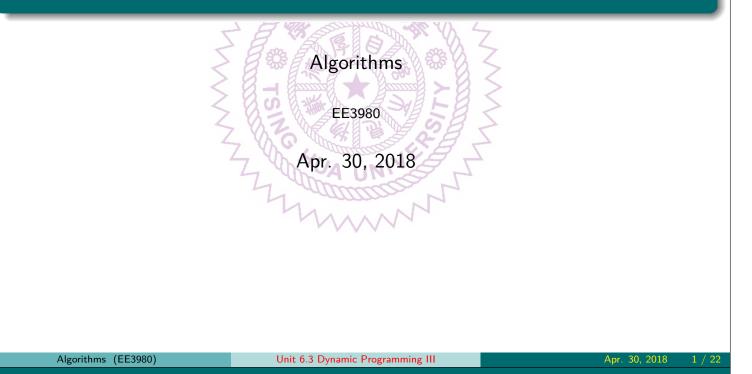
Unit 6.3 Dynamic Programming III



String Editing Problem

- Given two strings $X = x_1 x_2 \cdots x_n$ and $Y = y_1 y_2 \cdots y_m$, where x_i , $1 \le i \le n$, and y_j , $1 \le j \le m$, are members of a finite set of symbols known as the alphabet.
- The string editing problem is to transform X into Y using the following editing operations with corresponding cost and to find the sequence of operations that minimizes the total cost.
 - Delete the symbol x_i from X with cost $D(x_i)$,
 - Insert the symbol y_j to Y with cost $I(y_j)$,
 - Change the symbol x_i of X into y_j with cost $C(x_i, y_j)$.
 - Note that keep x_i to become y_j has no cost.
- Example, X = "elate" and Y = "later". Total cost to transform X into Y is D(e) + I(r).

Step	X	Y	Cost
1	elate		D(e)
2	elate		0
3	elate	la	0
4	elate	lat	0
5	elate	late	0
6	elate	later	I(r)
			D(e) + I(r)

String Editing — Algorithm

Algorithm 6.3.1. Wagner Fischer Algorithm

1 Algorithm WagnerFischer(n, m, X, Y, D, I, C, M)**2** // Transform X into Y with minimum cost using matrix M. 3 { 4 M[0,0] := 0;for i := 1 to n do M[i, 0] := M[i - 1, 0] + D(X[i]); 5 for j := 1 to m do M[0, j] := M[0, j-1] + I(Y[j]);6 for i := 1 to n do { 7 for j := 1 to m do { 8 if (X[i] = Y[j]) then $m_1 := 0$; else $m_1 := C(X[i], Y[j])$; 9 $m_2 := D[i-1, j] + D(X[i]);$ 10 $m_3 := D[i, j-1] + I(Y[j]);$ 11 $M[i, j] := \min(m_1, m_2, m_3);$ 12 13 ł $\} // When done, M[n, m] contains the minimum cost of the transformation$ 14 15 }

Algorithms (EE3980)

Unit 6.3 Dynamic Programming III

String Editing — Example

• Example. Given X = "elate", Y = "later" and the cost functions D(x) = 1, I(y) = 1, C(x, y) = 2, $x, y \in \{A, \dots, Z, a, \dots, z\}$, $x \neq y$.

						N	• Thus the transformation sequence is
							Thus the transformation sequence is
		l	a	t	e	r	Step operation Y
	0	1	2	3	4	5	1 Delete e
e	1	2	3	4	3	4	2 Keep l l
l	2	1	2	3	4	5	
a	3	2	1	2	3	4	3 Keep $a \mid la$
t	4	3	2	1	2	3	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
e	5	4	3	2	1	2	5 Keep e late
	1 -		-				6 Insert r later
Matrix M of • And the total cost is						 And the total cost is 	

WagnerFischer algorithm.

- After WagnerFischer algorithm, the following algorithm traces the *M* matrix to generate the transformation sequence.
 - Note that array T has the transformation sequence but is in reverse order.

D(e) + I(r) = 2.

