Unit 6.1 Dynamic Programming

Algorithms
EE3980

Apr. 23, 2018

Unit 6.1 Dynamic Programming Apr. 23, 2018

Rod Cutting Problem

@ Rod cutting problem
Given a rod of n inches and a price table, p;, ¢ =1,...,n, determine the
maximum revenue 1, obtainable to cutting the rod and selling the pieces.

@ Example of the price table for rods.

2
5

Length, inches |
Price, Dollars |

1 3 4 5 6 7 8 9 10
1 8 9

10 17 17 20 24 30

@ Example of cutting a rod of length of 4 inches.

e Eight different ways of cutting.
e Maximum revenue is 10.

9 1 8 5 5 8 1
Q1717 IV 1l 11
1 1 5 1 5 1 5 1 1 1 1 1 1
D D @D D@D @&]] (D@ e

Unit 6.1 Dynamic Programming Apr. 23, 2018 2 /28

Rod Cutting Problem, Formulation

@ Given a rod of length n inches, there are totally 2"~ ways of cutting.

@ In brute-force approach, the maximum revenue of all these cutting is the
optimal solution.

@ Using recursive function, we can formulate the solution as

Ty, = MAaX{ Pp, P1 + Tne1, P2 + Tne2y. -3 Pne1 + 711}, (6.1.1)

where 1 is the maximum revenue of cutting the rod of length £,
and py is the price of length £ rod.

@ This is a recursive formula and it evaluates all possible rod-cutting solutions
and finds the maximum revenue.

Algorithms (EE3980) Unit 6.1 Dynamic Programming Apr. 23, 2018 3 /28

Rod Cutting Problem, Recursive Algorithm

Rod_R 6.1.1. Recursive Rod-cutting

1 Algorithm rod_R(p, n)
2 // Find the maximum revenue for cutting rod of length n. p[l : n] is the price table.
3 {
4 if (n=0) return 0;
5 maz := p[n]; // no cut.
6 for i:=1to n—1do { // check all possible cutting using recursion.
7 if (p[ié]+ rod_R(p,n — i) > max) then max = pli]+ rod_R(p,n—1);
8 }
9 return max;
10 }
v

@ Example of Rod_R(p, 4) unrolling

Rod_R(p,4) = p[l]+Rod_R(p,3) p[2]+Rod_R(p,2) p[3]+Rod_R(p,1) p[4]
Rod_R(p,3) = p[l]+Rod_R(p,2) p[2]+Rod_R(p,1) p[3]

Rod_R(p,2) = p[l]4+Rod_R(p,1) p[2]

Rod_R(p,1) = p[1]

@ As it is, rod_R(p, n) may be called many times for i, 1 <=1 < n.
@ This inefficiency can be improved using dynamic programming method.

Algorithms (EE3980) Unit 6.1 Dynamic Programming Apr. 23, 2018 4 /28

Rod Cutting Problem, Top-Down Dynamic Programming

@ The efficiency of the recursive rod-cutting algorithm can be improved
significantly using a revenue array, 70 : n).
@ Before calling this rod_TD(p, n, r) function, the revenue array should be

initialized as
il =4O if =0,
N =00, otherwise.

1 Algorithm rod_TD(p, n, r)
2 // Find the maximum revenue for cutting rod of length n.

4 if (r{n] > 0) return r{n|; // if prior evaluation is done, return value.
5 maz := p[n]; // no cut.

6 for i:=1to n—1do { // check all possible cutting using recursion.
7 if (p[i]4+ rod_TD(p,n — i, r) > maz) then

8 max := pli]+ rod_TD(p,n — i, 7);

9 ¥

10 r[n] := mazx; // record max revenue in r array.
11 return max;

Algorithms (EE3980) Unit 6.1 Dynamic Programming Apr. 23, 2018 5/ 28

Rod Cutting Problem, Bottom-Up Dynamic Programming

@ For the top-down dynamic function, in addition to the proper initialization of
the revenue, {0 : nJ, table, the function should be called as
rod_TD(p, n,);

@ A corresponding bottom-up dynamic programming algorithm is as the
following.

