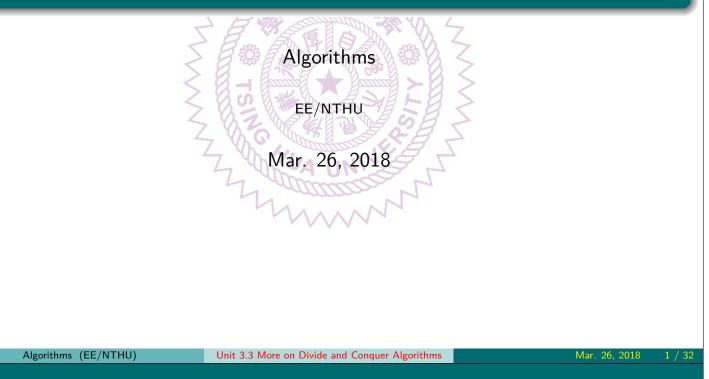
Unit 3.3 More on Divide and Conquer Algorithms



Selection Algorithm

- The selection problem is to find the k'th element of an array A and place all elements less than or equal to A[k] in A[1:k-1] and the rest in A[k+1:n].
- Divide and conquer can be applied to this problem as well.
 - The Partition algorithm can be effective in this selection problem.

Algorithm 3.3.1. Selection

```
1 Algorithm Select1(A, n, k)
 2 // Partition the array into A[1:k-1] \leq A[k] \leq A[k+1:n].
 3 {
        low := 1; high := n + 1; A[n + 1] := \infty; j := k - 1;
 4
        while (j \neq k) do {
 5
             j := Partition(A, low, high);
 6
 7
             if (k < j) then high := j;
             else if (k > j) then low := j + 1;
 8
 9
        }
10 }
```

• After completing Select1, A[k] is the k'th element.

Selection Algorithm – Complexity

- Note that the Partition (A, low, high) decrease the range of the array A by at least 1.
- Thus, the worst-case complexity of the Select1 algorithm is $\mathcal{O}(n^2)$.
- Let $T_A^k(n)$ be the average time to find the k'th smallest element in A[1:n]• The average is taken over all *n*! different permutations.
- Define

$$T_{A}(n) = \frac{1}{n} \sum_{k=1}^{n} T_{A}^{k}(n)$$
(3.3.1)
$$R(n) = \max_{k} T_{A}^{k}(n)$$
(3.3.2)

•
$$T_A(n)$$
 is the average execution time of Select1 algorithm.

• And it is obvious that $T_A(n) \leq R(n)$.

Algorithms (EE/NTHU)

Unit 3.3 More on Divide and Conquer Algorithms

Selection Algorithm – Complexity, II

Theorem 3.3.2.

The average execution time $T_A(n)$ of Select1 algorithm is $\mathcal{O}(n)$.

Proof. The complexity of Partition algorithm is $\mathcal{O}(n)$ and hence there is a constant c such that B. S. G. G. S. S. S.

$$\begin{aligned} T_A^k(n) &\leq c \cdot n + \frac{1}{n} \Big(\sum_{i=1}^{k-1} T_A^k(n-i) + \sum_{i=k+1}^n T_A^k(i-1) \Big), \\ R(n) &\leq c \cdot n + \frac{1}{n} \max_k \Big(\sum_{i=1}^{k-1} R(n-i) + \sum_{i=k+1}^n R(i-1) \Big), \\ R(n) &\leq c \cdot n + \frac{1}{n} \max_k \Big(\sum_{i=n-k+1}^{n-1} R(i) + \sum_{i=k}^{n-1} R(i) \Big). \end{aligned}$$

To show by induction that $R(n) \leq 4c \cdot n$.

(3.3.2)

Selection Algorithm – Complexity, III

For
$$n = 2$$
,

$$R(n) \leq 2 \cdot c + \frac{1}{2} \max \left(R(1), R(1) \right)$$

$$\leq 2.5 \cdot c \leq 4 \cdot c \cdot n$$
Next assume $R(n) \leq 4 \cdot c \cdot n$ for $2 \leq n < m$.
For $n = m$,

