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Minimum-Cost Spanning Trees

Definition 5.2.1.

Let G = (V, E) be an undirected connected graph. A sub-graph T'= (V, E’) with
E’ C E'is a spanning tree of G if and only if T'is a tree.

Undirected graph Spanning tree Spanning tree Spanning tree
G. Th. Ts. Ts.
4 y o v
@ Notes

e Spanning tree is not unique.
e Spanning trees have n — 1 edges (n=|V|.)
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Minimum-Cost Spanning Tree, Example

@ In addition, there is a cost function associated with each edge, w: £ — R.

The cost of a tree is the sum of the costs of the tree edges.

A feasible solution of the minimum-cost spanning tree of a undirected graph
G is any spanning tree T of G.

@ The optimal solution is a spanning tree with the minimum cost.

An undirected graph, G. Minimum-cost spanning tree, T.

v
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Minimum-Cost Spanning Tree, Generic Algorithm

@ Adopting the greedy methodology, let T be a subset of a spanning tree, at
each step an edge (u, v) is added to T to maintain the feasibility of the
solution.

@ An edge, (u,v), is safe to a set of edges T'if TU {(u, v)} is still a subset of a
spanning tree.

@ The generic algorithm for the minimum-cost spanning tree then is:

Algorithm 5.2.2. Generic minimum-cost spanning tree

1 Algorithm MCST(V, E, w, T)

2 // wis the cost function; ¢ is the solution tree.

3 {

4 T:=0 ;

5 while (|T| <n—1) do {

6 select an edge (u,v) € E {

7 if (u, v) is safe to T then T:= TU (u,v);
8 Ei=E—{(u,0)};

9 1

10 }
11 }

@ The key is in line 6, how to select an edge.
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Minimum-Cost Spanning Tree, Prim's Algorithm

Algorithm 5.2.3. Prim

1 Algorithm Prim(FE, w, n, T)

2 // Find the minimum-cost spanning tree and store in in t.

31

4 Find edge (k, 1) € E with the minimum cost ;

5 mincost := wlk, ] ;

6 T1,1] :==k; T[1,2] :=

7 for i:=1 to ndo

8 if (w(i, l] < w[i, k]) then near[i] := [; else near(i] := k;

9 near(k] := near[l] := 0;
10 for i:=2to (n—1) do {
11 Find j such that near{j] # 0 and w[j, near{j]] is minimum ;
12 104, 1] := j; T4, 2] := near|j];
13 mincost := mincost + w[j, near{j]] ;
14 near{j] == 0;
15 for k:=1 to n do // update near array
16 if ((near[k] # 0) and (w[k, near|k]] > w[k,j])) then nearlk] := j;
17 }
18 return mincost;
19 }

o
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Minimum-Cost Spanning Tree, Prim's Algorithm |l

@ In Algorithm Prim

© The edge with the minimum cost is first selected as the initial tree

@ The array near keeps the node already selected in the tree with the smallest
single-edge cost for each node

© Among the all the near edges, the minimum is selected and the node added
to the tree

© Array near is then updated and go back to step 3 until all nodes have been
selected

@ The time complexity is dominated by

e Finding the minimum-cost edge on line 5, O(|E|)
e Loop on lines 7-8, O(n)
e Loop on lines 10-18

@ Inner loops line 11 and lines 15-17
e Complexity O(n?)

o Overall complexity is O(n?)

@ The time complexity can be improved to O((n+ |E|)lgn)
o If the non-selected vertices are stored in a red-black tree
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Minimum-Cost Spanning Tree, Prim's Algorithm Example
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Kruskal's Algorithm — High Level

e A different approach to finding the minimum-cost spanning tree

@ High level description of the algorithm

Algorithm 5.2.4. Kruskal's Algorithm

1 Algorithm KruskalH(n, F, w, T')

2 // Construct minimum-cost spanning tree T from E and w.

