
Unit 5.3 The Greedy Method, III

Algorithms

EE3980

Apr. 18, 2018

Algorithms (EE3980) Unit 5.3 The Greedy Method, III Apr. 18, 2018 1 / 25

Optimal Storage on Tapes

Given a sequentially accessed magnetic tape and n programs
These n programs, 1, 2, · · · ,n, are to be stored on the tape
Each program has the length li, 1 ≤ i ≤ n.
The tape is always accessed from the beginning.

Thus, if the kth program is accessed it needs tk =

k∑

j=1

lj amount of time.

The objective is to determined the order of the n program such that the mean

retrieval time (MRT), defined as 1

n

n∑

k=1

tk, is minimum.

Since n is given, the minimizing MRT is equivalent to minimizing
n∑

k=1

k∑

j=1

lij,

where ij, 1 ≤ j ≤ n is a permutation of {1, 2, · · · ,n}.

Algorithms (EE3980) Unit 5.3 The Greedy Method, III Apr. 18, 2018 2 / 25

Optimal Storage on Tapes — Example

Example
n = 3 and {l1, l2, l3} = {5, 10, 3}.
There are 6 permutations all of which are feasible solutions.

Ordering
n∑

k=1

k∑

j=1

li,j

1,2,3 5+(5+10)+(5+10+3) = 38
1,3,2 5+(5+3)+(5+3+10) = 31
2,1,3 10+(10+5)+(10+5+3) = 43
2,3,1 10+(10+3)+(10+3+5) = 41
3,1,2 3+(3+5)+(3+5+10) = 29
3,2,1 3+(3+10)+(3+10+5) = 34

The optimal ordering is {3, 1, 2}.

Algorithms (EE3980) Unit 5.3 The Greedy Method, III Apr. 18, 2018 3 / 25

Optimal Storage on Tapes — Optimality and Complexity
Note that the objective function can be written as

n∑

k=1

k∑

j=1

lij = (li1) + (li1 + li2) + (li1 + li2 + li3) + · · ·

= nli1 + (n − 1)li2 + (n − 2)li3 + · · ·

Thus li1 should be the smallest possible to reduce MRT
Once i1 is determined, li2 should be the smallest among the remaining
programs.

Theorem 5.3.1.
If l1 ≤ l2 ≤ · · · ≤ ln, then the ordering ij, 1 ≤ j ≤ n, minimizes

n∑

k=1

k∑

j=1

lij (5.3.1)

over all possible permutation of ij.

Thus, the optimal storage on tape problem reduces to the ordering of the n
programs by their lengths — O(n lg n).

Algorithms (EE3980) Unit 5.3 The Greedy Method, III Apr. 18, 2018 4 / 25

Optimal Storage on Tapes — Multi-tape Case

The number of tapes can be m, m ≥ 1

The program should be distributed over the m tapes
The following algorithm assigns the n programs to m tapes that achieves
minimum MRT.

Algorithm 5.3.2. Multi-tape Storage
1 Algorithm store(n, l,m)
2 // Store n programs, each has length l [1 : n], onto m tapes.
3 {
4 Sort(l) in increasing order ;
5 j := 1 ; // Next tape to store on
6 for i := 1 to n do {
7 Append program i to tape j ;
8 j := (j + 1) mod m ;
9 }

10 }

Algorithms (EE3980) Unit 5.3 The Greedy Method, III Apr. 18, 2018 5 / 25

Multi-tape Storage — Complexity and Optimality

Note that the time complexity of Algorithm (5.3.2) is dominated by line 4
Sort function, which has time complexity of O(n lg n).

Theorem 5.3.3.
If l1 ≤ l2 ≤ · · · ≤ ln, then Algorithm (5.3.2) generates an optimal storage pattern
for m tapes.

Proof see textbook [Horowitz], pp. 251 – 252.
Note that there can be more than one optimal assignment if some program
lengths are equal.

Algorithms (EE3980) Unit 5.3 The Greedy Method, III Apr. 18, 2018 6 / 25

Merging Multi-Files

Merging two files containing n and m records need to move n + m data.
Let’s consider two-way merge pattern only, i.e., merge two files each time.
Given multiple files with different number of records, what is the order of
binary merge to achieve minimum number of moves.

Example
3 sorted files x1, x2 and x3 with 30, 20 and 10 data each.