$$R(m) \leq c \cdot m + \frac{1}{m} \max_{R} \left(\sum_{k=m-k+1}^{m-1} R(i) + \sum_{i=k}^{m-1} R(i) \right)$$
Since $R(n)$ is a nondecreasing function of n . $\sum_{m=m+k+1}^{m-1} R(i) + \sum_{i=k}^{m-1} R(i)$ is maximum when $k = m/2$ when m is even, and $k = (m+1)/2$ when m is odd.
When m is even
$$R(m) \leq c \cdot m + \frac{2}{m} \sum_{i=m/2}^{m-1} R(i)$$

$$\leq c \cdot m + \frac{8c}{m} \sum_{i=m/2}^{m-1} i$$

$$\leq 4 \cdot c \cdot m$$
When m is odd
$$R(m) \leq c \cdot m + \frac{2}{m} \sum_{i=(m+1)/2}^{m-1} R(i)$$

$$\leq c \cdot m + \frac{8c}{m} \sum_{i=(m+1)/2}^{m-1} R(i)$$

$$\leq c \cdot m + \frac{8c}{m} \sum_{i=(m+1)/2}^{m-1} R(i)$$

$$\leq c \cdot m + \frac{8c}{m} \sum_{i=(m+1)/2}^{m-1} R(i)$$
Since $T_A(n) \leq R(n)$, therefore $T_A(n) \leq 4 \cdot c \cdot n$ and $T_A(n)$ is $\mathcal{O}(n)$.

Selection Algorithm – Complexity, V

- The execution time of Select1 in the worst-case is $\mathcal{O}(n^2)$.
 - The worst-case can happen if the partition element, A[low], is close to extreme.
 - If the partition element is close to the median, A[(low + high)/2], then the number of iterations can be reduced significantly.
 - Using this argument, the selection algorithm is modified to have worst-case linear time complexity.
- The array A is divided into subarrays each has r elements
 - $\lceil n/r \rceil$ groups
 - A small r is usually preferred (r = 5, for example).
- Then the median of each group is found and move to the front array A
- The median of the medians, *mm*, is then found using Partition function
- Now, this mm can be used to partition array A.
- Since *mm* is used for each partition step in the selection algorithm, worst-case linear time can be guaranteed.
- Note that though Select2 is worst-case linear, it has a much larger coefficient, as compared to Select1, thus for small to median-size problems, Select2 may not be faster in execution.
 - Select2 returns the position j such that A[j] is the k'th element.

Algorithms (EE/NTHU)

Unit 3.3 More on Divide and Conquer Algorithms

Selection Algorithm – Worst-case Linear

Algorithm 3.3.3. Selection – Worst-case Linear

1 Algorithm Select2($A, k, low, high, r$)	
2 // P 3 {	Partition the array into $A[1:k-1] \leq A[k] \leq A[k+1:n].$
4	j := k + low - 1;
5	while $(k eq j - low)$ do {
6	n := high - low + 1;
7	if $(n \leq r)$ then $\{ \ // \ { m small array}$
8	InsertionSort(A, low, high);
9	$return \ low + k;$
10	}
11	for $i:=1$ to $\left\lceil \ n/r ight ceil$ do $\left\{ \ // \ ext{find} \ ext{median} \ ext{of} \ ext{group} \ ext{and} \ ext{move} \ ext{to} \ ext{front}$
12	InsertionSort(A, low + (i-1) * r, low + i * r - 1);
13	$\mathbf{Swap}(low + i - 1, low + (i - 1) * r + \lceil r/2 \rceil - 1);$
14	}
15	$j := \mathtt{Select2}(A, \lceil \lfloor n/r \rfloor/2 \rceil, low, low + \lceil n/r \rceil - 1); // find median of medians$
16	$\mathtt{Swap}(\mathit{low},j);//$ move median of median to $A[\mathit{low}]$
17	j := Partition(A, low, high + 1);
18	if $(k < j - low)$ $high := j; //$ reduce to $A[low : j]$
19	else if $(k>j-low)$ { $//$ reduce to $A[j+1:high]$
20	$k:=k-\left(j-low+1\right);$
21	low := j + 1;
22	}
23	}
24	$\texttt{return} \ j;$
25 }	

• Given two $n \times n$ matrix **A** and **B**, $\mathbf{A}[i, j] \in \mathbb{R}$, $\mathbf{B}[i, j] \in \mathbb{R}$, $1 \le i, j, \le n$, then $n \times n$ matrix **C** is the product of **A** and **B**, $(\mathbf{C} = \mathbf{A} \cdot \mathbf{B})$,

$$\mathbf{C}[i,j] = \sum_{k=1}^{n} \mathbf{A}[i,k] \times \mathbf{B}[k,j], \qquad 1 \le i,j \le n.$$
(3.3.3)

- Note that to calculate C[i, j], one needs n multiplications and n-1 additions.
- Thus to calculate C, which has n^2 elements, the time complexity is $\Theta(n^3)$.