Apr. 30, 2018

String Editing — Transformation Trace

Algorithm 6.3.2. Trace

1 Algorithm Trace(n, m, M, D, I, C, T) $\mathbf{2}$ // Trace the matrix M to find the transformation operations. 3 { i := n; j := m; k := 0;4 while (i > 0 or j > 0) do { 5 if (M[i,j] = M[i-1,j-1]) then $\{// \text{Keep } X[i] \text{ for } Y[j].$ 6 T[k] := ' - '; i := i - 1; j := j - 1; k := k + 1;7 8 else if (M[i, j] = M[i-1, j-1] + C(X[i], Y[j])) then { // Change. 9 T[k] := 'C'; i := i - 1; j := j - 1; k := k + 1;10 11 else if (i = 0 or (M[i, j] = M[i - 1, j] + D(X[i]))) then { // Delete. 12 T[k] := 'D'; i := i - 1; k := k + 1;13 } 14 else { // Add Y[j]. 15 T[k] := 'I'; j := j - 1; k := k + 1;16 17 $\} //$ Array T has the transformation sequence but is in reverse order. 18 19 } Algorithms (EE3980) Unit 6.3 Dynamic Programming III Apr. 30, 2018

String Editing — Complexities

- Algorithm WagnerFischer
 - for loop, Lines 7–14, executes n imes m times
 - for loops, Lines 5,6, execute n and m times, separately
 - Overall time complexity $\mathcal{O}(mn)$

• Algorithm Trace while loop, lines 5-17, executes at most (m + n) times

- Time complexity $\mathcal{O}(m+n)$
- The longest common substring problem
 - Given two strings, X and Y, find a common substring Z such that Z has the most number of characters.
 - Example, X = "elate" and Y = "later" the longest common substring is Z = "late". Z has 4 characters.
 - The WagnerFischer algorithm can be used to find the longest common substring.
 - The Trace algorithm needs to be modified to find and print out the common substring.

0/1 Knapsack Problem

- The 0/1 knapsack problem is a variation of the knapsack problem.
 - Given n objects, each with profit p_i and weight w_i , $1 \le i \le n$, to be placed into a sack that can hold maximum of m weight. However, there is an additional constraint that each object must be placed as a whole into the sack, or not at all. That is, find x_i , $1 \le i \le n$, such that

$$\begin{array}{ll} \text{maximize} & \sum_{i=1}^{n} p_{i} x_{i}, \\ \text{subject to} & \sum_{i=1}^{n} w_{i} x_{i} \leq m, \\ \text{and} & x_{i} = 0 \text{ or } 1, \qquad 1 \leq i \leq n. \end{array}$$

$$(6.3.1)$$

- Let $f_n(m)$ be the optimal solution to *n*-object 0/1 knapsack problem.
- For the *n*'th object it can either be placed into the sack or not, thus

$$f_n(m) = \max(f_{n-1}(m), f_{n-1}(m-w_n) + p_n).$$
(6.3.2)

Apr. 30, 2018

- $f_n(m)$ must be the larger of the following two cases
- *n*-th object is not placed into the sack, $x_n = 0$,
 - In this case, $f_n(m) = f_{n-1}(m)$.
- *n*-th object is placed into the sack, $x_n = 1$,
 - In this case, $f_n(m) = f_{n-1}(m w_n) + p_n$.

```
Algorithms (EE3980)
```

Unit 6.3 Dynamic Programming III

0/1 Knapsack — Recursive Algorithm

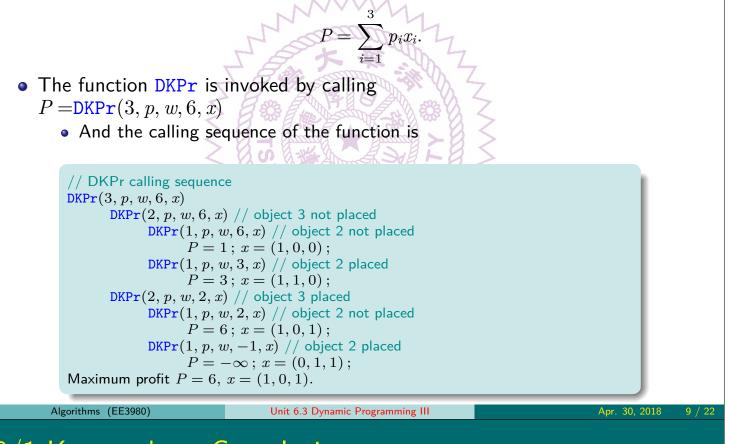
 Using Eq. (6.3.2) a recursive version of the 0/1 knapsack algorithm can be formulated.