1 Merge x1 and x2 first requires 50 moves;
Then merge with x3 requires another 60 moves;
Total number of moves is 110.

2 Merge x2 and x3 first in 30 moves;
Then merge with x1 in 60 moves;
Total number of moves is 90.

Observation: to merge smaller files first.

Algorithms (EE3980) Unit 5.3 The Greedy Method, III Apr. 18, 2018 7 / 25

Merging Multi-Files — Algorithm

Algorithm 5.3.4. Binary Merge Tree
1 struct node {
2 struct node ∗lchild, ∗rchild ;
3 integer w ;
4 }
5 Algorithm Tree(n, list)
6 // Generate binary merge tree from list of n files.
7 {
8 for i := 1 to (n − 1) do {
9 pt := new node ;

10 pt → lchild := Least(list) ; // Find and remove min from list.
11 pt → rchild := Least(list) ;
12 pt → w := (pt → lchild) → w + (pt → rchild) → w ;
13 Insert(list, pt) ;
14 }
15 return Least(list) ;
16 }

Algorithms (EE3980) Unit 5.3 The Greedy Method, III Apr. 18, 2018 8 / 25

Merging Multi-Files — Example

2 3 5 7 9 13

7 9 135 5

2 3

1

7 910 13

5 5

2 3

2

16

7 9

10 13

5 5

2 3

3

1623

7 910 13

5 5

2 3

4

39

16 23

7 9 10 13

5 5

2 3

5

Algorithms (EE3980) Unit 5.3 The Greedy Method, III Apr. 18, 2018 9 / 25

Merging Multi-Files — Properties
Two functions are used the Tree algorithm

Least finds and removes the smallest data item from list,
Insert inserts the tree pt to the list.

In the preceding example
Data files are sorted by their sizes and arranged in a simple list initially.
A two-way merge is then applied for the first two data files.

A tree is created with the data files as leaves – also called external nodes,
shown in squares.
A new node, an internal node, is created with sum of its children as its weight,
shown in a circle.

At the end, a binary tree is obtained.
For an external node with size qi at level i of the binary tree

Its distance to the root is di = i − 1.
And it contributes diqi moves to the total number of moves.
And the total number of moves of the merge operations is

n∑

i=1

diqi (5.3.2)

This sum is called the weighted external path length of the tree.

Algorithms (EE3980) Unit 5.3 The Greedy Method, III Apr. 18, 2018 10 / 25

Merging Multi-Files — Complexity and Optimality

In Algorithm (5.3.4), the while loop is executed n − 1 times.
If the list is kept in non-decreasing order, then

Least takes O(1) time,
And Insert takes O(n) time,
Thus, the overall time complexity is O(n2).

If the list is represented by a minheap then
Both Least and Insert can be done in O(lg n) time,
The overall time complexity is O(n lg n).

Theorem 5.3.5.
If the list initially contains n ≥ 1 single node trees with weight values {q1, q2, · · · , qn},
then the Tree algorithm (5.3.4) generates an optimal two-way merge tree for n files with
these lengths.

Proof see textbook [Horowitz], p. 257.

The two-way merge can be generalized to k-way merge problems.
Huffman code is an application of two-way merge method.

Algorithms (EE3980) Unit 5.3 The Greedy Method, III Apr. 18, 2018 11 / 25

Single-Source Shortest Paths
Given a directed graph G = (V,E), a weight function on the edges in E,
w : E → R, and source vertex v0, the single-source shortest path problem is
to determine the shortest paths from v0 to all remaining vertices.
The weight of a path P = ⟨v1, v2, . . . , vk⟩ is the sum of the weights of the

edges, w(P) =
k−1∑

k=1

w(vk, vk+1).

Define δ(s, v) = min{w(P)|P is a path from s to v}, s, v ∈ V.
The problem is to find δ(s, v) for all v ∈ V.
Example

1 2 3

4 5 6

50 10

15 3

1020 20
15

45

30
35

v0 = 1

Path Length
1 1,4 10
2 1,4,5 25
3 1,4,5,2 45
4 1,3 45

Algorithms (EE3980) Unit 5.3 The Greedy Method, III Apr. 18, 2018 12 / 25

Single-Source Shortest Paths – Properties

Lemma 5.3.6. Subpaths of shortest paths are shortest paths
Given a weighted, directed graph G = (V,E) with weight function w : E → R, if
p = ⟨v0, v1, . . . , vk⟩ is a shortest path from vertex v0 to vertex vk and, for any i
and j such that 0 ≤ i < j ≤ k, pij = ⟨vi, vi+1, . . . , vj⟩ is a subpath from vertex i to
vertex j, then pij is a shortest path from vi to vj.

