

Unit 6.1 Dynamic Programming

- Rod cutting problem Given a rod of n inches and a price table, p_i , i = 1, ..., n, determine the maximum revenue r_n obtainable to cutting the rod and selling the pieces.
- Example of the price table for rods.

Rod Cutting Problem, Formulation

- Given a rod of length n inches, there are totally 2^{n-1} ways of cutting.
- In brute-force approach, the maximum revenue of all these cutting is the optimal solution.
- Using recursive function, we can formulate the solution as

$$r_n = \max\{p_n, p_1 + r_{n-1}, p_2 + r_{n-2}, \dots, p_{n-1} + r_1\},$$
 (6.1.1)

where r_k is the maximum revenue of cutting the rod of length k, and p_k is the price of length k rod.

• This is a recursive formula and it evaluates all possible rod-cutting solutions and finds the maximum revenue.

```
Algorithms (EE3980)
```

Algorithms (EE3980)

Unit 6.1 Dynamic Programming

Apr. 23, 2018

Apr. 23, 2018

Rod Cutting Problem, Recursive Algorithm

Rod_R 6.1.1. Recursive Rod-cutting

```
1 Algorithm rod_R(p, n)
 2 // Find the maximum revenue for cutting rod of length n. p[1:n] is the price table.
 3 {
           if (n=0) return 0;
 4
           max := p[n]; // \text{ no cut.}
 5
           for i := 1 to n - 1 do { // check all possible cutting using recursion.
 6
                 if (p[i] + \operatorname{rod}_R(p, n-i) > max) then max = p[i] + \operatorname{rod}_R(p, n-i);
 7
 8
 9
           return max;
10 }
 • Example of Rod_R(p, 4) unrolling
                                                                          p[3] + \text{Rod}_R(p, 1)
\operatorname{Rod}_{R}(p,4) \Rightarrow
                     p[1] + \texttt{Rod}_R(p, 3)
                                                p[2] + \operatorname{Rod}_{R}(p, 2)
                                                                                                    p[4]
                     p[1] + \text{Rod}_R(p, 2)
\operatorname{Rod}_{\mathbf{R}}(p,3) \Rightarrow
                                                p[2] + \operatorname{Rod}_{\mathbf{R}}(p, 1)
                                                                          p[3]
\operatorname{Rod}_{\mathbf{R}}(p,2) \Rightarrow
                     p|1|+\text{Rod}_R(p,1)
                                                p|2|
\operatorname{Rod}_{\mathbf{R}}(p,1) \Rightarrow
                      p[1]
 • As it is, rod R(p, n) may be called many times for i, 1 \le i \le n.

    This inefficiency can be improved using dynamic programming method.
```

Unit 6.1 Dynamic Programming

Rod Cutting Problem, Top-Down Dynamic Programming

- The efficiency of the recursive rod-cutting algorithm can be improved significantly using a revenue array, r[0:n].
- Before calling this rod_TD(p, n, r) function, the revenue array should be initialized as

$$r[i] = \left\{ egin{array}{cc} 0, & ext{if} \ i=0, \ -\infty, & ext{otherwise} \end{array}
ight.$$

Rod_TD 6.1.2. Rod-cutting top-down dynamic programming

1 Alg	1 Algorithm $rod_TD(p, n, r)$								
2 //	2 // Find the maximum revenue for cutting rod of length n .								
3 {		L							
4	if $(r[n] > 0)$ return $r[n]$; // if prior evaluation is done, return value.	L							
5	max := p[n]; // no cut.	L							
6	for $i := 1$ to $n - 1$ do $\{ //$ check all possible cutting using recursion.	L							
7	$\texttt{if } (p[i] + \texttt{rod}_\texttt{TD}(p, n - i, r) > max) \texttt{ then }$								
8	$max := p[i] + \operatorname{rod}_{TD}(p, n - i, r);$								
9	}								
10	r[n] := max; // record max revenue in r array.	L							
11	return max;								
12 }									
12 }									

Algorithms (EE3980)

Unit 6.1 Dynamic Programming

Apr. 23, 2018

Rod Cutting Problem, Bottom-Up Dynamic Programming

- For the top-down dynamic function, in addition to the proper initialization of the revenue, r[0 : n], table, the function should be called as rod_TD(p, n, r);
- A corresponding bottom-up dynamic programming algorithm is as the following.

