] + I(Y[j]);

12 M([i, j] := min(mi, ma, m3) ;

13 }

14 } // When done, M[n, m| contains the minimum cost of the transformation
15 }
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String Editing — Example

o Example. Given X ="elate”, Y ="later” and the cost functions
D(LB) — 1' I(y) - 1' C(:B,y) :21 ZE,:I/E {A7 7Z70'7'°' 72}1 x# Y.

@ Thus the transformation sequence is

I a t e T Step | operation | Y
2 ; § i g 2 1 | Delete e
(&
2 Keep |1
[12 1 2 3 4 5
i - T 3 Keep a | la
i la 3 2 1 2 3 4 Keep t | lat
els 4 3 2 1 9 5 Keep e | late
4 6 Insert  r | later
Matrix M of @ And the total cost is
WagnerFischer algorithm. D(e) + I(r) = 2.

o After WagnerFischer algorithm, the following algorithm traces the M matrix
to generate the transformation sequence.

e Note that array T has the transformation sequence but is in reverse order.
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String Editing — Transformation Trace

Algorithm 6.3.2. Trace

1 Algorithm Trace(n,m, M, D, I, C, T)

2 // Trace the matrix M to find the transformation operations.

3 {

4 t:=mn;j:=m; k:=0;

5 while (¢> 0 or j > 0) do {

6 if (M[i,j] = M[i—1,j—1]) then { // Keep X[{] for Y[j].

7 Tk :="=";i:=i—1;j:=j—1; k:=k+1;

8 t

9 else if (M[s, j] = M[i—1,j— 1] + C(X[¢], Y[j])) then { // Change.
10 Tk :="Ci:=i—1;j:=7—1;k:=k+1;
11 }
12 else if (¢=0 or (M[i, j] = M[i— 1,j] + D(X[¢]))) then { // Delete.
13 Tk :="D';i:=1—1; k:=k+1;
14 }
15 else { // Add Y]j].
16 Tk =1;j:=7—1; k:=k+1;
17 }
18 } // Array T has the transformation sequence but is in reverse order.
19 }
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String Editing — Complexities

@ Algorithm WagnerFischer

e for loop, Lines 7-14, executes n X m times
e for loops, Lines 5,6, execute n and m times, separately
e Overall time complexity O(mn)

@ Algorithm Trace while loop, lines 5-17, executes at most (m + n) times
o Time complexity O(m + n)

@ The longest common substring problem

e Given two strings, X and Y, find a common substring Z such that Z has the
most number of characters.

o Example, X ="elate” and Y ="later” the longest common substring is
Z ="late". Z has 4 characters.

e The WagnerFischer algorithm can be used to find the longest common
substring.

e The Trace algorithm needs to be modified to find and print out the common
substring.
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0/1 Knapsack Problem

@ The 0/1 knapsack problem is a variation of the knapsack problem.

e Given n objects, each with profit p; and weight w;, 1 < i < n, to be placed
into a sack that can hold maximum of m weight. However, there is an
additional constraint that each object must be placed as a whole into the
sack, or not at all. That is, find z;, 1 < ¢ < n, such that

maximize > 7| pit;,
subject to > | wizi < m, (6.3.1)
M ILF o e OBRS 1< i< n.

@ Let f,,(m) be the optimal solution to n-object 0/1 knapsack problem.
@ For the n'th object it can either be placed into the sack or not, thus

fu(m) = max(f,—1(m), fo=1(m — wn) + pn). (6.3.2)

o f,(m) must be the larger of the following two cases
e n-th object is not placed into the sack, z, = 0,

o In this case, fn(m) = fn—1(m).
e n-th object is placed into the sack, z, =1,
@ In this case, f,(m) = fn—1(m — wn) + pn.
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0/1 Knapsack — Recursive Algorithm

e Using Eq. (6.3.2) a recursive version of the 0/1 knapsack algorithm can be
formulated.