3 {

4 T:=0;

5 while ((7 has less than (n — 1) edges ) and (E # (0)) do {
6 Find the edge (u,v) € E with the minimum cost ;

7 Delete(w, v) from E;

8 if (u,v) does not create a cycle in T then add (u, v) to T';
9 else discard (u, v);
10 }
11}
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Kruskal's Algorithm — Example
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Algorithm 5.2.5. Kruskal's Algorithm
1 Algorithm Kruskal(n, £, w, T')
2 // Construct minimum-cost spanning tree T from E and w.
34
4 Construct a min heap from the edge costs using Heapity;
5 for i:=1 to n do parent[i] := —1; // Enable cycle checking
6 1:=0; mincost :=0;
7 while ((¢ < m— 1) and ( heap not empty )) do {
8 delete a minimum cost edge (u, v) from the heap ;
9 Adjust the heap ;
10 §:= Find(u); k:= Find(v); // using parent array
11 if (j# k) then {
12 =1+ 1; T[i,1] :=u; T[i,2] := v;
13 mincost := mincost + wlu, v] ;
14 Union(j, k) ; // modify parent array
15 }
16 }
17 if (¢# n— 1) then write(”No spanning tree”);
18 else return mincost;
19 }
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Kruskal's Algorithm — Complexity and Optimality

@ The time complexity of Kruskal algorithm is dominated by the while loop
(lines 7-15) = O(| E))
o (Line 8) finding minimum cost edge, O(1)
o (Line 9) Adjust the heap, O(lg |E|)
o Overall complexity O(|E|lg|E|).

Theorem 5.2.6.

Kruskal's algorithm (Algorithm 5.2.5) generates a minimum-cost spanning tree for
every undirected connected graph G.

@ Proof please see textbook [Horowitz], p. 244.
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Minimum-Cost Spanning Tree, Properties

o A different approach to prove Kruskal's algorithm.
@ We define the following terms.
o A cut (S, V—2S5) of an undirected graph G = (V, E) is a partition of V, i.e.,
Se V.
o An edge (u,v) € Eis said to cross the cut (S, V= 5) if one of its end points is
in S and the other in V — 5.
e A cut is said to respect a set 7' of edges if no edges in T crosses the cut.
e An edge is said to be a light edge crossing a cut if its cost is the minimum of
any edge crossing the cut.

Theorem 5.2.7.

Let G= (V, E) be a connected, undirected graph with a cost function w defined on FE.
Let T be a subset of E that is subset of a spanning tree of G, let (S, V— S) be any cut
of G that respects T, and let (u, v) be a light edge crossing (S, V— S). Then, edge

(u, v) is safe for T.

@ Proof please see textbook [Cormen], pp. 627-628.
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Minimum-Cost Spanning Tree, Properties, |l

Corollary 5.2.8.

Let G = (V, E) be a connect, undirected graph with cost function w defined on
E. Let T be a subset of E that is included in a minimum spanning tree of &, and
let C'= (V¢, Ec) be a connected component (tree) in the forest G = (V, T). If
(u, v) is a light edge connecting C'to some other component in G, then (u,v) is
safe for T.

@ Proof please see textbook [Cormen], pp. 629.

@ Algorithm Prim can be shown to be a special case of Theorem (5.2.7), and it
also returns an optimal solution.
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The Matroid

Definition 5.2.9. Matroid

A matroid is an ordered pair M = (S,Z) satisfying the following conditions.
1. S is a finite set.

2. 7T is a nonempty family of subsets of S, called the independent subsets of S,
such that if B€Z and A C B, then A € Z. We say that Z is hereditary if it
satisfies this property. Note that the empty set () is necessary is a member of
T.

3. if A€ Z, B€Z and |A| < |B], then there exists some element z € B— A
such that AU {z} € Z. We say that M satisfies the exchange property.

@ References
— Textbook [Cormen], pp. 437 - 442.
— Bernhard Korte and Jens Vygen, Combinatorial Optimization — theory and
algorithms, 4th edition, Springer, 2008.
e Chapter 13. Matroids

@ Example: Given a matrix, § is the set of columns of the matrix, Z is the set
formed by independent columns.

e All three conditions are met.
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Graph Matroid

@ Graphic matroid Mg = (Sg,Z¢) defined in terms of a given undirected
graph G = (V, E) as follows:
e The set Sg is defined to be E, the set of edges of G.
o If Ais a subset of F, the A € Z4 if and only if A is acyclic. That is, a set of
edges A is independent if and only if the subgraph G4 = (V, A) forms a forest.