Rod_BU 6.1.3. Rod-cutting bottom-up dynamic programming

```
1 Algorithm rod_BU(p, n, r)
 2 // Find the maximum revenue for cutting rod of length n.
 3 {
 4
         r[0] := 0;
         for i := 1 to n do {
 5
 6
               max := -\infty;
               for j := 1 to i do {
 7
                    if (p[j] + r[i - j] > max) then max := p[j] + r[i - j];
 8
 9
               r[i] := max;
10
11
12
         return r[n];
13 }
      Algorithms (EE3980)
                                     Unit 6.1 Dynamic Programming
                                                                                  Apr. 23, 2018
```

Rod Cutting Problem, Complexities

- For the $rod_BU(p, n, r)$ algorithm, for loop on lines 5-11 executes n times.
- The inner for loop on lines 7-9 executes $\frac{n(n+1)}{2}$ times overall.
- Thus the computational complexity is $\Theta(n^2)$.
- The space complexity is $\Theta(n)$ due to the r[0:n] and p[1:n] arrays.
- For the rod_TD(p, n, r) algorithm, both time and space complexities are the same of the rod_BU(p, n, r) algorithm asymptotically.
- In both $rod_BU(p, n, r)$ and $rod_TD(p, n, r)$ algorithms, the maximum revenue array, r[1:n], is found. But, not the actual cutting solution. By adding a solution table, s[1:n], the following algorithm finds the cutting solution as well.

Algorithms (EE3980)

Unit 6.1 Dynamic Programming

Rod Cutting Problem, Maximum Revenue and Cutting

Rod_R 6.1.4. Rod-cutting with solution

```
1 Algorithm rod_SBU(p, n, r, s)
 2 // Find the maximum revenue for cutting rod of length n.
 3 {
         r[0] := 0;
 4
         for i := 1 to n do {
 5
 6
             max := -\infty;
             for j := 1 to i do {
 7
                  if (p[j] + r[i - j] > max) then {
 8
                       max := p[j] + r[i - j];
 9
                        s[i] := j;
10
11
                   ł
12
              r[i] := max;
13
14
         return r[n];
15
16 }
```

• Once the cutting solution is found by the $rod_SBU(p, n, r, s)$ algorithm, the following algorithm can be used to print out the cutting solution.

Rod_PS 6.1.5. Rod-cutting printing solutions

```
1 Algorithm rod_PS(n, s)

2 // Printing the cutting solution store in the solution table, s[1:n].

3 {

4 while (n > 0) do {

5 write s[n];

6 n := n - s[n];

7 }

8 }
```

Algorithms (EE3980)

Unit 6.1 Dynamic Programming

Rod Cutting Problem, Solution Example

- The algorithm rod_SBU(p, n, r, s) has the same complexities as the rod_BU(p, n, r) algorithm.
 - Time complexity: $\Theta(n^2)$,
 - Space complexity: $\Theta(n)$.

• Solution example:

Assuming n = 10, the following table lists the price table p, maximum revenue table r, solution table s, and the cutting solutions for various rod lengths, $1 \le i \le 10$.