Algorithms (EE/NTHU

Unit 3.3 More on Divide and Conquer Algorithms

Matrix Multiplication – Divide and Conquer

- Suppose $n = 2^k$, we can apply divide and conquer approach to matrix multiplication problem.
- Divide each matrix into 4 submatrices with $\frac{n}{2} imes \frac{n}{2}$ dimensions each, then

$$\begin{bmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} \\ \mathbf{A}_{21} & \mathbf{A}_{22} \end{bmatrix} \begin{bmatrix} \mathbf{B}_{11} & \mathbf{B}_{12} \\ \mathbf{B}_{21} & \mathbf{B}_{22} \end{bmatrix} = \begin{bmatrix} \mathbf{C}_{11} & \mathbf{C}_{12} \\ \mathbf{C}_{21} & \mathbf{C}_{22} \end{bmatrix}$$
(3.3.4)

where

$$C_{11} = A_{11}B_{11} + A_{12}B_{21}$$

$$C_{12} = A_{11}B_{12} + A_{12}B_{22}$$

$$C_{21} = A_{21}B_{11} + A_{22}B_{21}$$

$$C_{22} = A_{21}B_{12} + A_{22}B_{22}$$
(3.3.5)

- To calculate matrix \mathbf{C} , we need n
 - Eight matrix multiplications $(\frac{n}{2} \times \frac{n}{2})$,
 - Four matrix additions ($\mathcal{O}(n^2)$ complexity due to n^2 elements in C).
- Let T(n) be the complexity, then

$$T(n) = \begin{cases} b, & n \le 2\\ 8 \cdot T(n/2) + c \cdot n^2, & n > 2. \end{cases}$$
(3.3.6)

quer Algorithms

where b and c are constants.

Mar. 26, 2018 10 / 32

Matrix Multiplication – Divide and Conquer, II

• If
$$n = 2^k$$

$$T(n) = 8T(n/2) + c \cdot n^{2}$$

$$= 8\left[8T(n/4) + c \cdot \left(\frac{n}{2}\right)^{2}\right] + c \cdot n^{2}$$

$$= 8^{2}T(n/4) + c \cdot n^{2} (2+1)$$

$$= 8^{3}T(n/8) + c \cdot n^{2} (4+2+1)$$

$$= 8^{k-1}T(n/2^{k-1}) + c \cdot n^{2} \sum_{i=0}^{k-2} 2^{i}$$

$$= 2^{3k-3}b + c \cdot n^{2} \left(\cdot 2^{k-1}\right)$$

$$= \frac{n^{3}}{8}b + c \cdot n^{2} \left(\frac{n}{2}\right)$$

$$= \left(\frac{b}{8} + \frac{c}{2}\right)n^{3}$$

$$= \mathcal{O}(n^{3})$$

• Thus, this divide and conquer approach does not improve the computational complexity

Strassen's Matrix Multiplication

• Given Equations (3.3.4) and (3.3.5), define the following

$$P = (A_{11} + A_{22})(B_{11} + B_{22})$$

$$Q = (A_{21} + A_{22})B_{11}$$

$$R = A_{11}(B_{12} - B_{22})$$

$$S = A_{22}(B_{21} - B_{11})$$

$$T = (A_{11} + A_{12})B_{22}$$

$$U = (A_{21} - A_{11})(B_{11} + B_{12})$$

$$V = (A_{12} - A_{22})(B_{21} + B_{22})$$

$$C_{11} = P + S - T + V$$

$$C_{12} = R + T$$

$$C_{21} = Q + S$$

$$C_{22} = P + R - Q + U$$

$$(3.3.8)$$

Then

- To find matrix C, we need 7 matrix multiplications of $\frac{n}{2} \times \frac{n}{2}$ and 18 matrix additions.
- Since matrix multiplications, $\mathcal{O}(n^3)$, is more expensive than matrix addition, $\mathcal{O}(n^2)$, for large n this approach might be more efficient.