Algorithm 6.3.3. Recursive DKP

1 Algorithm DKPr(n, p, w, m, 1)

2 // Find the solution array z for the 0/1 knapsack problem.
34

4 if (n=1) then {

5 if (m > wll]) {

6 z[1] :=1; return p[1]; }
7 else {

8 z[1] :==0; return 0; }

9

}
10 fi :==DKPr(n—1,p, w, m,x); // object n not placed
11 if (m > w[n|) then fo := DKPr(n — 1, p, w, m — w[n|, z) + p[n|;
12 else fo :=0; // no room for additional objects
13 if (fi > f2) then {
14 z[n] := 0; return fi; }
15 else {
16 z[n] :=1; return fo; }

17 }

e __________________¢
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0/1 Knapsack — Example

e Given 3 objects, (p1,p2,p3) = (1,2,5), (wy, we, w3) = (2,3,4), and m = 6.
Find the optimal 0/1 knapsack solution, (z1, 22, 23), x; = 0 or x; = 1,
1 <7< 3, that maximizes the profit,

3
0 Zpﬂh
ity

@ The function DKPr is invoked by calling
P =DKPx(3, p, w, 6, 2
e And the calling sequence of the function is

// DKPr calling sequence
DKPr(3, p, w, 6, x)
DKPr(2, p, w, 6, ) // object 3 not placed
DKPr(1, p, w, 6, ) // object 2 not placed
P=1;z=(1,0,0);
DKPr(1, p, w, 3, ) // object 2 placed
P=3;2=(1,1,0);
DKPr(2, p, w, 2, x) // object 3 placed
DKPr(1, p, w, 2, ) // object 2 not placed
P=6;x=(1,0,1);
DKPr(1, p, w, —1, x) // object 2 placed
P=—0c0;2=(0,1,1);
Maximum profit P = 6, = = (1,0, 1).
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0/1 Knapsack — Complexity

@ Note that function DKPxr is invoked 7 times

e All possible combinations of z; = 0 and z; = 1, 1 < ¢ < n are tested for the
maximum profit.

@ The time complexity of DKPr algorithm is O(2").
@ Line 11 of DKPr algorithm can eliminate unnecessary function calls
o If there is no room for object n then it is not necessary to call DKPr further.

@ The worst-case complexity of DKPr remains as O(2").
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0/1 Knapsack — Dynamic Programming Approach

Algorithm 6.3.4. 0/1 Knapsack

1 Algorithm DKP(n, p, w, m, x)

2 // Find the solution array x for the 0/1 knapsack problem.

3 {

4 So = {(0,0)};

3 for i:=1ton—14do {

6 St :={(p+ pi, w+ w)|(p, w) € S and w+ w; < m};

7 S .= MergePurge(S¢, S7) ;

8 }

9 (px, wx) := last pair in Sg';
10 (py, wy) := (p’ + pn, w' + wy,) where w’ is the largest w’ for any pairs
11 (p’,w") € S such that w’ + w, < m;
12 if (pz > py) then z, :=0;
13 else z, :=1;
14 TraceBack z,—1,--- , 21 ;
15 } |
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0/1 Knapsack — Example Reuvisited

e Given 3 objects, (p1,p2,p3) = (1,2,5), (w1, we, w3) = (2,3,4), and m = 6.
Find the optimal 0/1 knapsack solution, (1,22, 3), x; = 0 or z; = 1,

3
1 <7< 3, that maximizes the profit, P = Zpixi .
@ The sets of feasible solutions are derived asz_tlhe following.
So = {(0,0)}
S =1(1,2)}
So. = {(0,0), (1,2)}
St ={(2,3),(3,5)}
So = {(0,0), (1,2),(2,3), (3,5)}

@ Thus the optimal solution > p;z; = 6 and > w;x; = 6.
e Since p; # py, 73 = 1.
o Note that (py, wy) — (5,4) = (1,2) ¢ S}, thus z = 0.
o Trace back again, (1,2) € 9, therefore z; = 1.
o Finally we have (21,22, 23) = (1,0,1) and > p;z; = 6, > w;z; = 6.
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0/1 Knapsack — Properties

@ Note that lines 10,11 of Algorithm (6.3.4) actually requires to evaluate S
@ For the last example, we have

513 = {(5,4),(6,6)}.
since (7,7) and (8,9) both have w+ w,, £ m.

