Unit 5.1 The Greedy Method

Algorithms
EE3980

Apr. 11, 2018

Unit 5.1 The Greedy Method Apr. 11, 2018 1/17

Knapsack Problem

@ Knapsack problem
e Given n objects, each object 7, 1 < ¢ < n, has
o Weight w;,
e Profit p; - x;, if z; fraction is placed into the bag (0 < z; < 1).
e A bag with capacity m.
e The objective is to maximize the profit.

maximize Zpix,-, (5.1.1)
=1
subject to Z wim; < m, (5.1.2)
=1
and 0<ux <1, 1<i<n. (5.1.3)
@ A feasible solution is any set {1, -- ,x,} that satisfies Eqs. (5.1.2) and

(5.1.3).

@ An optimal solution is a feasible solution for which Eq. (5.1.1) is maximized.

Unit 5.1 The Greedy Method Apr. 11, 2018 2 /17

Knapsack Problem — Example

@ An example of knapsack problem
o n=3, m=20, {p1, p2, p3} = {25,24,15}, and {w1, w2, w3} = {18,15,10}.
e Four feasible solutions

Solution {z1, 20, 23} Sowixi Y pii
1 {1/2,1/3,1/4Y 165 24.25
2 {1,2/15,0} 20 28.2
3 10,2/3,1} 20 31
4 £0,1,1/2} 20 31.5

@ Note that) w;x; < m for all 4 feasible solutions.
@ Solution 4 yields the maximum profit among these 4 feasible solutions.

Unit 5.1 The Greedy Method Apr. 11, 2018

Knapsack Problem — Properties

n

In case the sum of all the weights is less than or equal to m, i.e., Z w; < m, then
i=1
x; =1, 1 < i< n, is an optimal solution.

Lemma 5.1.2.

n
In case Z w; > m, then all optimal solutions will fill the knapsack exactly, i.e.,
i=1

n
=1

Unit 5.1 The Greedy Method Apr. 11, 2018 4 /17

Knapsack Problem — Algorithm 1

@ A general greedy algorithm for knapsack program is shown below.

Algorithm 5.1.3. Knapsack by Profit

1 Algorithm Knapsack_P(m, n, w, p,)

2 // n objects with weight, w[l : n], and profit, p[l : n], find z[1 : n] that
3 // maximizes Y p[i]|z[¢] with > w[i]z[i] < m, and 0 < zf7] < 1.

a{

5 A[1 : n] := Objects sorted by decreasing p[l : n]; // plAli|]| = plAlj]] if i < J.
6 for i:=1 to ndo z[i] :=0;

7 1:=1;

8 while (¢ < n and w[A[7]] < m) do {

9 g[Afi]] ;= 1; m:= m— w[A[7]]; i: =14+ 1;

10 }

11 if (¢ < n) then z[A[i]] := m/w[A[¢]];

12 }

@ Note that line 4 sort A into decreasing order by p
@ Applying this algorithm we get solution 2 for the example.

Algorithms (EE3980) Unit 5.1 The Greedy Method Apr. 11, 2018 5 /17

Knapsack Problem — Algorithm 2

@ The greedy algorithm can be modified as below.

Algorithm 5.1.4. Knapsack by Weight

1 Algorithm Knapsack_W(m, n, w, p,)

2 // n objects with weight, w[l : n], and profit, p[1 : n], find z[1 : n] that
3 // maximizes > p[¢]|z[i] with > w[i]z[i] < m, and 0 < zfi] < 1.

a{

5 A[l : n] := Objects sorted by increasing w[l : n]; // w[A[i]] < w[A[j]] if i < j.
6 for i:=1 to ndo z[i] :=0;

7 1:=1;

8 while (¢ < n and w[A[i]] < m) do {

9 z[Ali]] :=1; m:=m — w[A[i]]; i: =i+ 1;

10 }

11 if (¢ < n) then z[A[i]] := m/w[A[¢]];

12 }

@ Note that line 4 sort A into increasing order by w

@ Applying this algorithm we get solution 3 for the example.

Algorithms (EE3980) Unit 5.1 The Greedy Method Apr. 11, 2018 6 /17

Knapsack Problem — Algorithm 3

@ Another version of greedy algorithm is shown below.

