Unit 5.3 The Greedy Method, Il

Algorithms
EE3980

Apr. 18, 2018

Unit 5.3 The Greedy Method, IlI Apr. 18, 2018 1/25

Optimal Storage on Tapes

@ Given a sequentially accessed magnetic tape and n programs

e These n programs, 1,2,--- , n, are to be stored on the tape
e Each program has the length [;; 1 < i < n.

e The tape is always accessed from the beginning.
k

e Thus, if the kth program is accessed it needs ¢, = Z l; amount of time.
j=1
e The objective is to determined the order of the n program such that the mean

1 n
trieval ti MRT), defined —gt,' ini :
retrieval time (), defined as A %, IS minimum

k=1
n k

e Since n is given, the minimizing MRT is equivalent to minimizing ZZ Lij,
k=1 j=1
where i;, 1 < j < mis a permutation of {1,2,--- n}.

Unit 5.3 The Greedy Method, IlI Apr. 18, 2018 2/25

Optimal Storage on Tapes — Example

e Example

e n=23 and {ll, lz, l3} = {5, 10,3}.
e There are 6 permutations all of which are feasible solutions.

n k
Ordering z Z oo

k=1 j=1
123 5+(5+10)+(5+10+3) = 38
1,3,2 54+(5+3)+(5+3+10) = 31

21,3 10+(1045)+(10+543) = 43
23,1 104(10+3)+(10+3+5) = 41
3,1,2 34+(345)+(34+5+10) = 29
321 3+(3+10)+(3+10+5) =34

@ The optimal ordering is {3, 1, 2}.

Algorithms (EE3980) Unit 5.3 The Greedy Method, IlI Apr. 18, 2018 3/25

Optimal Storage on Tapes — Optimality and Complexity

@ Note that the objective function can be written as

n k
Zzlij = (lyy) + (ly + liy) + (liy + liy + lig) + -+

k=1 j=1

=nly, +(n— 1)y +(n=2)li; +---

@ Thus [;, should be the smallest possible to reduce MRT
@ Once 7; is determined, [;, should be the smallest among the remaining
programs.

Theorem 5.3.1.

If i <l <--- <1, then the ordering ¢;, 1 < j < n, minimizes

N’ (5.3.1)

over all possible permutation of ;.

@ Thus, the optimal storage on tape problem reduces to the ordering of the n
programs by their lengths — O(nlgn).

Algorithms (EE3980) Unit 5.3 The Greedy Method, III Apr. 18, 2018 4 /25

Optimal Storage on Tapes — Multi-tape Case

@ The number of tapes can be m, m > 1
@ The program should be distributed over the m tapes

@ The following algorithm assigns the n programs to m tapes that achieves
minimum MRT.

Algorithm 5.3.2. Multi-tape Storage

1 Algorithm store(n, [, m)
2 // Store n programs, each has length [[1 : n], onto m tapes.
34
4 Sort(l) in increasing order ;
5 j:=1; // Next tape to store on
6 for i:=1 to ndo {
7 Append program ¢ to tape j;
8 j:=((+1) mod m;
9 ¥
10 }
o

Algorithms (EE3980) Unit 5.3 The Greedy Method, IlI Apr. 18, 2018 5/25

Multi-tape Storage — Complexity and Optimality

@ Note that the time complexity of Algorithm (5.3.2) is dominated by line 4
Sort function, which has time complexity of O(nlgn).

Theorem 5.3.3.

If I <l <--- <1, then Algorithm (5.3.2) generates an optimal storage pattern
for m tapes.

@ Proof see textbook [Horowitz], pp. 251 — 252.

@ Note that there can be more than one optimal assignment if some program
lengths are equal.

Algorithms (EE3980) Unit 5.3 The Greedy Method, III Apr. 18, 2018 6 /25

Merging Multi-Files

@ Merging two files containing n and m records need to move n + m data.
@ Let's consider two-way merge pattern only, i.e., merge two files each time.

@ Given multiple files with different number of records, what is the order of
binary merge to achieve minimum number of moves.

@ Example

@ 3 sorted files x1, 2 and z3 with 30, 20 and 10 data each.

@ Merge ;1 and a2 first requires 50 moves;
Then merge with z3 requires another 60 moves;
Total number of moves is 110.
@ Merge z2 and z3 first in 30 moves;
Then merge with z; in 60 moves;
Total number of moves is 90.

@ Observation: to merge smaller files first.

Algorithms (EE3980) Unit 5.3 The Greedy Method, IlI Apr. 18, 2018 7/25

Merging Multi-Files — Algorithm

Algorithm 5.3.4. Binary Merge Tree

1 struct node {

2 struct node xlchild, xrchild;
3 integer w;
4 }

5 Algorithm Tree(n, list)
6 // Generate binary merge tree from list of n files.

74
8 for i:=1to (n—1) do {
9 pt := new node;
10 pt — lchild := Least(list) ; // Find and remove min from list.
11 pt — rchild := Least(list) ;
12 pt — w:= (pt — lchild) — w+ (pt — rchild) — w;
13 Insert(list, pt);
14 }
15 return Least(list);
16 }

Algorithms (EE3980) Unit 5.3 The Greedy Method, III Apr. 18, 2018 8 /25

Merging Multi-Files — Example

Algorithms (EE3980) Unit 5.3 The Greedy Method, IlI Apr. 18, 2018

Merging Multi-Files — Properties

@ Two functions are used the Tree algorithm

e Least finds and removes the smallest data item from list,
e Insert inserts the tree pt to the list.