5	6	7	8	9	10
10	17	17	20	24	30
13	17	18	22	25	30
2	6	1	2	3	10
2	6	1	2	3	10
3		6	6	6	
	10 13 2 2	101713172626	$\begin{array}{cccccc} 10 & 17 & 17 \\ 13 & 17 & 18 \\ 2 & 6 & 1 \\ 2 & 6 & 1 \end{array}$	101717201317182226122612	567891017172024131718222526123261233666

Apr. 23, 2018

9 / 28

Matrix Multiplication

• Given two matrices, A and B, each of dimensions $p \times q$ and $q \times r$, respectively, i.e., A[1:p,1:q] and B[1:q,1:r]. The product $C = A \times B$ has the dimension of $p \times r$, C[1:p,1:r], and it can be found by

mmm

$$C[i,j] = \sum_{k=1}^{q} A[i,k] \cdot B[k,j], \qquad 1 \le i \le p, 1 \le j \le r.$$
(6.1.2)

There are $p \times r$ elements in C and each takes q multiplications. Thus, the total number of multiplications to form the resultant matrix is $p \cdot q \cdot r$.

• Given thee matrices $A_1[1:10,1:100]$, $A_2[1:100,1:5]$, and $A_3[1:5,1:50]$, the product of these three matrices, $B = A_1 \cdot A_2 \cdot A_3$, can be formed in two different ways.

$$B = (A_1 \cdot A_2) \cdot A_3 \tag{6.1.3}$$

$$= A_1 \cdot (A_2 \cdot A_3) \tag{6.1.4}$$

Though the resulting matrix is identical, the number of operations to get matrix B is different.

Unit 6.1 Dynamic Programming

Matrix-Chain Multiplication Problem

• Using Eq. (6.1.3),

Algorithms (EE3980)

 $\begin{array}{ll} A_{12} = A_1[1:10,1:100] \cdot A_2[1:100,1:5] & 10 \times 100 \times 5 = 5000 \text{ multiplications} \\ B = A_{12}[1:10,1:5] \cdot A_3[1:5,1:50] & 10 \times 5 \times 50 = 2500 \text{ multiplications} \\ \text{Total} & 7500 \text{ multiplications} \end{array}$

- Using Eq. (6.1.4), $A_{23} = A_2[1:100, 1:5] \cdot A_3[1:5, 1:50]$ $100 \times 5 \times 50 = 25000$ multiplications $B = A_1[1:10, 1:100] \cdot A_{23}[1:100, 1:50]$ $10 \times 100 \times 50 = 50000$ multiplications Total 75000 multiplications
- The order of multiplications can make significant difference in computing the resulting product.
- The matrix-chain multiplication problem is to find the sequence of matrix multiplications for a given matrix chain, $A_1 \cdot A_2 \cdots A_n$, each with dimensions $p_{i-1} \times p_i$, such that the number of scalar multiplications is minimum.

Apr. 23, 2018

11 / 28

Matrix-Chain Multiplication Problem, Analysis

• Given a chain of matrices, A_1, A_2, \ldots, A_n , the number of possible sequences, P(n), can be shown to be

$$P(n) = \begin{cases} 1 & \text{if } n = 1, \\ \sum_{k=1}^{n-1} P(k)P(n-k) & \text{if } n \ge 2. \end{cases}$$
(6.1.5)

- It is shown that $P(n) \ge 2^{n-1}$. Thus, P(n) is $\Theta(2^n)$.
- Brute force approach is very inefficient.
- Let the dimensions of the matrices A_i , $1 \le i \le n$, be $p_{i-1} \times p_i$.
 - These dimensions can be stored in the array p[0:n].
- Let the minimum number of scalar products of performing matrix-chain, $A_i \cdot A_{i+1} \cdots A_{j-1} \cdot A_j$ be m(i,j), then

$$m(i,j) = \begin{cases} 0 & \text{if } i = j, \\ \min_{i \le k < j} \{m(i,k) + m(k+1,j)\} + p_{i-1} \cdot p_k \cdot p_j & \text{if } i < j. \end{cases}$$
(6.1.6)

• This is to try all groupings, $(A_i \cdots A_k) \cdot (A_{k+1} \cdots A_j)$, and find the minimum recursively.

Matrix-Chain Multiplication Problem, Recursive Algorithm

Unit 6.1 Dynamic Programming

• Eq. (6.1.6) can be translated into a recursive algorithm as the following.