Algorithm 5.1.5. Knapsack

1 Algorithm Knapsack(m, n, w, p, z)

2 // n objects with weight, w([l : n], and profit, p[1 : n], find z[1 : n] that
3 {/ maximizes > p[¢]z[¢] with > w[i]z[i] < m, and 0 < z[i] < 1.

4

5 A[l : n] := Objects sorted by decreasing p[1 : n|/w[l : n];

6 // plALE]]/wlA[i]] = p[A[j]]/wlA[f]] if ¢ <.

7 for i:=1 to ndo z[i] :=0;

8 1:=1;

9 while (¢ < n and w[A[7]] < m) do {
10 z[Ali]] :=1; m:= m — w[A[i]]; i : =i+ 1;
11 }
12 if (¢ < n) then z[A[i]] := m/w[A[¢]];
13 })

@ Note that line 4 sort A into decreasing order by p/w
@ Applying this algorithm we get solution 4 for the example.
e This is the optimal solution since p/w is the real objective.

Algorithms (EE3980) Unit 5.1 The Greedy Method Apr. 11, 2018 7/ 17

Knapsack Problem — Complexity and Optimality

@ Knapsack Algorithm (Algorithm 5.1.5) has the time complexity of O(nlgn).

e Dominated by the Sort function on line 4
e The while loop (lines 7-11) and for (line 5) loop are both O(n).

In case that the capacity is smaller than the weight of any object, m < w;, Vi, then the
optimal solution is x; = m/w;, where p; is the maximum, and z; = 0, j # 7.

Theorem 5.1.7.

If A is sorted by {p;/w;} in non-increasing order, then the Knapsack algorithm
(Algorithm 5.1.5) generates an optimal solution to the instance of the knapsack problem.

@ Proof please see textbook [Horowitz], pp. 221-222.

@ From Lemma (5.1.6), to fill a unit capacity the object with the maximum
profit is the best choice, thus, the order should should be selected by p;/w;.

Algorithms (EE3980) Unit 5.1 The Greedy Method Apr. 11, 2018 8 /17

Container Loading

@ Container loading problems
e Input: n containers with w;, 1 < ¢ < n, weight each.
e A ship with cargo capacity of c.
e Load the maximum number of containers to the ship.
@ Let z; € {0,1} such that x; = 1 if container 7 is loaded onto the ship.
e The constraint is

in'wz- < c (5.1.4)
=1

e The objective function to be maximized is

@ Example: Suppose there are 8 containers with weights
[wy, wa, - - - wg] = [100, 200,50, 90, 150, 50, 20, 80] and ship capacity ¢ = 400.
e Then the solution is [z1, x2,- -+, 28] = [1,0,1,1,0,1,1, 1].
8
° Z w;x; = 390 that satisfies the constraint.

=1
8

° E z; = 6 is the maximum number of containers loaded.
i=1
Algorithms (EE3980) Unit 5.1 The Greedy Method Apr. 11, 2018 9 /17

Container Loading — Algorithm

Algorithm 5.1.8. Container Loading

1 Algorithm ContainerLoading(c, n, w, T)
2 // n containers with weights w[1 : n] find z[1 : n] that maximizes > x;.
34
4 A[l : n] := Containers sorted by increasing w[l : nj;
5 /] Wl A[]) < WAL f i < j
6 for ¢:=1 to ndo z[i] :=0;
7 1:=1;
8 while (¢ < n and w[A[{]] < ¢) do {
9 z[Ali]] :=1; c:= c— w[A[i]]; i: =i+ 1;
10 }
11 }
v

@ Note that w[A[¢]] is sorted into non-decreasing order.

e Using the last example, w[1 : 8] = {100, 200, 50, 90, 150, 50, 20, 80}, then
A[1:8] ={7,3,6,8,4,1,5,2} such that w[A[7]] is in non-decreasing order.

Algorithms (EE3980) Unit 5.1 The Greedy Method Apr. 11, 2018 10 / 17

Container Loading — Complexity and Optimality

@ The time complexity of the ContainerLoading algorithm is dominated by
the Sort function (line 4), which is O(nlgn).

@ The while loop (lines 7-10) is O(n).
@ Overall complexity O(nlgn).