Theorem 5.2.10. Graph matroid.

If G=(V,FE) is an undirected graph, then Ms = (S, Z¢) is a matroid.

@ Proof please see textbook [Cormen], p. 438.
@ Exchange property of M can be shown as: if no such z can be found then

| B| < |A| that contradicts to the assumption.

Definition 5.2.11. Extension.

Given a matroid M = (S,Z), we call an element = ¢ A an extension of A € T if
we can add z to A while preserving the independence; that is, z is an extension of

Aif AU{z} € T.

@ Graphic matroid: if A € Z, then an edge e is an extension of A if e ¢ A and
there is no cycle in AU {e}.
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Graph Matroid — Spanning Trees

Definition 5.2.12. Maximal independent set.

If A is an independent set in a matroid M, we cay that A is maximal if is has no
extensions. That is, A is maximal if it is not contained in any larger independent

subset of M.

Theorem 5.2.13.

All maximal independent subsets in a matroid have the same size.

@ Proof please see textbook [Cormen], p. 439.

@ Note that
e There can be more than one maximal independent subset.
e All of them are of the same size.

e Example
e For a graphic matroid Mg for a connected, undirected graph G, every maximal
independent subset of M must be a free tree with exactly | V| — 1 edges that
connects all the vertices of G.
@ These trees are the spanning tree of G.
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Weighted Graph Matroid

Definition 5.2.14. Weighted matroid

A matroid M = (S,Z) is weighted if it is associated with a weight function w that
assigns a strictly positive weight w(x) for each element x € S. The weight
function w extends to subsets of S by summation:

w(A) = Z w(z) forany A € S. (5.2.1)

€A

W

@ For example, if w(e) is the weight of an edge e in a graphic matroid Mg,
then w(A) is the total weights of the edges in A.

@ The minimum-spanning-tree problem can be formulated using weighted graph
matroid.
Given a connect undirected graph G = (V, E) and a weight function w such
that w(e) is the weight of an edge e € E. The minimum-spanning-tree
problem is to find a subset of the edges that connects all of the vertices
together and has the minimum total weight.
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Greedy MST Algorithm

@ Given a undirected graph G = (V, E) and weight function w. Let
Mg = (S,7) where S is the set of all edges and Z is the set of all in acyclic
edges in G.

Algorithm 5.2.15. Greedy Minimum Spanning Tree

1 Algorithm GreedyMST(S,Z)

2 // To find the minimum spanning tree of Mg = (S, 7).
3

4 T:=0;

5 Sort § into monotonically increasing order by w ;
6 for each minimum z € S do {

7 if (TU{z} € 7) then {

8 T:= TU{z};

9 1
10 S:=8—{z};
11 }
12 return T
13 }
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Greedy MST Algorithm, Il

Let n be the number of edges in G, i.e., n=|S]|.

Line 5 takes O(nlgn) time to execute.

Let f(n) be the time that line 7 takes to check the condition

°
°

@ Lines 6-10 execute n times.

°

@ The execution time for the GreedyMST is then O(nlgn+ n- f(n)).

@ The optimality of the algorithm comes from the following theorems.

Lemma 5.2.16.

Suppose that M = (S,7) is a weighted matroid with weight function w and that
S is sorted into monotonically increasing order by weight. Let x be the first
element of S such that {z} is acyclic. If x exists the there exists an optimal subset
ACSand z € A.

W

@ Proof uses maximum size Theorem (5.2.13) and the exchange property.
Please see textbook [Cormen], p. 441.
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Greedy MST Algorithm, Il

Let M = (S,Z) be any matroid. If zis an element of S that is an extension of
some independent subset A of S, then z is also an extension of ().

@ Proof please see textbook [Cormen], p. 441.

Corollary 5.2.18.

Let M = (S,Z) be any matroid. If zis an element of S such that z is not an
extension of (), then z is not an extension of any independent subset A of S.