Algorithm 6.1.6. Recursive matrix-chain multiplication.

```
1 Algorithm MCM_R(i, j, n, p)
 2 // To find the minimum scalar multiplication for a matrix chain.
 3 {
         if (i = j) return 0;
 4
         u := \infty;
 5
         for k := i to j - 1 do {
 6
               v := \text{MCM}_{R}(i, k, n, p) + \text{MCM}_{R}(k+1, j, n, p) + p[i-1] * p[k] * p[j];
 7
               if (v < u) \ u := v;
 8
 9
10
         return u;
11 }
```

- Again, this recursive algorithm is inefficient due to repeated evaluation of the MCM_R function with the same arguments.
- Using the top-down dynamic programming technique, this inefficiency can be avoided by saving the value into an array, in this case, it needs to be a two-dimensional matrix, m[i, j].

Algorithms (EE3980)	Unit 6.1 Dynamic Programming	
---------------------	------------------------------	--

Apr. 23, 2018 14 / 28

13 / 28

Matrix-Chain Multiplication, Top-Down Approach

• The top-down dynamic programming approach to solve the matrix-chain multiplication problem is shown below.

Algorithm 6.1.7. Top-down matrix-chain multiplication.

```
1 Algorithm MCM_TD(i, j, n, p, m)
 2 // To find the minimum scalar multiplication for a matrix chain.
 3 {
          if (m[i,j] \ge 0) return m[i,j];
 4
 5
          u := \infty;
          for k := i to j - 1 do {
 6
 7
                v := \text{MCM}_{\text{TD}}(i, k, n, p) + \text{MCM}_{\text{TD}}(k+1, j, n, p) + p[i-1] \cdot p[k] \cdot p[j];
                if (v < u) \ u := v;
 8
 9
          }
          m[i,j] := u;
10
11
          return m[i, j];
12 }
```

• Before MCM_TD(1, n, n, p, m) is called from the main function, initialization of $m[i][i] = 0, 1 \le i \le n$, should be performed.

15 / 28

• Also note that only the upper triangular matrix of m[1:n,1:n] is used. Algorithms (EE3980) Unit 6.1 Dynamic Programming Apr. 23, 2018

Matrix-Chain Multiplication, Bottom-Up Approach

• The corresponding bottom-up dynamic programming algorithm is as following.

Algorithm 6.1.8. Bottom-up matrix-chain multiplication.

```
1 Algorithm MCM_BU(i, j, n, p, m, s)
 2 // To find the minimum scalar multiplication for a matrix chain.
 3 {
 4
         for i := 1 to n do m[i, i] := 0;
         for l := 2 to n do { // l is the chain length.
 5
              for i := 1 to n - l + 1 do { // all possible i
 6
                   j := i + l - 1; // j - i = l - 1.
 7
 8
                    u := \infty;
                    for k := i to j - 1 do { // all possible groupings.
 9
                         v := m[i, k] + m[k+1, j] + p[i-1] \cdot p[k] \cdot p[j];
10
                         if (v < u) {
11
                              u := v; s[i, j] := k; // record for solution
12
                         }
13
                   }
14
              }
15
16
         }
17 }
      Algorithms (EE3980)
                                     Unit 6.1 Dynamic Programming
```

Matrix-Chain Multiplication, Print Solution

- In this bottom-up dynamic programming algorithm, again, the solution is recorded in the s[1:n,1:n] matrix.
- To print out the multiplication sequence after calling MCM_BU algorithm, the following algorithm should be called to print out the solution.

