Unit 4.1 Breadth First Search

Algorithms
EE3980

Mar. 28, 2018

Unit 4.1 Breadth First Search Mar. 28, 2018 1/20

Binary Tree Traversal

@ Given a binary tree, some applications need to visit every node of the tree.
@ |t is assumed that each node of the tree has the underlying structure as

1 struct treenode {

2 Type data; // store data of specified Type
3 treenode xlchild, *rchild;

4)

e Example

@ Three ways to traverse a binary tree

Unit 4.1 Breadth First Search

Mar. 28, 2018 2/20

Binary Tree — In-order Traversal

Algorithm 4.1.1. In Order Traversal
1 Algorithm InOrder(T)

34

4 if (T # NULL) then {

5 InOrder(T — lIchild)
6 Visit(T);

7 InOrder(T — rchild);
8 }

9}

2 // To visit every node of the binary tree in—order.

Algorithms (EE3980)

v

@ Execution sequence

InOrder A
InOrder B
InOrder D
InOrder F
visit F’
visit D
InOrder G
InOrder H
visit H

Unit 4.1 Breadth First Search

Binary Tree — Pre-order Traversal

Algorithm 4.1.2. Pre-Order Traversal
1 Algorithm PreOrder(T)

3 {

4 if (T # NULL) then {

5 Visit(T);

6 PreOrder(T — Ichild) ;
7 PreOrder(T — rchild);
8 ¥

0}

2 // To visit every node of the binary tree pre-order.

visit G
InOrder 1
visit 1
visit B
InOrder E
visit £/
visit A
InOrder C
visit C'

Mar. 28, 2018

Algorithms (EE3980)

v

Unit 4.1 Breadth First Search

@ Execution sequence

PreOrder A
visit A
PreOrder B
visit B
PreOrder D
visit D
PreOrder F
visit I
PreOrder G

visit G
PreOrder H
visit H
PreOrder [
visit 1
PreOrder FE
visit £/
PreOrder C
visit C'

Mar. 28, 2018

4 /20

Binary Tree — Post-order Traversal

Algorithm 4.1.3. Post-Order Traversal
1 Algorithm PostOrder(T')
2 // To visit every node of the binary tree post—order.
34
4 if (T # NULL) then {
5 PostOrder(T — Ichild) ;
6 PostOrder(T — rchild);
7 Visit(T);
8 }
9}
v
@ Execution sequence
» PostOrder A | visit |
PostOrder B | visit G
e @ PostOrder D | visit D
PostOrder F' | PostOrder E
Q e visit I visit &
e e PostOrder G | visit B
PostOrder H | PostOrder C
e e visit H visit C
) PostOrder I | visit A
Algorithms (EE3980) Unit 4.1 Breadth First Search Mar. 28, 2018

Binary Tree Traversal — Complexities

@ In traversing the tree, each node is reached three times

e From its root; when returning from Ichild and rchild
@ Thus, the time complexity is T(n) = ©O(n) for an n-node binary tree.
@ The space needed for an m-node binary tree is ©(n).

@ Traversing the tree using recursive calls would need a heap space proportional
to the depth, d, of the tree.

@ Since d < n, the space complexity is O(n).

Theorem 4.1.4. Binary Tree Traversal

Let T(n) and S(n) be the time and space complexities of any of the binary
traversing algorithms above, then T(n) = ©(n) and S(n) = O(n).

@ Proof, please see textbood [Horowitz], pp. 335-337.

Algorithms (EE3980) Unit 4.1 Breadth First Search Mar. 28, 2018 6 /20

Graph Traversal

e Given a graph G = (V, E) with vertex set V and edge set F, a typical graph
traversal problem is to find all vertices that is reachable from a particular
vertex, for example v € V.

e Note that G can be either a directed graph or undirected graph.

A directed graph.

An undirected graph.

v

Algorithms (EE3980) Unit 4.1 Breadth First Search Mar. 28, 2018 7 /20

Graph and Adjacency Lists

@ One way to represent the adjacency information of a graph G = (V, F) is the
adjacency list.

Both directed and undirected graphs can be represented.

In a undirected graph, each edge should appear twice.

More efficient if the graph is sparse, |E| < | V]°.

Weighted graphs can also be represented with more space for each edge.