@ And the optimal solution can be found when 53 and S; are merged together
which is
So = {(0,0)(1,2)(2,3),(3,5), (5,4), (6,6)}.
@ Note that comparing (3,5) and (5,4), the former has smaller profit, 3 < 5,
but larger weight, 5 > 4, thus it is not a likely solution.
@ The former, (3,5), is dominated by the latter, (5, 4).
@ When merging two feasible sets, the dominated solutions should be purged.

@ Of course, by definition, the solutions with weight larger than m are also
purged.
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0/1 Knapsack — Dynamic Algorithm

Algorithm 6.3.5. 0/1 Knapsack

1 struct PW {

2 double p, w; // for profit and weight of each object

3}

4 Algorithm DKnap(n, p, w, T, m)

5 // p and w are arrays of n profits and weight; m capacity, x solution.

6 {

7 b[0] := 0; pair[l].p := 0; pair{l].w:=0; // S;

8 t:=1; h:=1; // start and end of S,

9 b[l] := next := 2; // next free spot in pair array

10 for i:=1 to ndo { // generate S "

11 k:=t;

12 u := Largest(pasir, t, h, w[i], m); // largest u, pair(u].w + w[i] < m.
13 for j:= t to udo { // generate S| and merge

14 pp := pair(j].p + p[i] ; ww := pair(j].w+ w[d];

15 while ((k < h) and (pair(k].w < ww)) do {

16 pair(next].p := pair[k].p; pair[next].w := pair[k].w;

17 next := next+ 1; k:=k—+ 1;

18

19 if ((k < h) and (pair(k].w = ww)) then {
20 if (pp < pair[k].p) then pp := pair[k].p; // new entry dominated
21 k:=k+1;
22
23 if (pp > pair[next — 1].p) then { // new entry is dominating
24 pair[next].p := pp; pair[next].w := ww;
25 next := next + 1;
26 }
Pat=2 1 /(1 _~ 1\ _ __a (__ _ e T11 _ -~ __ _ e T__ ___a 11
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0/1 Knapsack — Dynamic Algorithm, Il

27 while ((k < h) and (pair[k].p < pair[next — 1].p)) do k:=k+ 1;

28 }

29 while (k < h) do { // merge remaining terms from S‘

30 pair[next].p := pair[k].p; pair[next].w := pair[k].w;

31 next:= next+ 1; k:=k+ 1;

32 }

33 t:=h+4+1; h:=next—1; b[i+ 1] := next; // initialize for S?l

34 }

35 TraceBack(n, p, w, m, pair, z) ; // find solution x

36 } ]

@ In the above algorithm

pair is an array to store all feasible solutions, S5, 0 < i < n.
b is an array to store the indices of Sy in pair array
Function Largest(pair, t, h, w[7], m) finds the largest u satisfying

pair{u].w+ wli] < m, t<u<h

o The for loop of lines 10-34 generates Sy, 1 < i < n.
o First Sé_l is copied into S},

e Then S“fl is generated and merged into S,

e Lines 19-26 remove dominated entries
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0/1 Knapsack — Example

e Given 3 objects, (p1,p2,p3) = (1,2,5), (w1, we, w3) = (2,3,4), and m = 6.