Algorithm 6.1.9. Matrix-chain multiplication print solution.

	prithm MCM_PS (i, j, s)
	o print the matrix multiplication sequence.
3 {	
4	if $(i = j)$ write ("A" i);
5	else {
6	write ("(") ;
7	$\texttt{MCM_PS}(i, s[i, j], s) ; // \left(A_i \cdots A_k\right)$
8	$\texttt{MCM_PS}(s[i,j]+1,j,s);//(A_{k+1}\cdots A_j)$
9	write (")") ;
10	}
11 }	

Algorithms (EE3980)

Unit 6.1 Dynamic Programming

Matrix-Chain Multiplication, Example

• A chain of 6 matrices and their dimensions are shown below.

matrix	A_1	A_2	A_3	A_4	A_5	A_6
dimension	30×35	35×15	15×5	5×10	10×20	20×25

The optimal solution is

 $(A_1(A_2A_3))((A_4A_5)A_6)$

with 15125 scalar multiplications.

• The m and s tables are also shown below.

m table											
0	15750 7875 9375 11875 15125										
	0	2625	4375	7125	10500						
		0	750	2500	5375						
			0	1000	3500						
				0	5000						
					0						

s table											
-	- 1 1 3 3 3										
	-	2	3	3	3						
		-	3	3	3						
			-	4	5						
				-	5						
					-						
_											

- The bottom-up matrix-chain multiplication algorithm (6.1.8) has three nested loops, each executed at most n times.
 - Total time complexity is $\mathcal{O}(n^3)$.
 - The space complexity is $\Theta(n^2)$ due to m and s tables.
- The top-down algorithm (6.1.7) has essentially the same complexities.
 - Time complexity: $\mathcal{O}(n^3)$
 - Space complexity: $\Theta(n^2)$
- Note that the m and s tables need only the upper triangular matrix only, but the space complexity is still $\Theta(n^2)$.
- For the recursive algorithm (6.1.6), however, the time complexity is $\mathcal{O}(2^n)$. It's space complexity is $\mathcal{O}(n)$.

Algorithms (EE3980)

Unit 6.1 Dynamic Programming

Dynamic Programming

• For the rod-cutting problem, the solution is found by solving Eq. (6.1.1), which is repeated below.

11122

$$r_n = \max\{p_n, p_1 + r_{n-1}, p_2 + r_{n-2}, \dots, p_{n-1} + r_1\}.$$

Time complexity is $\mathcal{O}(n^2)$.

• For the matrix-chain multiplication problem, the solution is found by solving Eq. (6.1.6).

$$m(i,j) = \min_{i \leq k \leq j} \{ m(i,k) + m(k+1,j) \} + p_{i-1} \cdot p_k \cdot p_j.$$

This requires $\mathcal{O}(n^3)$ time complexity.

- To apply dynamic programming method, the problem can be formulated to the overall optimal solution is constructed using the optimal solutions of its subproblems.
 - The problem should be divided into subproblems.
 - The optimal solutions for the subproblems need to be found.
 - Overall optimal solution is then constructed from those solutions.
- Recursive algorithm can usually developed from the equation.
 - Using table to record solutions of subproblems improves the efficiency greatly.
 - Bottom-up approach, without recursion, usually improve the efficiency further.

Apr. 23, 2018

19 / 28

Longest Common Subsequence Problem

• Practical problem: Given two strands of DNA, such as

- $S_1 = \texttt{ACCGGTCGAGTGCGCGGAAGCCGGCCGAA}$
- $S_2 = \mathtt{GTCGTTCGGAATGCCGTTGCTCTGTAAA}$

find the longest strand S_3 such that S_3 is a subsequence of both S_1 and S_2 .

Definition 6.1.10. Subsequence

Given a sequence $X = \langle x_1, x_2, \dots, x_m \rangle$, another sequence $Z = \langle z_1, z_2, \dots, z_k \rangle$ is a subsequence of X if there is a strictly increasing sequence $\langle i_1, i_2, \dots, i_k \rangle$ of indices of X such that for all $j = 1, 2, \dots, k$, $x_{i_j} = z_j$.

• Example: Given $X = \langle A, B, C, B, D, A, B \rangle$, $Z = \langle B, C, D, B \rangle$ is a subsequence of X.