Rod_BU 6.1.3. Rod-cutting bottom-up dynamic programming

1 Algorithm rod_BU(p, n, r)

2 // Find the maximum revenue for cutting rod of length n.
34

4 0] :==0;

5 for i:=1 to ndo {

6 max := —0o0;

7 for j:=1 to ido {

8 if (p[j] + r[¢ — j] > max) then mazx := p[j| + rli — j];
9 ki
10 r[i] := max;
11 }
12 return 7{n|;
13 }

-_—
Algorithms (EE3980) Unit 6.1 Dynamic Programming Apr. 23, 2018 6 /28

Rod Cutting Problem, Complexities

@ For the rod_BU(p, n, r) algorithm, for loop on lines 5-11 executes n times.

n(n+ 1)
2

@ The inner for loop on lines 7-9 executes times overall.

@ Thus the computational complexity is ©(n?).

@ The space complexity is ©(n) due to the {0 : n] and p[1 : n] arrays.

@ For the rod_TD(p, n, r) algorithm, both time and space complexities are the
same of the rod_BU(p, n,) algorithm asymptotically.

@ In both rod_BU(p, n,7) and rod_TD(p, n, r) algorithms, the maximum
revenue array, {1 : n], is found. But, not the actual cutting solution. By
adding a solution table, s[1 : n], the following algorithm finds the cutting
solution as well.

Algorithms (EE3980) Unit 6.1 Dynamic Programming Apr. 23, 2018 7/ 28

Rod Cutting Problem, Maximum Revenue and Cutting

Rod_R 6.1.4. Rod-cutting with solution
1 Algorithm rod_SBU(p, n, T, s)
2 // Find the maximum revenue for cutting rod of length n.
3 {
4 0] :=0;
5 for i:=1to ndo {
6 max := —o0;
7 for j:=1 to ido {
8 if (p[j] + r[¢ — j] > max) then {
9 mag ;= plj] + r{i = j];
10 s[1] = 7;
11 }
12 }
13 r[i] := max;
14 }
15 return r{n|;
16 }
v
Algorithms (EE3980) Unit 6.1 Dynamic Programming Apr. 23,2018 8/ 28

Rod Cutting Problem, Maximum Revenue and Cutting

@ Once the cutting solution is found by the rod_SBU(p, n, r, s) algorithm, the
following algorithm can be used to print out the cutting solution.

Rod_PS 6.1.5. Rod-cutting printing solutions

1 Algorithm rod_PS(n, s)
2 // Printing the cutting solution store in the solution table, s[1 : n].
34
4 while (n > 0) do {
5 write s[n|;
6 n:=n—sn|;
7 ¥
8 }
v

Algorithms (EE3980) Unit 6.1 Dynamic Programming Apr. 23, 2018 9/ 28

Rod Cutting Problem, Solution Example

@ The algorithm rod_SBU(p, n, r, s) has the same complexities as the
rod_BU(p, n, r) algorithm.
o Time complexity: ©(n?),
e Space complexity: O(n).

@ Solution example:
Assuming n = 10, the following table lists the price table p, maximum
revenue table r, solution table s, and the cutting solutions for various rod
lengths, 1 < 7 < 10.

i |1 2 3 4 5 6 7 8 9 10
pli] |1 5 8 O 10 17 17 20 24 30
i) |1 5 8 10 13 17 18 22 25 30
sfi] |1 2 3 2 2 6 1 2 3 10
Cuts: |1 2 3 2 2 6 1 2 3 10
2 3 6 6 6

Algorithms (EE3980) Unit 6.1 Dynamic Programming Apr. 23, 2018 10 / 28

Matrix Multiplication

@ Given two matrices, A and B, each of dimensions p X g and ¢ x r,
respectively, i.e., A[1:p,1:¢] and B[1:¢q,1: 7. The product C= A x B
has the dimension of p x r, C[1 : p,1: 7], and it can be found by

q
Cli,j] =) Ali,k]-Blkj], 1<i<pl<j<r (6.1.2)
k=1

There are p x r elements in C' and each takes ¢ multiplications. Thus, the
total number of multiplications to form the resultant matrix is p- ¢ - r.