@ Proof please see textbook [Cormen], p. 441.

@ This corollary says that if x is discarded by line 9 it should not be included in
the optimal solution.
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Greedy MST Algorithm, IV

Lemma 5.2.19.

Let z be the first element of S chosen by Algorithm GreedyMST for the weighted
matroid M = (S,Z). The remaining problem of finding a minimum-weight
independent subset containing x reduces to finding a minimum-weight
independent subset of weighted matroid M’ = (S/,Z"), where

S'={ye SH{xy} €I}, (5.2.2)
7' ={BCS—{z}|BU{x} € T}. (5.2.3)

and the weight function for M’ is the weight function for M restricted to S’. (M’
is called the contraction of M by the element z.)

@ Proof please see textbook [Cormen], p. 442.

Theorem 5.2.20.

If M =(S,Z) is a weighted matroid with weight function w, then GreedyMST
returns an optimal subset.

@ Proof please see textbook [Cormen], p. 442.
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Job Sequencing with Deadlines

e Example, n =4,

{p1.p2, p3, pa} = {100, 10,15, 27},
{d17 d27 d37 d4} - {2, 1, 2, 1}

@ Given a set of n jobs to be
processed on one machine.

e Each job takes 1 time unit to

process. @ Feasible solutions are
e Associated with job 7, 1 < 7 < n,
there is a deadline d; and profit Feasible ~ Processing
;. solution  sequence Value
e If job 7is completed by d; then p; 1 {1,2} 2,1 110
is earned. 2 {1,3} 1,30r31 115
@ A feasible solution is a subset J of 2 g’g g; 12257
jobs that each job in Jcan be 5 {3’4} 13 47
completed by its deadline. 6 {’1} 1 100
e The value of the subset Jis 7 {2} 2 10
sz-. 8 {3} 3 15
eJ 9 {4} 4 27
@ An optimal solution is a feasible
solution with the maximum value. o Solution 3 is optimal.
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Job Sequencing with Deadlines — Algorithm

Alrogithm 5.2.21. Job Sequencing

1 Algorithm JS(n, d, p, J)

2 // pis in non-increasing order, J[1 : k] is the optimal sequence.

34

4 d[0] := J[0] := 0; // initialize.

5 J[1] :=1;

6 k=1,

7 for i:=2 to ndo {

8 r.=k;

9 while ((d[J][r]] > d[{]) and (d[J[r]] # 7)) do r:=r—1;
10 if ((d[J[r]] < d[¢]) and (d[¢] > 7)) then { // insert 7 into J
11 for g:=kto (r+1) step—ldo Jlg+ 1] := Jlg|;
12 Jr+1]:=1i k:=k+1
13 }
14 }
15 } J

@ The worst-case time complexity of JS algorithm is ©(n?).
@ The space complexity of JS algorithm is O(n) for arrays J and d.
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Job Sequencing with Deadlines — Example

e Example: n =5, (p1, p2, p3, ps, p5) = (20,15,10,5,1), and
(dyi, do, ds, dy, dy) = (2,2,1,3,3). Then, the execution sequence of the
algorithm is as following.

1 J d action profit
- {L,,,} {2,,,,} acceptl 20
2 {172a ) } {2a17 )9 } accept 2 35
3 {172a ) } {2,1, ) } rejeCt 3 35
4 {1,2,4,,} {2,1,3,,} accept4d 40
5 {1,2,4,,} {2,1,3,,} rejectb 40

Theorem 5.2.22.

Let J be a set of k£ jobs and o = 41, %2, - - - , % a permutation of jobs in J such that
diy < di, <--- < di,. Then Jis a feasible solution if and only if the jobs in J can
be processed in the order o without violating any deadline.

@ Proof please see textbook [Horowitz], p. 229.
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Job Sequencing with Deadlines — Matroid Formulation

@ The job sequencing with deadline can be shown to be a matroid.
The set S contains all the jobs, and a set A of jobs are independent if there

is a schedule such that all jobs in A are done before their deadlines.
Lemma 5.2.23.
For any set of jobs A, the following statements are equivalent.