Find the optimal 0/1 knapsack solution, (z1, 22, 3), x; = 0 or x; = 1,
3

1 <7< 3, that maximizes the profit, P = Zpixi .
i=1
@ After executing the algorithm DKnap, we have

pair]].p 0 g (Ylm QU 2B 3~ N1 2 5 6

pair[].w 0 077 200NBfyp 2,8NB7 O 2 3 4 6

) ) y> )
bj0]  B[1] b[2] b[3]

e Note that (p, w) = (3,5) € S§ but not S§ since it is dominated by (5,4).
@ The last entry, (pp, ww) = (6,6), is the optimal solution.
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0/1 Knapsack — Example

@ To find if each object is placed into the sack or not, z[7],1 < i < n.

@ One starts from 7 = n and trace back to 1.

e The optimal solution is (pp, ww),
o If (pp, ww) € Sy then z[n] =0

o (ppn—1,wwp=1) = (pp, ww).
o Otherwise 2[n] = 1,

® (ppn—1, wwp—1) = (pp — p[n], ww — win]).

@ Repeat checking for S'(’)‘_i and update (pp,_ i, ww,_;), one finds the solution
i, 1 < i< n.
@ For the last example,
o (6,6) ¢ S, thus 2[3] =1,
o (1,2) € §*, and z[2] = 0,
o (1,2) ¢ S, thus 2[1] = 1.
e Optimal solution z = (1,0,1), (p, w) = (6,6).
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0/1 Knapsack — Complexity

@ Let the space needed to store S} in pair be |S}|, then
|S'6| S 27,'—1

And the total space needed for pair is

dolslg Y 2 =21
=1 =il
@ Thus the space complexity is O(2")

o The time needed to generate S} is O(S;™"), therefore the total time to
generate all pairs is

n n—1
Z|Sré—1|§22i—1:2n—1_1
=1 =1

and the time complexity is O(2").
@ The time complexity of the Traceback function is O(n?) since it involves n
searches in the range b[d] and b[7+ 1].
o Each search can take log(|S§|) = log(2!) = (i — 1) log 2.

o Total time is Z(z— 1)log2 = O(n?).

=1
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System Reliability

@ Suppose a system is composed of n stages of devices connected in series.
o Let r; be the reliability of device D; — the probability that device D; function
normally.

e Then the reliability of the system is H Ty =T1T2 " Tn.

=1

— D, | D | D; }---+ D, —>J

@ To improve the reliability of the system, one can replace stage 7 by multiple,
m;, devices connected in parallel.
e Then the reliability of stage ¢ becomes ¢;(m;) =1 — (1 — ;)™

e The system reliability becomes H di(mi).

=1
D3
R I - U 2 N G
Dl > l)2 » D3 Dn
1 D3 n
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Reliability Design Problem

@ Assuming device D; costs c; each piece, and the total cost of the entire
system is ¢, the reliability design problem is to find the multiplicity of each
device, m; for each D; such that

n
maximize H oi(m;)
<7

d 6.3.3
subject to Z cim; < ¢ ( )
=
and m; € Nand m; > 1, 1 <i<n.
@ Since m; > 1 and > ¢; = ¢, we can define

n

ui= (¢4 ¢; = Z )/ ci (6.3.4)

J=1

@ And the reliability design problem can be reformulated as

n
maximize H oi(m;)
=1

- 6.3.5
subject to Z cim; < ¢ ( )
i=1
and 1 < m; < u,.
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Reliability Design Problem, Il

@ Given the n stages and the total cost of Suppose the optimal solution is
fn(c), then the multiplicity, my,, for stage n should be determined by

7 (£ = max G (M) fre1(c'— camy) (6.3.6)

mp=1

It is also assumed that fy(c) = 1 for any c.

@ Then this problem is similar to the 0/1 knapsack problem and the dynamic
approach can be used to find the solution of the problem.

e Example, 3 devices, Dy, Dy and D3, with r1 = 0.9, n, = 0.8 r3 = 0.5,
c1 = 30, ¢ca = 15, ¢3 = 20, and the total cost ¢ < 105. (It can derived that
U1:2, u2:3and U3:3)
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Summary

@ String editing problem
@ 0/1 knapsack problem
@ System reliability design
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