@ Given thee matrices A;[1 : 10,1 : 100], Ax[1:100,1: 5], and A3[1:5,1:50],
the product of these three matrices, B= A; - A5 - A3, can be formed in two
different ways.

B=(A; - As)- As (6.1.3)
= Ay - (As - A3) (6.1.4)

Though the resulting matrix is identical, the number of operations to get
matrix B is different.

Algorithms (EE3980) Unit 6.1 Dynamic Programming Apr. 23, 2018 11 / 28

Matrix-Chain Multiplication Problem

e Using Eq. (6.1.3),

Ajg = A1[1:10,1:100] - A2[1:100,1:5] 10 % 100 x 5 = 5000 multiplications
B = Ai2[1:10,1:5]-As[l :5,1:50] 10 x 5 x 50 = 2500 multiplications
Total 7500 multiplications

e Using Eq. (6.1.4),

Aoz = Ag[1:100,1: 5]+ A3z[1:5,1:50] 100 x 5 x 50 = 25000 multiplications
B= A1[1:10,1:100] - A23[1:100,1:50] 10 x 100 x 50 = 50000 multiplications
Total 75000 multiplications

@ The order of multiplications can make significant difference in computing the
resulting product.

@ The matrix-chain multiplication problem is to find the sequence of matrix
multiplications for a given matrix chain, Ay - Ay --- A, each with dimensions
Pi—1 X pi, such that the number of scalar multiplications is minimum.

Algorithms (EE3980) Unit 6.1 Dynamic Programming Apr. 23, 2018 12 / 28

Matrix-Chain Multiplication Problem, Analysis

@ Given a chain of matrices, A1, Ao,..., A,, the number of possible sequences,
P(n), can be shown to be

1 if n=1,

P(n) = (6.1.5)

n—1

> P(k)P(n—k) if n> 2.

k=1
o It is shown that P(n) > 2" ' Thus, P(n) is ©(2").
e Brute force approach is very inefficient.

@ Let the dimensions of the matrices 4;, 1 < i< n, be p;_1 X p;.
e These dimensions can be stored in the array p[0 : 7.

@ Let the minimum number of scalar products of performing matrix-chain,
A'i . Ai_|_1 s Aj—l : Aj be m(z,]), then

0 if i = j,
)= { min {m(4, k) + m(k+1,7)} + pi—1 - pr - pj if i <j (616)

1<k<j

e This is to try all groupings, (A;--- Ax) - (Ak+1 -+ A;), and find the minimum
recursively.

Algorithms (EE3980) Unit 6.1 Dynamic Programming Apr. 23, 2018 13 / 28

Matrix-Chain Multiplication Problem, Recursive Algorithm

@ Eq. (6.1.6) can be translated into a recursive algorithm as the following.

Algorithm 6.1.6. Recursive matrix-chain multiplication.

1 Algorithm MCM_R(%, 4, n,)
2 // To find the minimum scalar multiplication for a matrix chain.
34
Z if (¢ = j) return 0;
5 U= 00;
6 for k:=itoj—14do {
7 v := MCM_R(i, k, n, p)+ MCM_R(k + 1,4, n, p) + p[i — 1] » p[k] * p[j] ;
8 if (v < u) u:=v;
o}
10 return u;
11 })

@ Again, this recursive algorithm is inefficient due to repeated evaluation of the
MCM_R function with the same arguments.

@ Using the top-down dynamic programming technique, this inefficiency can be
avoided by saving the value into an array, in this case, it needs to be a

two-dimensional matrix, m[3, j].
Algorithms (EE3980) Unit 6.1 Dynamic Programming Apr. 23, 2018 14 / 28

Matrix-Chain Multiplication, Top-Down Approach

@ The top-down dynamic programming approach to solve the matrix-chain
multiplication problem is shown below.

Algorithm 6.1.7. Top-down matrix-chain multiplication.

1 Algorithm MCM_TD(5, j, n, p, m)
2 // To find the minimum scalar multiplication for a matrix chain.

3 {

4 if (m[¢,j] > 0) return m[i, j] ;

5 U= 00;

6 for k:=itoj—1do {

7 v := MCM_TD(%, k, n, p)+ MCM_TD(k+ 1,4, n, p) + p[i — 1]- p[k]- plj];
8 if (v< u) u:=v;

9 }
10 mli, j] = u;
11 return mli, j];
12 }

v

e Before MCM_TD(1, n, n, p, m) is called from the main function, initialization of
m[i][i] = 0, 1 < ¢ < n, should be performed.
@ Also note that only the upper triangular matrix of m[1 : n, 1 : n] is used.