11 / 32

Strassen's Matrix Multiplication, II

• The recurrence relation for the computation time T(n) is

$$T(n) = \begin{cases} b, & n \le 2, \\ 7 \cdot T(n/2) + c \cdot n^2, & n > 2. \end{cases}$$
(3.3.9)

where b and c are two constants. • If $n = 2^k$, then

$$\begin{split} T(n) &= 7 \cdot T(n/2) + c \cdot n^2 \\ &= 7^2 \cdot T(n/4) + 7 \cdot c \cdot (n/2)^2 + c \cdot n^2 \\ &= 7^2 \cdot T(n/4) + c \cdot n^2 (7/4 + 1) \\ &= 7^{k-1} \cdot T(n/2^{k-1}) + c \cdot n^2 \sum_{i=0}^{k-2} (7/4)^i \\ &= 7^{k-1} \cdot b + c \cdot n^2 \left((7/4)^{k-1} - 1 \right) / (3/4) \\ &\approx n \frac{\lg 7}{7} + c' n^{\lg 4 + \lg 7 - \lg 4} \\ &= \mathcal{O}(n^{\lg 7}) = \mathcal{O}(n^{2.807}) \end{split}$$

Algorithms (EE/NTHU)

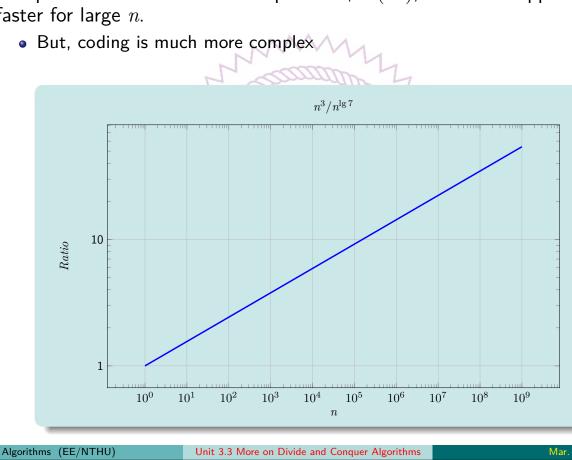
Unit 3.3 More on Divide and Conquer Algorithms

Mar. 26, 2018 13 / 32

26, 2018

Strassen's Matrix Multiplication, III

• Compared to direct matrix multiplication, $\mathcal{O}(n^3)$, Strassen's approach can be faster for large n.



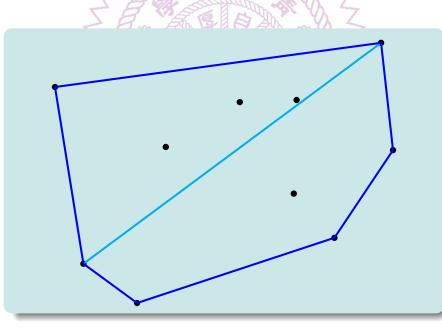
Convex Hull Problem

- Given a set S that contains points on a 2-D plane, the convex hull is defined as the smallest convex polygon that contains all the points in S.
- A polygon is convex if for any two points p_1, p_2 inside of the polygon, the straight line segment connecting p_1 and p_2 is fully contained in the polygon.
- The vertices of the convex hull of a set S is a subset of S.
 - But, not necessarily a proper subset.