Proof please see textbook [Cormen], p. 645.

In this section, the weight of an edge is assumed to be non-negative.
Thus, the weight of any cycle is also non-negative.
A shortest path should not include any cycle, since the cycle can be removed
to obtain a shorter path.
Therefore, any shortest paths has at most n − 1 edges, n = |V |.

Algorithms (EE3980) Unit 5.3 The Greedy Method, III Apr. 18, 2018 13 / 25

Single-Source Shortest Paths – Algorithm
Algorithm 5.3.7. Dijkstra’s Algorithm

1 Algorithm ShortestPaths(n, v,w, d)
2 // Find the shortest paths from v and fill the path lengths to d[1 : n] array.
3 {
4 for i := 1 to n do {
5 S [i] := false ; d[i] := w[v, i] ;
6 }
7 S [v] := true ; d[v] := 0 ;
8 for k := 2 to n do {
9 Find i such that S [i] = false and d[i] is minimum ;

10 S [i] := true ;
11 for (each j adjacent to i and S [j] = false) do {
12 if (d[j] > d[i] + w[i, j]) then
13 d[j] := d[i] + w[i, j] ;
14 }
15 }
16 }

S[1 : n] is an array to indicate if the shortest path for a vertex has been found
or not.

Algorithms (EE3980) Unit 5.3 The Greedy Method, III Apr. 18, 2018 14 / 25

Single-Source Shortest Paths – Example

Given the graph on the left, the shortest paths to all other vertices are found.

1 2 3

4 5 6

50 10

15 3

1020 20
15

45

30
35

Vertex 1 2 3 4 5 6

k=1 S 1 0 0 0 0 0
d 0 50 45 10 ∞ ∞

k=2 S 1 0 0 1 0 0
d 0 50 45 10 25 ∞

k=3 S 1 0 0 1 1 0
d 0 45 45 10 25 ∞

k=4 S 1 1 0 1 1 0
d 0 45 45 10 25 ∞

k=5 S 1 1 1 1 1 0
d 0 45 45 10 25 ∞

k=6 S 1 1 1 1 1 0
d 0 45 45 10 25 ∞

Note that to print out the shortest path for each vertex, an additional array,
p[1 : n], to record the predecessor of the path is needed and line 13 should be
modified to add p[j] := i.

Algorithms (EE3980) Unit 5.3 The Greedy Method, III Apr. 18, 2018 15 / 25

Single-Source Shortest Paths – Complexity

Algorithm (5.3.7) is dominated by the for loop in lines 8-15.
This loop executes (n − 1) times.
Line 9 takes O(n) time,
The for loop on Lines 11-14 takes O(n) time,
The overall complexity is O(n2).

The time complexity of the algorithm can be improved to O((n + |E|) lg n)
with proper data structures.

Algorithm (5.3.7) generates the shortest paths from vertex v to all other
vertices in G.

The edges of the shortest paths from a vertex v to all other vertices in a
connected undirected graph G form a spanning tree – shortest-path spanning
tree.

Different source vertex can have different spanning tree.
This tree can also be different from the minimum-cost spanning tree.

Algorithms (EE3980) Unit 5.3 The Greedy Method, III Apr. 18, 2018 16 / 25

Single-Source Shortest Paths – Correctness

Theorem 5.3.8.
Given a weighted, directed graph G = (V,E) with non-negative weight function w
and a source vertex v, Algorithm (5.3.7) produces d[u] = δ(s, u) for all vertices
u ∈ V.

Proof please see textbook [Cormen], p. 660-661.

As a corollary of the above theorem, if the predecessor array p[1 : n] is also
implemented in Algorithm (5.3.7) then the solutions printed using array p are
the shortest paths from vertex v.