Algorithm 6.3.3. Recursive DKP

```
1 Algorithm DKPr(n, p, w, m, x)
 2 // Find the solution array x for the 0/1 knapsack problem.
 3 {
          if (n=1) then {
 4
               if (m \ge w[1]) {
 5
                    x[1] := 1; return p[1]; }
 6
 7
               else {
                    x[1] := 0; return 0; }
 8
 9
         f_1 := \mathsf{DKPr}(n-1, p, w, m, x); // \text{ object } n \text{ not placed}
10
          if (m \ge w[n]) then f_2 := \mathsf{DKPr}(n-1, p, w, m-w[n], x) + p[n];
11
               else f_2 := 0; // no room for additional objects
12
          if (f_1 > f_2) then {
13
               x[n] := 0; return f_1; }
14
15
          else {
16
               |x|n| := 1; return f_2; }
17 }
      Algorithms (EE3980)
                                      Unit 6.3 Dynamic Programming III
                                                                                     Apr. 30, 2018
```

0/1 Knapsack — Example

• Given 3 objects, $(p_1, p_2, p_3) = (1, 2, 5)$, $(w_1, w_2, w_3) = (2, 3, 4)$, and m = 6. Find the optimal 0/1 knapsack solution, (x_1, x_2, x_3) , $x_i = 0$ or $x_i = 1$, $1 \le i \le 3$, that maximizes the profit,



0/1 Knapsack — Complexity

- Note that function DKPr is invoked 7 times
 - All possible combinations of $x_i = 0$ and $x_i = 1$, $1 \le i \le n$ are tested for the maximum profit.
- The time complexity of DKPr algorithm is $\mathcal{O}(2^n)$.
- Line 11 of DKPr algorithm can eliminate unnecessary function calls
 - If there is no room for object n then it is not necessary to call **DKPr** further.
- The worst-case complexity of DKPr remains as $\mathcal{O}(2^n)$.

0/1 Knapsack — Dynamic Programming Approach

Algorithm 6.3.4. 0/1 Knapsack

1 Algorithm DKP(n, p, w, m, x)2 // Find the solution array x for the 0/1 knapsack problem. 3 { $S_0^1 := \{(0,0)\};$ 4 for i := 1 to n - 1 do { 5 $S_1^i := \{(p + p_i, w + w_i) | (p, w) \in S_0^i \text{ and } w + w_i \le m\};$ 6 $S_0^{i+1} := \text{MergePurge}(S_0^i, S_i^i);$ 7 8 (px, wx) :=last pair in S_0^n ; 9 $(py, wy) := (p' + p_n, w' + w_n)$ where w' is the largest w' for any pairs 10 $(p', w') \in S_0^n$ such that $w' + w_n \leq m$; 11 if (px > py) then $x_n := 0$; 12 else $x_n := 1;$ 13 **TraceBack** x_{n-1}, \cdots, x_1 ; 14 15 }

Algorithms (EE3980)

Unit 6.3 Dynamic Programming III

0/1 Knapsack — Example Revisited

• Given 3 objects, $(p_1, p_2, p_3) = (1, 2, 5)$, $(w_1, w_2, w_3) = (2, 3, 4)$, and m = 6. Find the optimal 0/1 knapsack solution, (x_1, x_2, x_3) , $x_i = 0$ or $x_i = 1$,

 $1 \leq i \leq 3$, that maximizes the profit, $P = \sum_{i=1}^{n} p_i x_i$.