 Market Mar

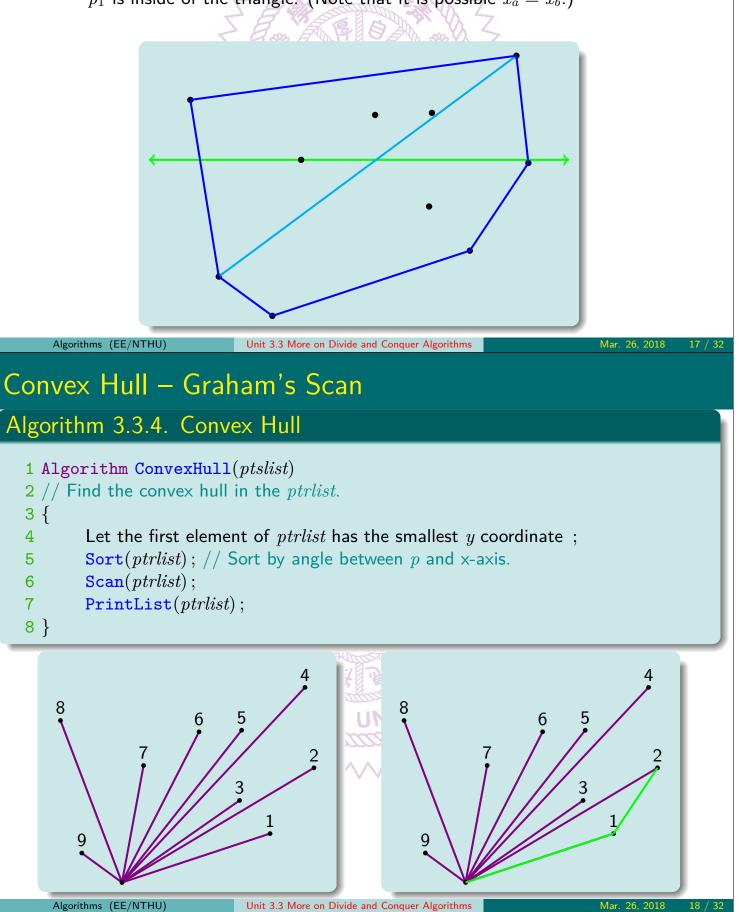
Convex Hull – Direct Implementation

- $\bullet\,$ The convex hull of S can be found using the definition above
 - For any $p_1 \in S$, if p_1 is inside the triangle formed by $p_2, p_3, p_4 \in S$, with $p_1 \notin \{p_2, p_3, p_4\}$, then p_1 is not a vertex of the convex hull.
- This direct implementation has the time complexity of $\mathcal{O}(n^4)$.
 - n points to be tested, n^3 for all possible triangles.