Theorem 5.1.9.

The Container Loading Algorithm (Algorithm 5.1.8) generates optimal loading.

@ Proof see textbook [Horowitz], pp. 215-217.

@ Note that selecting the object with the least weight maximizes the capacity
of loading the remaining objects.

Unit 5.1 The Greedy Method Apr. 11, 2018 11 /17

Optimization Problems

@ A special class of problems that has 7 inputs,

e Arrange the inputs to satisfy some constraints — feasible solutions
e Find feasible solution that minimize or maximize an objective function —
optimal solution

@ The greedy method is a algorithm that takes one input at a time
e If a particular input results in infeasible solution, then it is rejected; otherwise
it is included.
e The input is selected according to some measure
e The selection measure can be the objective functions or other functions that
approximate the optimality
e However, this method usually generates a suboptimal solution.

Unit 5.1 The Greedy Method Apr. 11, 2018 12 /17

Greedy Method

@ The following is an abstraction of the greedy method in subset paradigm

Algorithm 5.1.10. Greedy Method

1 Algorithm Greedy(A, n)

2 // A[l : n] contains the n inputs.

31

4 solution := () ;

for i:=1to ndo {
z:= Select(A); A:= A — {z};
if Feasible(solution U) then

solution := solution U x;

© 00 N O O

}

10 return solution;
11 }

e In this subset paradigm the Select function selects an input from A and
removes it.
e The Feasible function determines if it can be included into the solution
vector.
@ A variation of the greedy method is the ordering paradigm.
e The inputs are ordered first and thus the Select function is not needed.

Algorithms (EE3980) Unit 5.1 The Greedy Method Apr. 11, 2018

Machine Scheduling Problem

@ Machine schedule problem

e Input: n tasks and infinite number of machines

o Each task has a start time s[1 : n] and finish time, f[1 : n], s[¢] < f[7].

e Two tasks 7 and j overlap if and only if their processing intervals overlap at a
point other than the interval start or end times.

o A feasible task-to-machine assignment is that no machine is assigned with
overlapping tasks.

e An optimal assignment is a feasible assignment that utilizes the fewest number
of machines.

° Example Task a b c d e f g
Start time 0 3 4 9 7 1 6
Finish time 2 7 7 11 10 5 8
M3 | fe—— ——
[D] f (N | g
M2 |- IS 71 I(_)l |

M| k== K——————

Time

Algorithms (EE3980) Unit 5.1 The Greedy Method Apr. 11, 2018 14 / 17

Machine Scheduling Problem — Algorithm

Algorithm 5.1.11. Machine Scheduling
1 Algorithm MachineSchedule(tasks, n, s, t, M)
2 // Assign n tasks with start and times, s[1 : n], ¢[1 : n], to m machines.
3 // mis minimum and M1 : n] is the assignment.
41
5 A[l : n] := tasks sorted by increasing s[1 : nJ;
6 /7 s|Ali]] < s[A[f]], i i < j.
7 m:=1; M[A[1l]] :== m;
8 for i:=2 to ndo {
9 =kl = Rl
10 // Minimum finish time among all scheduled tasks.
11 if (f[A[j]] < s[A[7]]) then // Machine processing A[j] is available
12 MIJA[i]] := M[A[j]]); // Assign task A[i] to machine M [A[j]]
13 else {
14 m:=m-+ 1; // Need more more machines
15 MIJA[i]] := m; // Assign task A[i{] to machine m.
16 }
17 }
18 }
Algorithms (EE3980) Unit 5.1 The Greedy Method Apr. 11, 2018 15 / 17

Machine Scheduling Problem — Complexity

Theorem 5.1.12.

The Machine Scheduling Algorithm (Algorithm 5.1.11) generates an optimal
assignment.

@ In Algorithm (5.1.11), the time complexity is dominated by

e Sort function on line 4: O(nlgn)
e Min function on line 7: O(lg n)

@ In a for loop and thus O(nlgn)
o Total complexity: O(nlgn).

Algorithms (EE3980) Unit 5.1 The Greedy Method Apr. 11, 2018 16 / 17

@ Knapsack problem
@ Container loading problem
@ Greedy method
°

Machine scheduling problem