Adjl |
]| 12 +—38]

1| —T—BIF—E
8]| —T—a[F—{[F+—{6[+—{711

[

2| il +—1[5—511
Bl — i F—6[+—711
[4]| 2] +—{8]/]

5l 12 +—18l/

6] —+—3814+—{8l]

[

[

Algorithms (EE3980) Unit 4.1 Breadth First Search Mar. 28, 2018 8 /20

Graph and Adjacency Matrix

@ The other way to keep the adjacent information of a graph G = (V, E) is the
adjacency matrix.
e For undirected graphs, symmetric matrices are obtained.
Asymmetric matrices for directed graphs.
Weighted graphs can also be represented.
More applicable when the graph is dense,
edge (4,j) is needed.

E| ~ | V|?, or faster search of an

(1 if(i§) € R
Alsgl= { 0 otherwise. (4.1.1)

O OO OO krHrH+H=HOH
O OO HEFHEFOOHENDN
O Rr P OOOOFHW
H O OOOOHrH O b
H OO OOORKrH O o
H O OOORFr OOO
H O OOORKFrK OO N
OHRrRHMEFEMBEOOO ™

0O ~NO G~ WD -

Algorithms (EE3980) Unit 4.1 Breadth First Search Mar. 28, 2018

Breadth First Search

@ A popular graph traversal algorithm for both directed and undirected graphs is

Algorithm 4.1.5. Breadth First Search

1 Algorithm BFS(v)

2 // Breadth first search starting from vertex v of graph G.

3 // @ is assume to be a queue. Array wvisited is initialized to O.

4 {

5 u = v; visited[v] :=1;

6 repeat {

7 for all vertices w adjacent to u do {

8 if (wvisitedfw] = 0) then {

9 Enqueue(w) ; visited[w] := 1;
10 }
11 }
12 if not Qempty() then u:= Dequeue(); // get the next vertex.
13 } until (Qempty());
14 }

v

Algorithms (EE3980) Unit 4.1 Breadth First Search Mar. 28, 2018

BFS Example

@ BFS calling sequence

visit 1 Queue = (2, 3)
visit 2 Queue = (3,4,5)
visit 3 Queue = (4,5,6,7)
visit 4 Queue = (5,6,7,8)
visit5 Queue = (6,7,8)
visit 6 Queue = (7,8)
visit 7. Queue = (8)

visit 8 Queue = ()

Algorithms (EE3980) Unit 4.1 Breadth First Search Mar. 28, 2018 11 /20

Breadth First Search — Properties

Theorem 4.1.6. BFS Complexities

Let T(n, e) and S(n, €) be the maximum time and maximum additional space
taken by algorithm BFS on any graph G wit n vertices and e edges.
1. T(n,e) = O(n+ e) and S(n, e) = O(n) if G is represented by its adjacency
lists,
2. T(n,e) = ©(n?) and S(n, e) = O(n) if G is represented by its adjacency
matrix.

@ Proof please see textbook [Horowitz], pp. 341-343.

e The additional space refers to array v[1,n}, ©(n), and memory needed for the
queue, O(n).

Theorem 4.1.7. BFS Reachability

Algorithm BFS visits all vertices of G reachable from v.

@ Proof please see textbook [Horowitz], p. 340.

Algorithms (EE3980) Unit 4.1 Breadth First Search Mar. 28, 2018 12 / 20

Shortest Path

Definition 4.1.8. Shortest Path.

Given a graph G = (V, E), the shortest-path distance, d(s, v), between any two
vertices, s, v € V, is the minimum number of edges in any path from s to v. If
there is no path from s to v then d(s,v) = co. A path of length (s, v) from s to
v is a shortest path from s to .

| \

Lemma 4.1.9.

Given a directed or undirected graph G = (V, E) and an arbitrary vertex s € V,
then for any edge (u,v) € E we have

d(s,v) <d(s,u)+ 1. (4.1.2))

@ Proof please see textbook [Cormen], p. 598.

Algorithms (EE3980) Unit 4.1 Breadth First Search Mar. 28, 2018 13 / 20

Shortest Path and Breadth First Search

@ The breadth first search algorithm can be modified to find the shortest
distance to other vertices.

Algorithm 4.1.10. Shortest path — Breadth First Search

1 Algorithm BFS_d(v, d)

2 // Breadth first search starting with path legnth.