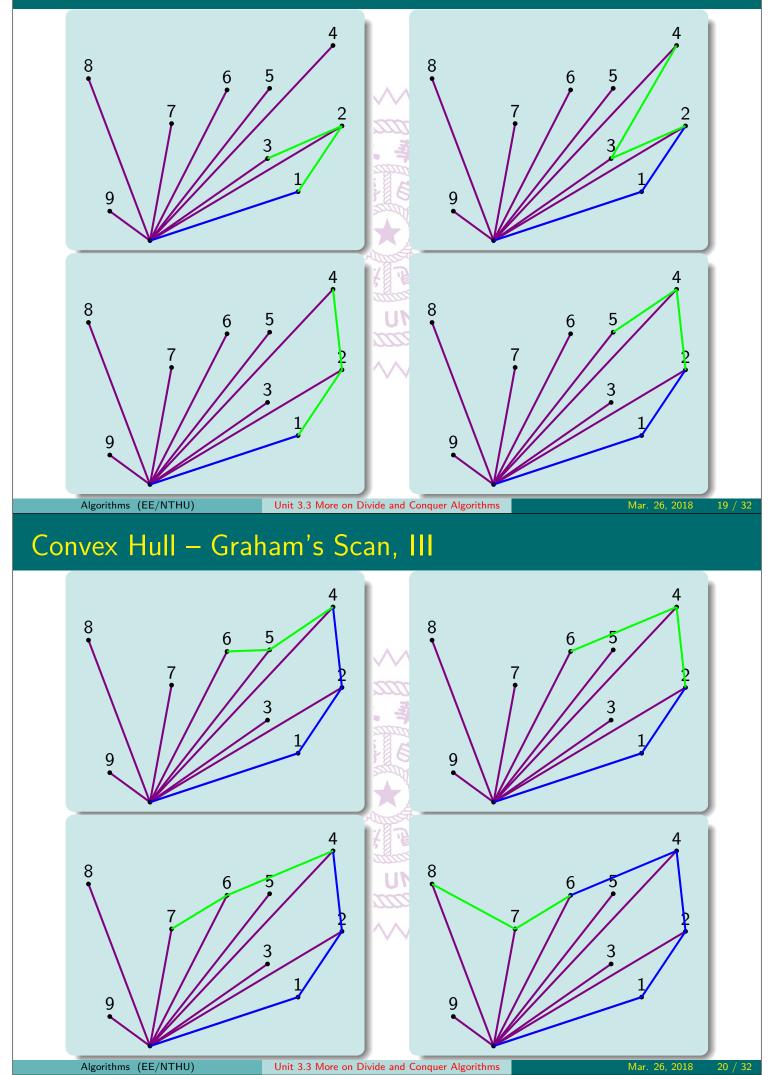


Convex Hull – Direct Implementation, II

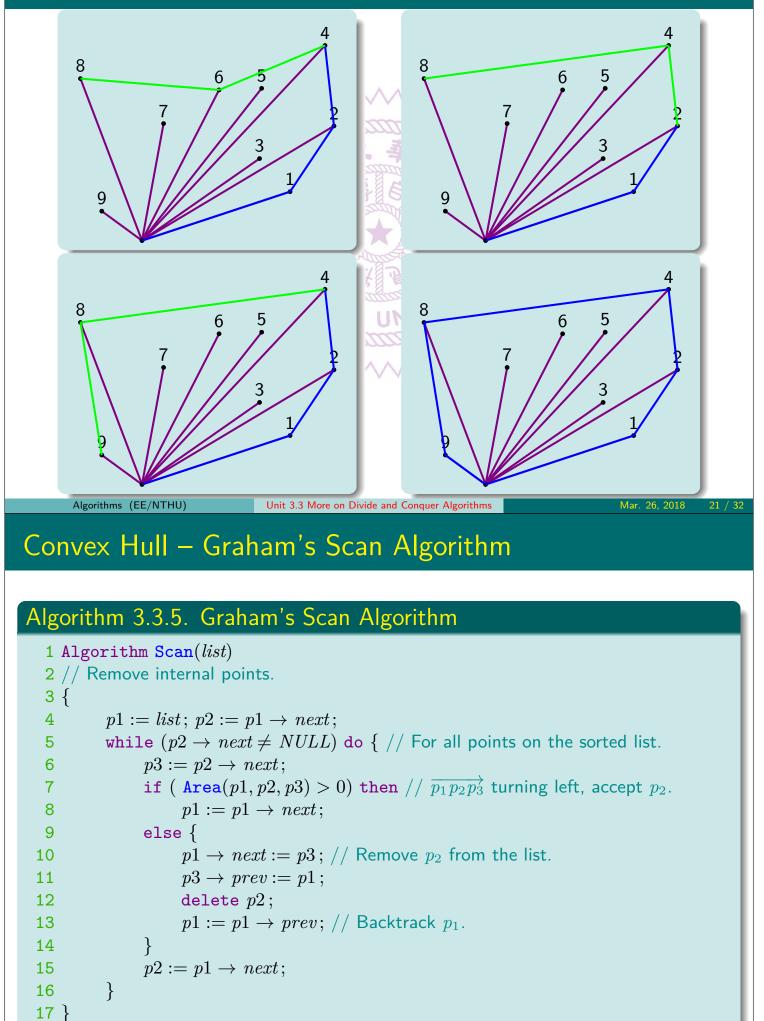
- To test if a point p_1 is inside of a triangle $riangle p_2 p_3 p_4$
 - Let L be the horizontal line passing through p₁ = (x₁, y₁), note that L can be described by the linear equation y = y₁, then check if L intersects with any of the line segments, p₂p₃, p₃p₄, p₄p₂. If not, then p₁ is outside of △p₂p₃p₄. Otherwise let (x_a, y₁) and (x_b, y₁) be the intersect points, if x_a ≤ x₁ ≤ x_b then p₁ is inside of the triangle. (Note that it is possible x_a = x_b.)



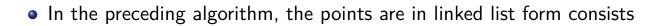
Convex Hull – Graham's Scan, II



Convex Hull – Graham's Scan, IV



Convex Hull – Graham's Scan Algorithm, II





- Note that this is a double linked list.
- Let $p_1(x_1, y_1)$, $p_2(x_2, y_2)$ and $p_3(x_3, y_3)$ be three points in a plane the function $Area(p_1, p_2, p_3)$ is defined as

det x_2

It can be shown that

Algorithms (EE/NTHU)

• If the area is positive then p_3 is located to the left of the vector $\overrightarrow{p_1p_2}$.

Unit 3.3 More on Divide and Conquer Algorithms

• If the area is negative then p_3 is located to the right of the vector $\overrightarrow{p_1p_2}$.

 $x_1 \quad y_1$

• If the area is zero then p_3 is colinear with $\overrightarrow{p_1 p_2}$.

Convex Hull – Graham's Scan Algorithm, Complexity

- The Algorithm (3.3.4) consists of 3 steps
 - (line 4) finding the first element with the smallest y coordinate can be done in $\mathcal{O}(n)$ time,
 - (line 5) sort by the angle can be done in $\mathcal{O}(n \lg n)$ time,
 - (line 6) Graham's Scan can be done in $\mathcal{O}(n)$ time.
- Thus, the time complexity is $\mathcal{O}(n \lg n)$.