Definition 6.1.11. Common subsequence

Given two sequences X and Y, sequence Z is a common subsequence of X abd Y if Z is a subsequence of both X and Y.

• Example: Given $X = \langle A, B, C, B, D, A, B \rangle$ and $Y = \langle B, D, C, A, B, A \rangle$, then $Z = \langle B, C, B, A \rangle$ is a common subsequence of X and Y.

Algorithms (EE3980)

Unit 6.1 Dynamic Programming

Longest Common Subsequence – Properties

- Given a sequence $X_m = \langle x_1, x_2, \dots, x_m \rangle$, then there are 2^m subsequence for X_m .
- Brute-force approach to find a longest common subsequence (LCS) would be impractical for reasonable size sequences.

Theorem 6.1.12.

Given two sequences, $X_m = \langle x_1, x_2, \dots, x_m \rangle$ and $Y_n = \langle y_1, y_2, \dots, y_n \rangle$, if $Z_k = \langle z_1, z_2, \dots, z_k \rangle$ is any LCS of X and Y, then

1. If $x_m = y_n$, then $z_k = x_m = y_n$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1} .

- 2. If $x_m \neq y_n$, then $x_m \neq z_k$ implies Z is an LCS of X_{m-1} and Y_n .
- 3. If $x_m \neq y_n$, then $y_n \neq z_k$ implies Z is an LCS of X_m and Y_{n-1} .

• Proof please see textbook [Cormen], p. 392.

Longest Common Subsequence – Properties, II

• Let c[i, j] be the length of an LCS of the sequences X_i and Y_j , then we have

$$c[i,j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0, \\ c[i-1,j-1]+1 & \text{if } i,j > 0 \text{ and } x_i = y_j, \\ \max\{c[i,j-1], c[i-1,j]\} & \text{if } i,j > 0 \text{ and } x_i \neq y_j. \end{cases}$$
(6.1.7)

- Based on this equation, recursive algorithm can be derived to solve the LCS problem.
 - However, due to exponential number of subsequences the recursive algorithm is very inefficient to solve reasonable size problems.
- A bottom-up dynamic programming algorithm is shown next which is rather efficient.
 - Inputs are two sequences: $X_m = \langle x_1, x_2, \dots, x_m \rangle$, $Y_n = \langle y_1, y_2, \dots, y_n \rangle$.
 - Two tables are built by the algorithm. c[0:m, 0:n]: record the length of the LCS for X_i and Y_j at c[i, j]. b[1:m, 1:n]: record the solution sequence of the LCS for X_i and Y_j at b[i, j].

Algorithms (EE3980)

Unit 6.1 Dynamic Programming

Longest Common Subsequence – Algorithm

Algorithm 6.1.13. Longest Common Subsequence

1 Algorithm $LCS(X, Y)$	
2 // To find a LCS of $X = \langle x_1, \ldots, x_m \rangle$ and $Y = \langle y_1, \ldots, y_n \rangle$.	
3 {	
4 for $i:=1$ to m do $c[i,0]:=0$;	
5 for $j := 0$ to n do $c[0, j] := 0$;	
6 for $i:=1$ to m do {	
7 for $j:=1$ to n do {	
8 if $(x_i = y_j)$ then {	
9 $c[i,j] := c[i-1,j-1] + 1;$	
10 $b[i,j] := " \nwarrow ";$	
11 }	
12 else if $(c[i-1,j] \ge c[i,j-1])$ then {	
13 $c[i,j] := c[i-1,j];$	
14 $b[i,j] := "\uparrow ";$	
15 }	
16 else {	
17 $c[i, j] := c[i, j-1];$	
$b[i,j] := " \leftarrow " ;$	
19 }	
20 }	
21 }	
22 }	

Longest Common Subsequence – Print Solution

- After the LCS(X, Y) algorithm is called, tables b[1 : m, 1 : n] and c[0:m,0:n] are built.
- The length of the LCS is in c[m, n].
- And the following recursive algorithm can print out the LCS using X and table b|1:m,1:n|.
- It should be invoked by $LCS_PS(b, X, m, n)$.