• The sets of feasible solutions are derived as the following.

$$\begin{split} S_0^1 &= \{(0,0)\}\\ S_1^1 &= \{(1,2)\}\\ S_0^2 &= \{(0,0),(1,2)\}\\ S_0^2 &= \{(0,0),(1,2)\}\\ S_1^2 &= \{(2,3),(3,5)\}\\ S_0^3 &= \{(0,0),(1,2),(2,3),(3,5)\} \end{split}$$
 $\bullet \text{ The last pair in } S^2 \text{ is } (p_x,p_y) &= (3,5), \text{ and } (p_y,w_y) &= (6,6). \end{split}$ $\bullet \text{ Thus the optimal solution } \sum p_i x_i &= 6 \text{ and } \sum w_i x_i &= 6.\\ \bullet \text{ Since } p_x \neq p_y, x_3 &= 1.\\ \bullet \text{ Note that } (p_y,w_y) - (5,4) &= (1,2) \notin S_1^1, \text{ thus } x_2 &= 0.\\ \bullet \text{ Trace back again, } (1,2) \in S_1^0, \text{ therefore } x_1 &= 1.\\ \bullet \text{ Finally we have } (x_1,x_2,x_3) &= (1,0,1) \text{ and } \sum p_i x_i &= 6, \sum w_i x_i &= 6. \end{split}$

0/1 Knapsack — Properties

- Note that lines 10,11 of Algorithm (6.3.4) actually requires to evaluate S_1^n .
- For the last example, we have

 $S_1^3 = \{(5,4), (6,6)\}.$

since (7,7) and (8,9) both have $w + w_n \nleq m$.

• And the optimal solution can be found when S_0^3 and S_1^3 are merged together which is

 $S_0^4 = \{(0,0)(1,2)(2,3), (3,5), (5,4), (6,6)\}.$

- Note that comparing (3,5) and (5,4), the former has smaller profit, 3 < 5, but larger weight, 5 > 4, thus it is not a likely solution.
- The former, (3,5), is dominated by the latter, (5,4).
- When merging two feasible sets, the dominated solutions should be purged.
- Of course, by definition, the solutions with weight larger than *m* are also purged.

Algorithms (EE3980)