(3.3.10)

Quick Hull Algorithm

• Divide and conquer approach can be used to find the convex hull.

Algorithm 3.3.6. QuickHull

```
1 Algorithm QuickHull(list, CHull)
 2 // Generate Convex Hull for points in list.
 3 {
 4
         Find p_1 \in list with the smallest x coordinate.
         Find p_2 \in list with the largest x coordinate.
 5
         Let X_1 := \{p | \text{Area}(p_1, p_2, p) > 0\}. // Upper half.
 6
         Let X_2 := \{p | \text{Area}(p_1, p_2, p) < 0\}. // Lower half.
 7
         Hull(p_1, p_2, X_1, UpperHull); // Create upper hull.
 8
         Hull(p_2, p_1, X_2, LowerHull); // Lower hull.
 9
         CHull := Merge(UpperHull, LowerHull); // Merge them.
10
11 }
```

- Finding p_1 and p_2 takes $\mathcal{O}(n)$ time.
- Finding X_1 and X_2 takes $\mathcal{O}(n)$ time.
- Merge takes no more than $\mathcal{O}(n)$ time.
- The time complexity can be dominated by Hull function.

Algorithms (EE/NTHU)

Unit 3.3 More on Divide and Conquer Algorithms

Mar. 26, 2018 25 / 3

Quick Hull Algorithm, II

Algorithm 3.3.7. QuickHull

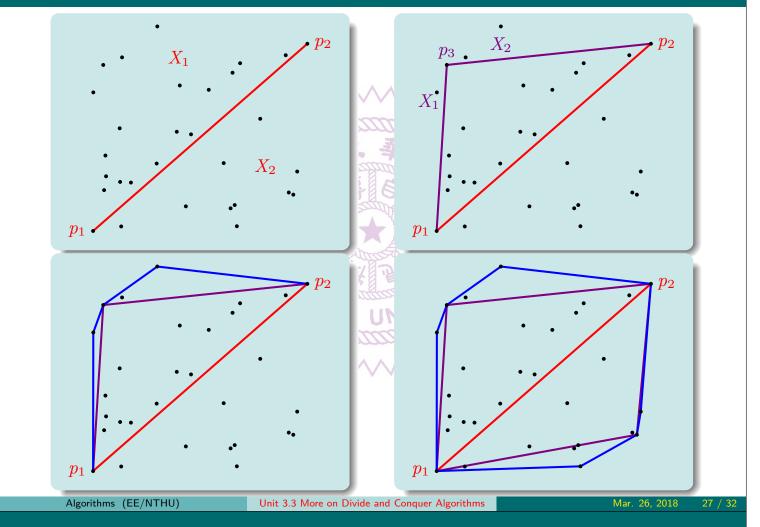
1 Algorithm Hull $(p_1, p_2, list, CHull)$ **2** // Find convex Hull for p_1 , p_2 and list. 3 { Find $p_3 \in list$ with the largest $|\operatorname{Area}(p_1, p_2, p_3)|$; 4 Let $X_1 := \{p | \operatorname{Area}(p_1, p_3, p) > 0\}$. // All points left to $\overrightarrow{p_1 p_3}$ / 5 if $(X_1 = \emptyset)$ then $H_1 := \{p_1, p_3\}; //$ No more points. 6 7 else HULL (p_1, p_3, X_1, H_1) ; // Recursive call if more points. Let $X_2 := \{ p | \operatorname{Area}(p_3, p_2, p) > 0 \}.$ 8 9 if $(X_2 = \emptyset)$ then $H_2 := \{p_3, p_2\};$ else HULL (p_3, p_2, X_2, H_2) ; 10 11 $CHull := Merge(H_1, H_2); // Combine those two hulls.$ 12 } • Finding p_3 , X_1 , and X_2 take $\mathcal{O}(m)$ time, if *list* has m points. • Thus, if T(m) is the time for HULL algorithm we have

$$T(m) = T(m_1) + T(m_2) + O(m),$$
 (3.3.11)

where $m_1 + m_2 \leq m$.

- This recurrence relationship is the same as QuickSort.
 - Worst-case complexity is $\mathcal{O}(m^2)$, and average-case is $\mathcal{O}(m\lg m)$.