Algorithm 6.1.14. Print Longest Common Subsequence

1 Algorithm LCS_PS(b, X, i, j)2 // Use X_m and b[1:m,1:n] to print the LCS found recursively. 3 { 4 if (i=0 or j=0) return ; if $(b[i,j] = " \nwarrow ")$ then { 5 $LCS_PS(b, X, i-1, j-1);$ 6 write (" x_i "); 7 8 } else if $(b[i,j] = "\uparrow ")$ then LCS_PS(b, X, i-1, j); 9 else LCS_PS(b, X, i, j-1); 10 11 }

Algorithms (EE3980)

Unit 6.1 Dynamic Programming

Apr. 23, 2018 25 /

5

В

 \leftarrow

尺

 \uparrow

 \uparrow

 \uparrow

6

А 尺

 \leftarrow \uparrow

 \leftarrow \uparrow

Longest Common Subsequence – Example

Given two sequences

$$X_7 = \langle A, B, C, B, D, A, B \rangle, \ Y_6 = \langle B, D, C, A, B, A \rangle.$$

After LCS(X, Y) call, we have the following tables. AUDIA

									32	N	47			
Table $c[0:7,0:6]$											Ta	ble $b[$	1:7,	1:6]
	j	0	1	2	3	4	5	6			1	-		
i	-	y_j	В	D	С	А	В	А		J	B	2 D	3	4 A
0	x_i	0	0	0	0	0	0	0		۸				Γ Γ
1	А	0	0	0	0	1	1	1		A				
2	В	0	1	1	1	1	2	2	2		\sim	\leftarrow	\leftarrow	\uparrow
3	C	0	1	1	2	2	2	2	3	C	↑	↑	$\overline{\mathbf{x}}$	\leftarrow
				L					4	В	K	\uparrow	\uparrow	\uparrow
4	В	0	1	1	2	2	3	3	5	D	\uparrow	ĸ	\uparrow	 ↑
5	D	0	1	2	2	2	3	3	-	_	-			 K
6	А	0	1	2	2	3	3	4	6	A	\uparrow	\uparrow	\uparrow	
7	В	0	1	2	2	3	4	4	7	В	$\overline{\mathbf{x}}$	↑	↑	↑
1	D	0	L 1	2	2	5	4	4	<u>ا – ا</u>					
•	• The length of the LCS found is $c[7, 6] = 4$.													
	$\mathbf{A} \mathbf{b} \mathbf{b} \mathbf{c} $													

• And the LCS is $\langle B, C, B, A \rangle$.

Longest Common Subsequence – Complexity

- The bottom-up dynamic algorithm to solve LCS problem, Algorithm (6.1.13), is dominated by the double loops, lines 6-7.
- Thus, the time complexity is $\Theta(mn)$.
- The LCS solution printing algorithm (6.1.14) traces the b[1:m,1:n] table for the lower-right corner to the upper-left corner.
 - Thus, the time complexity is $\mathcal{O}(m+n)$.
- The overall space complexity is $\Theta(mn)$ due to those two tables, c[0:m, 0:n] and b[1:m, 1:n].
- It is possible to print out the LCS solution using table c[0:m,0:n] alone, thus save memory space requirement.
 - Starting from c[m][n], each step it requires to compare x_m vs. y_n and c[m-1][n] vs. c[m][n-1].
- Note that in Algorithm (6.1.13), in constructing c[i] row it needs only the previous row c[i-1].

Unit 6.1 Dynamic Programming

• Thus, if only the length of LCS is required, table b[1:m, 1:n] needs not be built. The space complexity can be reduced to $\mathcal{O}(m)$.

Summary

Algorithms (EE3980)

- Rod-cutting problem
- Matrix-chain multiplication problem
- Dynamic programming
- Longest common subsequence problem