@ In the preceding example

e Data files are sorted by their sizes and arranged in a simple list initially.
e A two-way merge is then applied for the first two data files.

@ A tree is created with the data files as leaves — also called external nodes,
shown in squares.

@ A new node, an internal node, is created with sum of its children as its weight,
shown in a circle.

At the end, a binary tree is obtained.

For an external node with size ¢; at level ¢ of the binary tree
@ lIts distance to the root is d; = 7 — 1.
@ And it contributes d;g; moves to the total number of moves.

@ And the total number of moves of the merge operations is

> dig; (5.3.2)

This sum is called the weighted external path length of the tree.

Algorithms (EE3980) Unit 5.3 The Greedy Method, Ill Apr. 18, 2018 10 / 25

Merging Multi-Files — Complexity and Optimality

@ In Algorithm (5.3.4), the while loop is executed n — 1 times.

@ If the [list is kept in non-decreasing order, then

o Least takes O(1) time,
o And Insert takes O(n) time,
o Thus, the overall time complexity is O(n?).

@ If the list is represented by a minheap then

o Both Least and Insert can be done in O(lgn) time,
e The overall time complexity is O(nlgn).

Theorem 5.3.5.

If the list initially contains n > 1 single node trees with weight values {q1, g2, - , gn},
then the Tree algorithm (5.3.4) generates an optimal two-way merge tree for n files with
these lengths.

@ Proof see textbook [Horowitz], p. 257.

@ The two-way merge can be generalized to k~way merge problems.

@ Huffman code is an application of two-way merge method.

Algorithms (EE3980) Unit 5.3 The Greedy Method, IlI Apr. 18, 2018 11 /25

Single-Source Shortest Paths

e Given a directed graph G = (V, E), a weight function on the edges in F,
w: F— R, and source vertex v, the single-source shortest path problem is
to determine the shortest paths from 1y to all remaining vertices.

@ The weight of a path P = (vy, 1o,..., vx) is the sum of the weights of the

k—1
edges, w(P) = Z W(Vg, Vgr1)-
k=1

@ Define §(s, v) = min{w(P)|P is a path from s to v},s,ve V.
@ The problem is to find (s, v) for all v e V.
e Example

’Uo:l

Path Length

1 1,4 10
2 145 25
3 1452 45
4 1,3 45

Algorithms (EE3980) Unit 5.3 The Greedy Method, III Apr. 18, 2018 12 /25

Single-Source Shortest Paths — Properties

Lemma 5.3.6. Subpaths of shortest paths are shortest paths

Given a weighted, directed graph G = (V, E) with weight function w: E — R, if
p = (v, v1,..., V) is a shortest path from vertex v, to vertex vy and, for any i
and jsuch that 0 < i< j <k, p;; = (v;, Vi1, ..., v;) is a subpath from vertex i to
vertex j, then p;; is a shortest path from v; to v.

.

@ Proof please see textbook [Cormen], p. 645.

@ In this section, the weight of an edge is assumed to be non-negative.
@ Thus, the weight of any cycle is also non-negative.

@ A shortest path should not include any cycle, since the cycle can be removed
to obtain a shorter path.

@ Therefore, any shortest paths has at most n — 1 edges, n=|V|.

Algorithms (EE3980) Unit 5.3 The Greedy Method, IlI Apr. 18, 2018 13 /25

Single-Source Shortest Paths — Algorithm

Algorithm 5.3.7. Dijkstra’s Algorithm
1 Algorithm ShortestPaths(n, v, w, d)
2 // Find the shortest paths from v and fill the path lengths to d[1 : n] array.
3 {
4 for i:=1 to ndo {
5 S[i] := false ; d[i] := w[v, 7];
6 }
7 S|[v] := true ; d[v] :=0;
8 for k:=2 to ndo {
9 Find 7 such that S[i] = false and d[¢] is minimum ;
10 S[i] := true ;
11 for (each j adjacent to 7 and S[j] = false) do {
12 if (d[j] > d[7] + w[%, j]) then
13 dlj] := d[i] 4 wli, j];
14 }
15 }
16 })
@ S[1: n|is an array to indicate if the shortest path for a vertex has been found
or not.
Algorithms (EE3980) Unit 5.3 The Greedy Method, Ill Apr. 18, 2018 14 / 25

Single-Source Shortest Paths — Example

@ Given the graph on the left, the shortest paths to all other vertices are found.