Quick Hull Example



Time Complexity of Divide and Conquer Algorithms

- In Algorithm DandC (Algorithm 3.1.1) the problem is divided into k subproblems; each solved recursively; then the results are combined to form the final solution.
- The execution time can be assumed to have a general recurrence equation as

$$T(n) = a \cdot T(n/k) + f(n).$$
 (3.3.12)

where f(n) is the time to divide problem into k subsets and to combine the subsets to form the final solution.

• Let
$$n = k^{m}$$
, then $T(n) = a \cdot T(n/k) + f(n)$
 $= a \cdot \left(a \cdot T(n/k^{2}) + f(n/k)\right) + f(n)$
 $= a^{2} \cdot T(n/k^{2}) + a \cdot f(n/k) + f(n)$
 $= a^{m} \cdot T(n/k^{m}) + \sum_{i=0}^{m-1} a^{i} \cdot f(n/k^{i})$
 $= a^{\log_{k} n} \cdot T(1) + \sum_{i=0}^{m-1} a^{i} \cdot f(n/k^{i})$
 $= n^{\log_{k} a} + \sum_{i=0}^{m-1} a^{i} \cdot f(n/k^{i})$ (3.3.13)

i=0

Master Method

- Note that
 - T(1) is taken out since it is a constant,
 - The summation of the second part has $m = \log_k n$ terms.
- If there is a positive ϵ such that $n^{\log_k a} = n^{\epsilon} \cdot f(n)$ then for large n

$$T(n) = \Theta(n^{\log_k a}). \tag{3.3.14}$$

2 If there is a positive ϵ such that $n^{\log_k a} = f(n)/n^{\epsilon}$ and if $a \cdot f(n/k) \le c \cdot f(n)$ for some constant c < 1 for large n

$$T(n) = \Theta(f(n)). \tag{3.3.15}$$

If
$$f(n) = \Theta(n^{\log_k a})$$
 then

$$T(n) = \Theta(n^{\log_k a} \lg n).$$
(3.3.16)

This comes from the *m* summation terms. $m = \log_k n = \Theta(\lg n)$.

• In general, the time complexity of the divide-and-conquer algorithms fall into one of the three scenarios as shown in Eqs. (3.3.14, 3.3.15, 3.3.16).

Algorithms

• However, exceptions exist.

Algorith

Master Method – Example

• Example 1, Algorithm MaxMin

$$T(n) = 2T(n/2) + 2$$

$$a = 2, k = 2, n^{\log_k a} = n \text{ and } f(n) = 2.$$
Use Eq. (3.3.14) we have $T(n) = \Theta(n).$
• Example 2, Algorithm MaxSubArray

$$T(n) = 2T(n/2) + n$$

$$a = 2, k = 2, n^{\log_k a} = n \text{ and } f(n) = n.$$
Use Eq. (3.3.16) we have $T(n) = \Theta(n \lg n).$
• Example 3, MatrixMultiplication

$$T(n) = 8T(n/2) + n^2$$

$$a = 8, k = 2, n^{\log_k a} = n^3 \text{ and } f(n) = n^2.$$

Use Eq. (3.3.14) we have $T(n) = \Theta(n^3)$.

Algorithms (EE/NTHU)

Mar. 26, 2018

29 / 32

Master Method – Example

• Example 4,

$$T(n) = 2T(n/2) + n^2$$

 $= 2\left(2T(n/4) + (n/2)^2\right)$

 $0 = 4T(n/4) + n^2(1+1/2)$

 $= 2^m T(n/2^m) + n^2 \sum_{k=1}^{m}$

 $= n + n^2 \cdot 2 \cdot (1 - 2^-)$

 $1/2^{i}$

 $T(n) = 2T(n/2) + n^2$

 $=\Theta(n^2)$

a = 2, k = 2, $n^{\log_k a} = n$ and $f(n) = n^2$. Use Eq. (3.3.15) we have $T(n) = \Theta(n^2)$. This can also be derived as follows.

• Thus, the Master method can be effective to find the complexity of divide and conquer algorithms.

Unit 3.3 More on Divide and Conquer Algorithms

Summary

• Selection problem

Algorithms (EE/NTHU)

- Matrix multiplication
 - Strassen's matrix multiplication
- Convex hull problem
 - Graham's scan algorithm
 - Quick hull algorithm
- Time complexity of divide and conquer algorithms
 - Master method