Algorithms (EE3980) Unit 5.3 The Greedy Method, III Apr. 18, 2018 17 / 25

Single-Source Shortest Paths – Directed Acyclic Graphs
A directed acyclic graph (DAG) G = (V,E) is a directed graph without any
cycles.
Since no cycle exists, the non-negative weight function constraint can be
relaxed – no negative cycle possible.
In this case, the following algorithm is effective in finding the shortest path

Algorithm 5.3.9. Shortest path for DAG
1 Algorithm ShortestPaths_DAG(n, v,w, d)
2 // Find the shortest paths from v and fill the path lengths to d[1 : n] array.
3 {
4 Let slist[1 : n] be the topological sort of the directed acyclic graph ;
5 d[v] := 0 ;
6 for i := 1 to n do {
7 for (each j adjacent to slist[i]) do {
8 if (d[j] > d[i] + w[i, j]) then
9 d[j] := d[i] + w[i, j] ;

10 }
11 }
12 }

Algorithms (EE3980) Unit 5.3 The Greedy Method, III Apr. 18, 2018 18 / 25

DAG Single-Source Shortest Paths

The complexity of the algorithm
The topological sort, line 4, has the complexity O(n + e)

n = |V |, e = |E |
The if statement, lines 8-9, executes e times
The overall complexity is O(n + e).

Theorem 5.3.10.
Given a directed acyclic graph G = (V,E), algorithm (5.3.9) produces d[v] = δ(s, v),
v ∈ V.

Proof please see textbook [Cormen], pp. 656-657.

The shortest path can be printed if the predecessor array is also kept.

Algorithms (EE3980) Unit 5.3 The Greedy Method, III Apr. 18, 2018 19 / 25

DAG Single-Source Shortest Paths – Example

A

B C D

E

F

G H I

J
3 3

2 2 2

1 2 2

33 2

Given a weighted DAG above, if vertex B is the source we have the shortest
path length for each vertex below.

Vertex A B C D E F G H I J
δ ∞ 0 ∞ ∞ 1 4 3 5 6 7

Algorithms (EE3980) Unit 5.3 The Greedy Method, III Apr. 18, 2018 20 / 25

DAG Single-Source Shortest Paths – Example, II

Execution sequences of Algorithm (5.3.9) is shown below
After line 6:

ABCD E FG H I J
1 2 2 2 33

3

2
2
2

3 ∞0∞∞ ∞ ∞∞ ∞ ∞ ∞

In the for loop, i = 3

ABCD E FG H I J
1 2 2 2 33

3

2
2
2

3 ∞0∞∞ 1 ∞∞ ∞ ∞ ∞

Algorithms (EE3980) Unit 5.3 The Greedy Method, III Apr. 18, 2018 21 / 25

DAG Single-Source Shortest Paths – Example, III

In the for loop, i = 4

ABCD E FG H I J
1 2 2 2 33

3

2
2
2

3 ∞0∞∞ 1 43 ∞ ∞ ∞

In the for loop, i = 5

ABCD E FG H I J
1 2 2 2 33

3

2
2
2

3
∞0∞∞ 1 43 5 ∞ ∞

Algorithms (EE3980) Unit 5.3 The Greedy Method, III Apr. 18, 2018 22 / 25

DAG Single-Source Shortest Paths – Example, IV

In the for loop, i = 6

ABCD E FG H I J
1 2 2 2 33

3

2
2
2

3
∞0∞∞ 1 43 5 7 ∞

In the for loop, i = 8

ABCD E FG H I J
1 2 2 2 33

3

2
2
2

3
∞0∞∞ 1 43 5 6 7

Algorithms (EE3980) Unit 5.3 The Greedy Method, III Apr. 18, 2018 23 / 25

DAG Single-Source Shortest Paths – Application

A

B C D

E

F

G H I

J
3 3

2 2 2

1 2 2

33 2

The weighted direct graph is
actually the digital circuit delay
path, and the shortest path
represent the delay from input B to
various nodes.
INV delay = 1, ND2 delay = 2,
NR2 delay = 3.

B

A

C

D

E

F

JG

H I

G1

G2

G3 G4
G5

G6

Algorithms (EE3980) Unit 5.3 The Greedy Method, III Apr. 18, 2018 24 / 25

Summary

Optimal storage on tapes.
Optimal merge patterns.
Single-source shortest path.

Algorithms (EE3980) Unit 5.3 The Greedy Method, III Apr. 18, 2018 25 / 25