1. The set A is independent.

2. Let Ni(A) denote the number of jobs completed before time ¢, then for
t=0,1,2,...,n, we have N;(A) < &

If the tasks in A are scheduled in order of monotonically increasing deadlines, the
all jobs in A are completed before their deadlines.

Theorem 5.2.24.

If S is a set of unit-time jobs with deadlines, and Z is the set of all independent
sets of tasks, then the corresponding system (S,Z) is a matroid.

@ Since the job sequencing problem is a matroid, the greedy algorithm can be
applied and it results in an optimal solution.
Algorithms (EE3980)
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Tree Vertex Splitting Problem

Original tree T Tree with vertices splitted 7/ X

4
154 68,

v

d(T/X) = 5.
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Tree Vertex Splitting Problem — Definition

o T=(V,FE w) is weighted directed tree.

V'is the vertex set, F is the edge set, and w is weight function for the edges.
w(i, j) is define if the edge (4,7) € F; w(i, j) is undefined if (i,7) ¢ F.

A source vertex is a vertex with in-degree 0.

A sink vertex is a vertex with out-degree 0.

For any path P in the tree, its delay, d(P), is defined to be the sum of the
weights on the path.

e The delay of the tree, d(T), is the maximum of all the path delays.

@ T/X is the forest resulted from splitting every vertex u in X C Vinto two
nodes u’ and u° such that all the edges (4, u) are replaced by (i, u‘) and all
the edges (u,j) are replaced by (u°, ).

@ The Tree Vertex Splitting Problem (TVSP) is to find a set X C V with
minimum cardinality for which d(7/X) < § for some specified tolerance §.

o Note that a TVSP has solution only if the maximum edge weight is less than

or equal to 4.
e Any X C Vwith d(T/X) < ¢ is a feasible solution.
e The optimal solution is the feasible X with the minimum number of vertices.
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Tree Vertex Splitting Problem — Algorithm

Algorithm 5.2.25. TVS

1 Algorithm TVS(T, 4, X)

2 // Find the minimum set X for vertex splitting.
34

4 if (T # () then {

5 d[T]:=0;

6 for each child v of T do {

7 TVS(v, 8, X) ;

8 d[T] := max(d[T], d[v] + w(T, v));
9 }
10 if ((Tis not the root ) and (d(T) + w(parent(T), T) > ¢§)) then {
11 X:=XU{T}; dT]:=0;
12 }
13 }
14 }

@ Note that d is a global array that stores the delay for each vertex.
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Tree Vertex Splitting Problem — Algorithm I

Algorithm 5.2.26. TVS1

1 Algorithm TVS(%, 6, X)

2 // Tree vertex splitting with tree stored in an array tree|].
34

4 if (tree[i] # 0) then {

5 if (2Xx ¢ > N) then d[i] :=0; // i is a leaf.

6 else {

7 TVS(2x 4,6) ;

8 d[i] := max(d[i], d[2x ©] + w[2X ¢]);

9 if (2x i+ 1 < N) then {
10 TVS(2x i+ 1,6);
11 d[i] := max(d[i], d[2x i+ 1] 4+ w[2Xx i+ 1]);
12 }

13 }

14 if ((¢# 1) and (d[i] + w[i] > §)) then {

15 X:=XU{i}; di] :==0;
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Tree Vertex Splitting Problem — Complexity and Optimality

@ In this version the directed binary tree is stored in an array tree

@ The weight is stored in array w and wl¢] is the weight of the parent of vertex
1 to vertex 1.

@ Array d is still the delay of each vertex.

@ The time complexity of Algorithm TVS is O(n).
o Every vertex of T is traversed once.

Theorem 5.2.27.

Algorithm TVS finds a minimum cardinality set X such that d(7/X) < 6 on any
tree T, provided that no edge of T has weight greater than 4.

@ Proof please see textbook [Horowitz], pp. 225 - 226.
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Minimum-cost spanning tree problem.
The theory of Matroid.

Job sequencing with deadlines.

Tree vertex splitting problem.