Algorithms (EE3980) Unit 6.1 Dynamic Programming Apr. 23, 2018

Matrix-Chain Multiplication, Bottom-Up Approach

@ The corresponding bottom-up dynamic programming algorithm is as
following.
Algorithm 6.1.8. Bottom-up matrix-chain multiplication.

1 Algorithm MCM_BU(4, j, n, p, m, s)

2 // To find the minimum scalar multiplication for a matrix chain.

3 {

4 for i:=1 to mndo m[i,i] :==0;

5 for [:=2 to ndo { // lis the chain length.

6 for i:=1ton—1I0+1do {// all possible i

7 ji=i4l—1; /) j—i=1-1.

8 U= 00 ;

9 for k:=ito j—1do { // all possible groupings.
10 v:=m[i, k] + mk+ 1, 4] + p[i — 1]- p[k]- p[j];
11 if (v<w){

12 u:= v; 8[t,j] := k; // record for solution
13 }
14 }
15 }
16 }
17 }
Algorithms (EE3980) Unit 6.1 Dynamic Programming Apr. 23, 2018

Matrix-Chain Multiplication, Print Solution

@ In this bottom-up dynamic programming algorithm, again, the solution is
recorded in the s[1 : n, 1 : n] matrix.

@ To print out the multiplication sequence after calling MCM_BU algorithm, the
following algorithm should be called to print out the solution.

Algorithm 6.1.9. Matrix-chain multiplication print solution.

1 Algorithm MCM_PS(%, j, s)

2 // To print the matrix multiplication sequence.
34

4 if (i =j) write ("A" 9);

5 else {

6 write ("(") ;

7 MCM—PS(ia S[iaj]a 8) 3 // (A’L o Ak)

: MOM_PS(s[i 7] + 1,7, 8)5 // (Axss - Aj)
9 write (")") ;
10 }
11 }

Algorithms (EE3980) Unit 6.1 Dynamic Programming Apr. 23, 2018 17 / 28

Matrix-Chain Multiplication, Example

@ A chain of 6 matrices and their dimensions are shown below.
matrix | Aq Ao As Ay As Ag
dimension | 30x35 35x15 15x5 5x10 10x20 20 x 25 J
@ The optimal solution is
(A1(A243))((As45)As)
with 15125 scalar multiplications.
@ The m and s tables are also shown below.
m table s table
0 [15750 | 7875 | 9375 | 11875 | 15125 - 113]3]3
0 2625 | 4375 | 7125 | 10500 213]13]3
0 750 2500 5375 - 3 3 3
0 1000 3500 - 4 | 5
0 5000 5
O -
Algorithms (EE3980) Unit 6.1 Dynamic Programming Apr. 23, 2018 18 / 28

Matrix-Chain Multiplication, Complexities

@ The bottom-up matrix-chain multiplication algorithm (6.1.8) has three nested
loops, each executed at most n times.

o Total time complexity is O(n?).
o The space complexity is ©(n?) due to m and s tables.

@ The top-down algorithm (6.1.7) has essentially the same complexities.
o Time complexity: O(n?)
o Space complexity: O(n?)

@ Note that the m and s tables need only the upper triangular matrix only, but
the space complexity is still ©(n?).

@ For the recursive algorithm (6.1.6), however, the time complexity is O(2").
It's space complexity is O(n).

Algorithms (EE3980) Unit 6.1 Dynamic Programming Apr. 23, 2018 19 / 28

Dynamic Programming

@ For the rod-cutting problem, the solution is found by solving Eq. (6.1.1),
which is repeated below.

Ty = max{pn,pl + 1y P2 T2, -, Pn—1 + 7"1}-

Time complexity is O(n?).