3 // Array d records the shortest path length from vertex v.

4 // Array p records the preceding vertex of the shortest path.

5 {

6 u = v; visited[v] ;== 1; d[v] := 0; p[v] :=0;

7 repeat {

8 for all vertices w adjacent to u do {

9 if (wvisited[w] = 0) then {
10 Enqueue(w) ; visited[w] := 1; d[w] := d[u] + 1; p[w] := u;
11 }
12 }
13 if not Qempty() then u := Dequeue(); // Get the next vertex.
14 } until (Qempty());
15 }

.

Algorithms (EE3980) Unit 4.1 Breadth First Search Mar. 28, 2018 14 / 20

Shortest Path and Breadth First Search, I

Given a graph G = (V, E), if the BFS_d(s, d) is called for a source vertex s € V,
then upon the termination of the algorithm we have for any v € V, d[v] > (s, v).

@ Proof please see textbook [Cormen], p. 598.

Lemma 4.1.12

Suppose that during the execution of the BFS_d(s, d) algorithm on a graph
G = (V,FE), the queue @ contains the vertices (v, v2,...,v,), where vy is the
head of the queue and v, is the tail. Then, we have

=~ d[’Ul] + 1, (4.1.3)
d[] < dvig1] fori=1,2,...,7r— 1. (4.1.4)

@ Proof please see textbook [Cormen], p. 599.

Algorithms (EE3980) Unit 4.1 Breadth First Search Mar. 28, 2018 15 / 20

Shortest Path and Breadth First Search, Il

Corollary 4.1.13.

Suppose that during the execution of the BFS_d(s, d) algorithm on a graph

G = (V, E), both vertices v; and v; are enqueue and v; is enqueued before v,
then d[’UfL] < d[’Uj].

@ Proof please see textbook [Cormen], p. 599.

Theorem 4.1.14.

Given a graph G = (V, E) and a source vertex s € V, if the algorithm BFS_d(s, d)
is called, then for every vertex v € V reachable from s, upon termination we have

dlv] =6(s,v).

@ Proof please see textbook [Cormen], p. 600.

Algorithms (EE3980) Unit 4.1 Breadth First Search Mar. 28, 2018 16 / 20

Shortest Path and Breadth First Search — Print Path

@ A shortest path from source s to any vertex v € V can be printed using the

array p.
e Note that array p records the predecessor information.
o p[w] is the vertex preceding vertex w in the shortest path.
e For source vertex v, p[v] = 0.

Algorithm 4.1.15. Print Shortest Path

1 Algorithm BFSpath(w)
2 // To print the shortest path that ends at w.a
3 // pis the predecessor array.

4 {

5 if (p[w] # 0) BFSpath(p[w]);
6 write ("w ");

7}

Algorithms (EE3980) Unit 4.1 Breadth First Search Mar. 28, 2018 17 / 20

Spanning Trees of Connected Graphs

@ The BFS algorithm can be modified to find the spanning tree of a connected

graph.
Algorithm 4.1.16. BFS to find a spanning tree

1 Algorithm BFS*(v)

2 // Breadth first search to find the spanning tree from vertex v.

3 {

4 u:= v; visited[v] :=1; t:=0;

5 repeat {

6 for all vertices w adjacent to w do {

7 if (visitedjw] = 0) then {

8 Enqueue(w) ; wvisited[w] :=1; t:=tU {(u, w)};
9 }
10 }
11 if not Qempty() then u:= Dequeue(u); // Get the next vertex.
12 } until (Qempty());
13 }

@ On termination, ¢ is the set of edges that forms a spanning tree of G.

Algorithms (EE3980) Unit 4.1 Breadth First Search Mar. 28, 2018 18 / 20

BFS Spanning Tree

@ The spanning tree found by Algorithm BFS* can be called BFS spanning tree.

@ This tree has the property that the path from the root s to any vertex v € V
is a shortest path.

e Example

@ The time and space complexity of BFS* is the same as BFS.

Algorithms (EE3980) Unit 4.1 Breadth First Search Mar. 28, 2018 19 / 20

Summary

@ Binary tree traversal
@ Graph traversal
@ Breadth first search

@ Spanning tree

Algorithms (EE3980) Unit 4.1 Breadth First Search Mar. 28, 2018 20 /20