Unit 6.3 Dynamic Programming III

Apr. 30, 2018

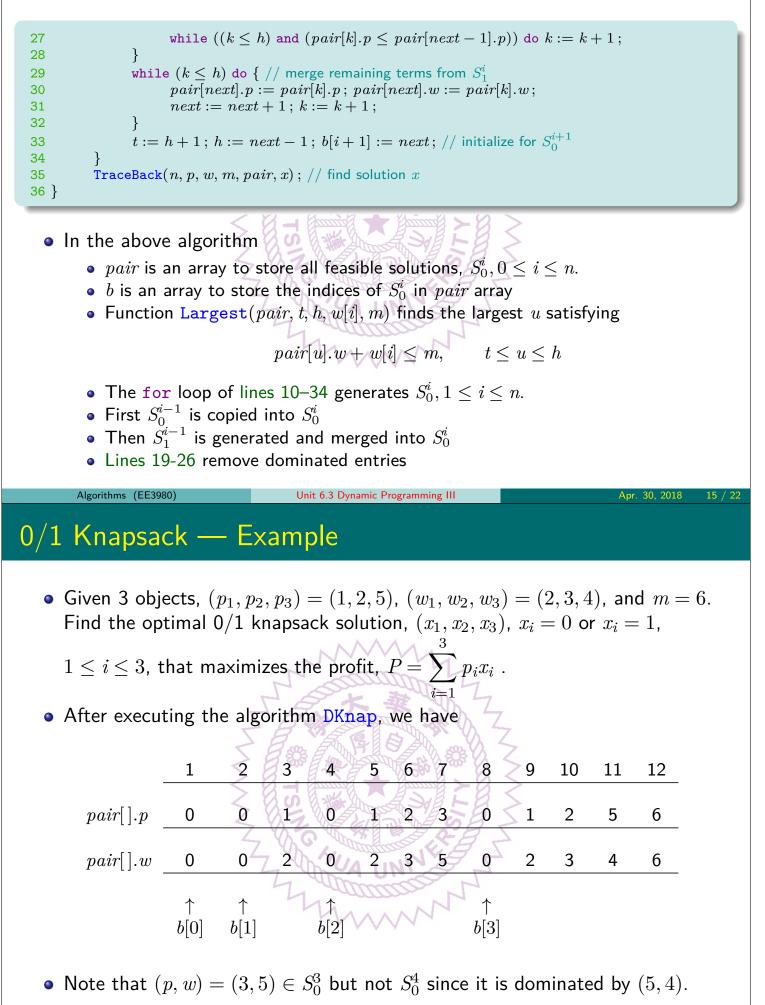
13 / 22

0/1 Knapsack — Dynamic Algorithm

Algorithm 6.3.5. 0/1 Knapsack

```
1 struct PW {
 2
          double p, w; // for profit and weight of each object
 3 }
 4 Algorithm DKnap(n, p, w, x, m)
    //p and w are arrays of n profits and weight; m capacity, x solution.
 5
 6
          b[0] := 0; pair[1].p := 0; pair[1].w := 0; // S_0^1
 7
          t := 1; h := 1; // start and end of S_0^1
 8
          b[1] := next := 2; // next free spot in pair array
 9
          for i:=1 to n do \{ \ // \ {
m generate} \ S_0^{i+1}
10
                 k := t;
11
                 u := \texttt{Largest}(pair, t, h, w[i], m); // \text{ largest } u, pair[u].w + w[i] \leq m.
12
                 for j:=t to u do \{ \ // \ {	ext{generate}} \ S_1^i \ {	ext{and}} \ {	ext{merge}}
13
                       pp := pair[j].p + p[i]; ww := pair[j].w + w[i];
14
                       while ((k \le h) \text{ and } (pair[k].w \le ww)) do {
15
16
                              pair[next].p := pair[k].p; pair[next].w := pair[k].w;
                              next := next + 1; k := k + 1;
17
18
                       if ((k \leq h) \text{ and } (pair[k], w = ww)) then {
19
                              if (pp < pair[k], p) then pp := pair[k], p; // new entry dominated
20
21
                              k := k + 1;
22
                       }
                       if (pp > pair[next - 1].p) then \{ // new entry is dominating \}
23
24
                              pair[next].p := pp; pair[next].w := ww;
25
                             next := next + 1;
26
                                            Unit 6.3 Dynamic Programming III
        Algorithms (EE3980)
                                                                                                   Apr. 30, 2018
```

0/1 Knapsack — Dynamic Algorithm, II



• The last entry, (pp, ww) = (6, 6), is the optimal solution.

0/1 Knapsack — Example

- To find if each object is placed into the sack or not, $x[i], 1 \le i \le n$.
- One starts from i = n and trace back to 1.
 - The optimal solution is (pp, ww),
 - If $(pp, ww) \in S_0^n$ then x[n] = 0
 - $(pp_{n-1}, ww_{n-1}) = (pp, ww).$
 - Otherwise x[n] = 1,
 - $(pp_{n-1}, ww_{n-1}) = (pp p[n], ww w[n]).$
- Repeat checking for S_0^{n-i} and update (pp_{n-i}, ww_{n-i}) , one finds the solution $x[i], 1 \leq i \leq n.$
- For the last example,

 - $(6,6) \notin S^2$, thus x[3] = 1, $(1,2) \in S^1$, and x[2] = 0,
 - $(1,2) \notin S^0$, thus x[1] = 1.
 - Optimal solution x = (1, 0, 1), (p, w) = (6, 6).

Algorithms (EE3980)

Unit 6.3 Dynamic Programming III

0/1 Knapsack — Complexity

• Let the space needed to store S_0^i in pair be $|S_0^i|$, then

$$|S_0^i| \le 2^{i-1}$$

And the total space needed for *pair* is

$$\sum_{i=1}^{n} |S_0^i| \le \sum_{i=1}^{n} 2^{i-1} = 2^n - 1$$

- Thus the space complexity is $\mathcal{O}(2^n)$
- The time needed to generate S_0^i is $\Theta(S_0^{i-1})$, therefore the total time to generate all pairs is <