@ For the matrix-chain multiplication problem, the solution is found by solving
Eq. (6.1.6).

m(7,7) = min {m(i, k) + m(k+1,5)} + pi—1 - P& - ;-
i<k<j
This requires O(n?) time complexity.

@ To apply dynamic programming method, the problem can be formulated to
the overall optimal solution is constructed using the optimal solutions of its
subproblems.

e The problem should be divided into subproblems.
e The optimal solutions for the subproblems need to be found.
e Overall optimal solution is then constructed from those solutions.

@ Recursive algorithm can usually developed from the equation.

e Using table to record solutions of subproblems improves the efficiency greatly.
e Bottom-up approach, without recursion, usually improve the efficiency further.

Algorithms (EE3980) Unit 6.1 Dynamic Programming Apr. 23, 2018 20 / 28

Longest Common Subsequence Problem

@ Practical problem: Given two strands of DNA, such as

S1 = ACCGGTCGAGTGCGCGGAAGCCGGCCGAA
Sy = GTCGTTCGGAATGCCGTTGCTCTGTAAA

find the longest strand S3 such that S5 is a subsequence of both 57 and 5.

Definition 6.1.10. Subsequence

Given a sequence X = (11, 29, - ,), another sequence Z = (21, 20, , 2x) is a
subsequence of X if there is a strictly increasing sequence (7, iz, - - - , i) of indices
of X such that for all j=1,2,...,k z; = 2.

e Example: Given X =(A, B, C, B, D, A, B), Z= (B, C, D, B) is a subsequence
of X.

Definition 6.1.11. Common subsequence

Given two sequences X and Y, sequence Z is a common subsequence of X abd Y
if Z is a subsequence of both X and Y.

e Example: Given X = (A, B, C,B,D, A, B) and Y= (B, D, C, A, B, A), then
Z = (B, C, B, A) is a common subsequence of X and Y.

Algorithms (EE3980) Unit 6.1 Dynamic Programming Apr. 23, 2018 21/ 28

Longest Common Subsequence — Properties

e Given a sequence X,,, = (w1, T2, ..., Tm), then there are 2 subsequence for
Xm.

@ Brute-force approach to find a longest common subsequence (LCS) would be
impractical for reasonable size sequences.

Theorem 6.1.12.

Given two sequences, X,, = (%1, %2, ..., Tm) and Yy, = (y1, ¥2, - - -, Yn), if
Zy = (21,22, ...,2k) is any LCS of X and Y, then

1. If z,, = yn, then zx = ©,,, = ¥, and Zx_1 is an LCS of X,,,—1 and Y, 1.
2. If p, #£ yn, then x,, # 2 implies Z is an LCS of X,,,—1 and Y.

3. If xp, # yn, then y, # 2 implies Z is an LCS of X,,, and Y,_.

@ Proof please see textbook [Cormen], p. 392.

Algorithms (EE3980) Unit 6.1 Dynamic Programming Apr. 23, 2018 22 /28

Longest Common Subsequence — Properties, Il

o Let c[7,j] be the length of an LCS of the sequences X; and Y}, then we have

0 if i=0o0rj=0,
clij]=14 cli—1,j=1]+1 if 4,7 > 0 and z; = y, (6.1.7)
max{ c[i, j— 1], c[i — 1, 7]} if 4,7> 0 and z; # y;.

@ Based on this equation, recursive algorithm can be derived to solve the LCS
problem.

e However, due to exponential number of subsequences the recursive algorithm
is very inefficient to solve reasonable size problems.

@ A bottom-up dynamic programming algorithm is shown next which is rather
efficient.
o Inputs are two sequences: X, = (1,22, ..., Tm), Yo = (Y1,Y2,-- -, Yn)-
e Two tables are built by the algorithm.
c[0 : m,0 : n]: record the length of the LCS for X; and Yj at [, j].
b[1: m,1: n|: record the solution sequence of the LCS for X; and Yj at b[¢, j].