Vertex 1 2 3 4 5 §)

1|51 0 0 0 0 0

45 d| 0 50 45 10 o0 o

o | S|1 0 0o 1 0 o

“ d| 0 50 45 10 25 oo

G a e 3|51 0 0 1 1 0
r 1 d|l0 45 45 10 25 oo

20 STt 1 0o 1 1 o
0 =41 alo 45 45 10 25 oo

SI1 1 1 1 1 o0

O = O .) “=> 4]0 45 45 10 25 o
e |S|1 1 1 1 1 0

d| 0 45 45 10 25 oo

@ Note that to print out the shortest path for each vertex, an additional array,
p[1 : n], to record the predecessor of the path is needed and line 13 should be
modified to add p[j] := 7.

Algorithms (EE3980) Unit 5.3 The Greedy Method, IlI Apr. 18, 2018 15 / 25

Single-Source Shortest Paths — Complexity

@ Algorithm (5.3.7) is dominated by the for loop in lines 8-15.
This loop executes (n — 1) times.

Line 9 takes O(n) time,

The for loop on Lines 11-14 takes O(n) time,

The overall complexity is O(n?).

@ The time complexity of the algorithm can be improved to O((n + |E|)1gn)
with proper data structures.

@ Algorithm (5.3.7) generates the shortest paths from vertex v to all other
vertices in G.

@ The edges of the shortest paths from a vertex v to all other vertices in a
connected undirected graph G form a spanning tree — shortest-path spanning
tree.

e Different source vertex can have different spanning tree.
e This tree can also be different from the minimum-cost spanning tree.

Algorithms (EE3980) Unit 5.3 The Greedy Method, Ill Apr. 18, 2018 16 / 25

Single-Source Shortest Paths — Correctness

Theorem 5.3.8.

Given a weighted, directed graph G = (V, E') with non-negative weight function w
and a source vertex v, Algorithm (5.3.7) produces d[u] = 6(s, u) for all vertices
ue V.

@ Proof please see textbook [Cormen], p. 660-661.

@ As a corollary of the above theorem, if the predecessor array p[l : n] is also
implemented in Algorithm (5.3.7) then the solutions printed using array p are
the shortest paths from vertex .

Algorithms (EE3980) Unit 5.3 The Greedy Method, IlI Apr. 18, 2018 17 / 25

Single-Source Shortest Paths — Directed Acyclic Graphs

@ A directed acyclic graph (DAG) G = (V, E) is a directed graph without any
cycles.

@ Since no cycle exists, the non-negative weight function constraint can be
relaxed — no negative cycle possible.

@ In this case, the following algorithm is effective in finding the shortest path

Algorithm 5.3.9. Shortest path for DAG

1 Algorithm ShortestPaths_DAG(n, v, w, d)
2 // Find the shortest paths from v and fill the path lengths to d[1 : n] array.
34
4 Let slist[1 : n] be the topological sort of the directed acyclic graph ;
5 d[v] :=0;
6 for i:=1 to ndo {
7 for (each j adjacent to slist[i]) do {
8 if (d[j] > d[i] + w[¢,j]) then
9 dlj] := d[i] + wli, j];
10 }
11 }
12 }

Algorithms (EE3980) Unit 5.3 The Greedy Method, Ill Apr. 18, 2018 18 / 25

DAG Single-Source Shortest Paths

@ The complexity of the algorithm
e The topological sort, line 4, has the complexity O(n + e)
o n=|V|, e=|E|
e The if statement, lines 8-9, executes e times
e The overall complexity is O(n + e).

Theorem 5.3.10.

Given a directed acyclic graph G = (V, E), algorithm (5.3.9) produces d[v] = (s, v),
ve V.

@ Proof please see textbook [Cormen], pp. 656-657.

@ The shortest path can be printed if the predecessor array is also kept.

Unit 5.3 The Greedy Method, IlI Apr. 18, 2018 19 / 25

DAG Single-Source Shortest Paths — Example

@ Given a weighted DAG above, if vertex B is the source we have the shortest
path length for each vertex below.

Vertex | A B C D E F G H 1| J
6 | oo 0 oo oo 1 4 3 5 6 7

Unit 5.3 The Greedy Method, IlI Apr. 18, 2018 20 / 25

DAG Single-Source Shortest Paths — Example, Il

@ Execution sequences of Algorithm (5.3.9) is shown below
@ After line 6:

Algorithms (EE3980) Unit 5.3 The Greedy Method, IlI

Algorithms (EE3980) Unit 5.3 The Greedy Method, Ill Apr. 18, 2018 22 /25

DAG Single-Source Shortest Paths — Example, IV

@ In the for loop, 1=06

Algorithms (EE3980)

Unit 5.3 The Greedy Method, Il Apr. 18, 2018 23 /25

DAG Single-Source Shortest Paths — Application

@ The weighted direct graph is
actually the digital circuit delay
path, and the shortest path
represent the delay from input B to
various nodes.

@ INV delay = 1, ND2 delay = 2,
NR2 delay = 3.

Algorithms (EE3980)

Unit 5.3 The Greedy Method, Ill Apr. 18, 2018 24 / 25

@ Optimal storage on tapes.
@ Optimal merge patterns.

@ Single-source shortest path.

| Agorithms (EE3980) Unit 5.3 The Greedy Method, I Apr. 18,2018 25 / 25