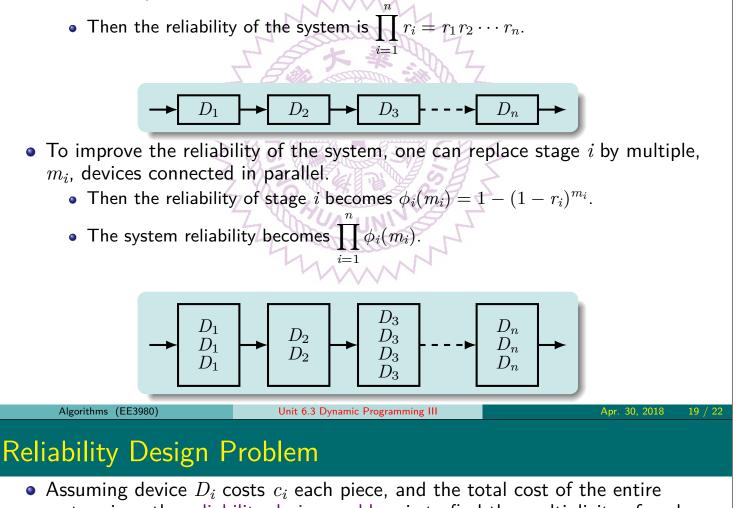
$$\sum_{i=1}^{n} |S_0^{i-1}| \le \sum_{i=1}^{n-1} 2^{i-1} = 2^{n-1} - 1$$

and the time complexity is $\mathcal{O}(2^n)$.

- The time complexity of the Traceback function is $\mathcal{O}(n^2)$ since it involves nsearches in the range b[i] and b[i+1].
 - Each search can take $\log(|S_0^i|) = \log(2^{i-1}) = (i-1)\log 2$.
 - Total time is $\sum_{i=1}^{\infty} (i-1) \log 2 = \mathcal{O}(n^2).$

System Reliability

- Suppose a system is composed of *n* stages of devices connected in series.
 - Let r_i be the reliability of device D_i the probability that device D_i function normally.



• Assuming device D_i costs c_i each piece, and the total cost of the entire system is c, the reliability design problem is to find the multiplicity of each device, m_i for each D_i such that

$$\begin{array}{ll} \max & \prod_{i=1}^{n} \phi_i(m_i) \\ & \text{subject to } \sum_{i=1}^{n} c_i m_i \leq c \\ & \text{and } m_i \in N \text{ and } m_i \geq 1, \quad 1 \leq i \leq n. \end{array} \end{array}$$

$$\begin{array}{ll} \text{(6.3.3)} \\ \text{e Since } m_i \geq 1 \text{ and } \sum c_i = c, \text{ we can define} \\ & u_i = \lfloor (c+c_i - \sum_{j=1}^{n} c_j)/c_i \rfloor \\ & u_i = \lfloor (c+c_i - \sum_{j=1}^{n} c_j)/c_i \rfloor \\ \text{(6.3.4)} \end{array}$$

$$\begin{array}{ll} \text{e And the reliability design problem can be reformulated as} \\ & \max & \max & \prod_{i=1}^{n} \phi_i(m_i) \\ & \sup & \sup & \prod_{i=1}^{n} c_i m_i \leq c \\ & \operatorname{and } 1 \leq m_i \leq u_i. \end{array}$$

Reliability Design Problem, II

• Given the n stages and the total cost of Suppose the optimal solution is $f_n(c)$, then the multiplicity, m_n , for stage n should be determined by

$$f_n(c) = \max_{m_n=1}^{u_n} \phi_n(m_n) f_{n-1}(c - c_n m_n)$$
(6.3.6)

It is also assumed that $f_0(c) = 1$ for any c.

- Then this problem is similar to the 0/1 knapsack problem and the dynamic approach can be used to find the solution of the problem.
- Example, 3 devices, D_1 , D_2 and D_3 , with $r_1 = 0.9$, $r_2 = 0.8$ $r_3 = 0.5$, $c_1 = 30$, $c_2 = 15$, $c_3 = 20$, and the total cost $c \le 105$. (It can derived that $u_1 = 2$, $u_2 = 3$ and $u_3 = 3$).

Algorithms (EE3980)

Unit 6.3 Dynamic Programming III

Summary

- String editing problem
- 0/1 knapsack problem
- System reliability design

Apr. 30, 2018

21 / 22