Algorithms (EE3980) Unit 6.1 Dynamic Programming Apr. 23, 2018 23 /28

Longest Common Subsequence — Algorithm

Algorithm 6.1.13. Longest Common Subsequence

1 Algorithm LCS(X, Y)

2 // Tofind aLCS of X = (z1,...,2p) and Y = (y1,..., Yn).
3 {

4 for ¢:= 1 to mdo ¢[i,0] :=0;

5 for j:=0 to ndo ¢[0,j] :=0;

6 for ¢:=1 to m do {

7 for j:=1to ndo {

8 if (x; = y;) then {

9 clt, jli=cli—1,7—1] 4+ 1;
10 bli,] =" N "

11

12 else if (c[i — 1,5] > c[¢,j — 1]) then {
13 efé, 5] = i 1,45

14 bliL] ="

15 }

16 else {

17 C['i,j] o= C[’i,j—]-];

18 bli,jl:=="«";

19 }

20 }

21 }

22 }

Algorithms (EE3980) Unit 6.1 Dynamic Programming Apr. 23, 2018 24 / 28

Longest Common Subsequence — Print Solution

o After the LCS(X, Y) algorithm is called, tables b[1 : m,1 : n] and
c[0 : m,0 : n] are built.

@ The length of the LCS is in ¢[m, n].

@ And the following recursive algorithm can print out the LCS using X and
table b[1:m, 1 : n)].

@ It should be invoked by LCS_PS(b, X, m, n).

Algorithm 6.1.14. Print Longest Common Subsequence

1 Algorithm LCS_PS(b, X, 1,)

2 // Use X, and b[1 : m, 1 : n] to print the LCS found recursively.
31

4 if (¢=0 or j=0) return ;

5 if (b[¢,5] ="\ ") then {

6 LCS_PS(b, X,i—1,j— 1);

7 write (" x; ");

8 }

9 else if (b[7,5] =" 1") then LCS_PS(b, X,i—1,j);
10 else LCS_PS(b, X,4,j—1);

Algorithms (EE3980) Unit 6.1 Dynamic Programming Apr. 23, 2018 25 / 28

Longest Common Subsequence — Example

e Given two sequences
X;=(A,B,C,B,D,A,B), Ys =(B,D,C, A, B, A).
After LCS(X, Y) call, we have the following tables.

Table c[0: 7,0 : 6] Table b[1: 7,1 : 6]

—.
—.

o|lo|lo|o|ojo|lololk o
Rl R R RRR~ROlO TR~
NN DNRHRRFRRFROOODN
NINIDN NN OO W
W W NN R RO >
PRI W W W NN RO ol
BRI WWNN RO O
~NoO O~ WN R —
W>0WON >
A== == w =
—|=| A== Tl—=lo ~
=== = T= 0 w
—| A== T = > &
A== =LA T o
= =T I= T > o

~NOoO OB~ WDPND R O -
W>OTWOTETS

v

@ The length of the LCS found is ¢[7, 6] = 4.
@ And the LCS is (B, C, B, A).

Algorithms (EE3980) Unit 6.1 Dynamic Programming Apr. 23, 2018 26 / 28

Longest Common Subsequence — Complexity

@ The bottom-up dynamic algorithm to solve LCS problem, Algorithm (6.1.13),
is dominated by the double loops, lines 6-7.
@ Thus, the time complexity is ©(mn).

@ The LCS solution printing algorithm (6.1.14) traces the b[1 : m, 1 : n] table
for the lower-right corner to the upper-left corner.

e Thus, the time complexity is O(m + n).

@ The overall space complexity is ©(mn) due to those two tables, ¢[0 : m, 0 : n]
and b[1 : m,1: n.

@ It is possible to print out the LCS solution using table ¢[0 : m,0 : n] alone,
thus save memory space requirement.

e Starting from c[m]|[n], each step it requires to compare z,, vs. y, and
c[m — 1][n] vs. ¢[m][n —1].

@ Note that in Algorithm (6.1.13), in constructing c[¢] row it needs only the
previous row c[i — 1].
e Thus, if only the length of LCS is required, table b[1 : m, 1 : n] needs not be
built. The space complexity can be reduced to O(m).

Unit 6.1 Dynamic Programming Apr. 23, 2018 27 / 28

Summary

@ Rod-cutting problem

@ Matrix-chain multiplication problem
@ Dynamic programming
°

Longest common subsequence problem

Unit 6.1 Dynamic Programming Apr. 23, 2018 28 / 28

