
Unit 3.3 More on Divide and Conquer Algorithms

Algorithms

EE/NTHU

Mar. 26, 2018

Algorithms (EE/NTHU) Unit 3.3 More on Divide and Conquer Algorithms Mar. 26, 2018 1 / 32

Selection Algorithm

The selection problem is to find the k’th element of an array A and place all
elements less than or equal to A[k] in A[1 : k− 1] and the rest in A[k+1 : n].
Divide and conquer can be applied to this problem as well.

The Partition algorithm can be effective in this selection problem.

Algorithm 3.3.1. Selection
1 Algorithm Select1(A,n, k)
2 // Partition the array into A[1 : k − 1] ≤ A[k] ≤ A[k + 1 : n].
3 {
4 low := 1 ; high := n + 1 ; A[n + 1] := ∞ ; j := k − 1 ;
5 while (j ̸= k) do {
6 j := Partition(A, low, high) ;
7 if (k < j) then high := j ;
8 else if (k > j) then low := j + 1 ;
9 }

10 }

After completing Select1, A[k] is the k ’th element.

Algorithms (EE/NTHU) Unit 3.3 More on Divide and Conquer Algorithms Mar. 26, 2018 2 / 32

Selection Algorithm – Complexity

Note that the Partition(A, low, high) decrease the range of the array A by
at least 1.
Thus, the worst-case complexity of the Select1 algorithm is O(n2).

Let T k
A(n) be the average time to find the k’th smallest element in A[1 : n]

The average is taken over all n! different permutations.
Define

TA(n) =
1

n

n∑

k=1

T k
A(n) (3.3.1)

R(n) = max
k

T k
A(n) (3.3.2)

TA(n) is the average execution time of Select1 algorithm,
And it is obvious that TA(n) ≤ R(n).

Algorithms (EE/NTHU) Unit 3.3 More on Divide and Conquer Algorithms Mar. 26, 2018 3 / 32

Selection Algorithm – Complexity, II

Theorem 3.3.2.
The average execution time TA(n) of Select1 algorithm is O(n).

Proof. The complexity of Partition algorithm is O(n) and hence there is a
constant c such that

T k
A(n) ≤ c · n +

1

n

(k−1∑

i=1

T k
A(n − i) +

n∑

i=k+1

T k
A(i − 1)

)
,

R(n) ≤ c · n +
1

n max
k

(k−1∑

i=1

R(n − i) +
n∑

i=k+1

R(i − 1)
)
,

R(n) ≤ c · n +
1

n max
k

(n−1∑

i=n−k+1

R(i) +
n−1∑

i=k

R(i)
)
.

To show by induction that R(n) ≤ 4c · n.

Algorithms (EE/NTHU) Unit 3.3 More on Divide and Conquer Algorithms Mar. 26, 2018 4 / 32

Selection Algorithm – Complexity, III
For n = 2,

R(n) ≤ 2 · c +
1

2
max

(
R(1),R(1)

)

≤ 2.5 · c < 4 · c · n

Next assume R(n) ≤ 4 · c · n for 2 ≤ n < m.
For n = m,

R(m) ≤ c · m +
1

m max
k

(m−1∑

i=m−k+1

R(i) +
m−1∑

i=k

R(i)
)
.

Since R(n) is a nondecreasing function of n,
∑m−1

i=m−k+1 R(i) +
∑m−1

i=k R(i) is
maximum when k = m/2 when m is even, and k = (m + 1)/2 when m is odd.
When m is even

R(m) ≤ c · m +
2

m

m−1∑

i=m/2

R(i)

≤ c · m +
8c
m

m−1∑

i=m/2

i

≤ 4 · c · m
Algorithms (EE/NTHU) Unit 3.3 More on Divide and Conquer Algorithms Mar. 26, 2018 5 / 32

Selection Algorithm – Complexity, IV

When m is odd

R(m) ≤ c · m +
2

m

m−1∑

i=(m+1)/2

R(i)

≤ c · m +
8c
m

m−1∑

i=(m+1)/2

i

≤ 4 · c · m

Since TA(n) ≤ R(n), therefore TA(n) ≤ 4 · c · n and TA(n) is O(n). □

The space complexity of the Select1 algorithm is O(n) for the array A.
The Select1 algorithm can also be randomized as RQuickSort algorithm.

The expected time complexity is still O(n).
But the average performance is expected to be better.

Algorithms (EE/NTHU) Unit 3.3 More on Divide and Conquer Algorithms Mar. 26, 2018 6 / 32

Selection Algorithm – Complexity, V
The execution time of Select1 in the worst-case is O(n2).

The worst-case can happen if the partition element, A[low], is close to
extreme.
If the partition element is close to the median, A[(low + high)/2], then the
number of iterations can be reduced significantly.
Using this argument, the selection algorithm is modified to have worst-case
linear time complexity.

The array A is divided into subarrays each has r elements
⌈n/r⌉ groups
A small r is usually prefered (r = 5, for example).

Then the median of each group is found and move to the front array A
The median of the medians, mm, is then found using Partition function
Now, this mm can be used to partition array A.
Since mm is used for each partition step in the selection algorithm,
worst-case linear time can be guaranteed.
Note that though Select2 is worst-case linear, it has a much larger
coefficient, as compared to Select1, thus for small to median-size problems,
Select2 may not be faster in execution.

Select2 returns the position j such that A[j] is the k ’th element.
Algorithms (EE/NTHU) Unit 3.3 More on Divide and Conquer Algorithms Mar. 26, 2018 7 / 32

Selection Algorithm – Worst-case Linear
Algorithm 3.3.3. Selection – Worst-case Linear

1 Algorithm Select2(A, k, low, high, r)
2 // Partition the array into A[1 : k − 1] ≤ A[k] ≤ A[k + 1 : n].
3 {
4 j := k + low − 1 ;
5 while (k ̸= j − low) do {
6 n := high − low + 1 ;
7 if (n ≤ r) then { // small array
8 InsertionSort(A, low, high) ;
9 return low + k ;

10 }
11 for i := 1 to ⌈ n/r⌉ do { // find median of each group and move to front
12 InsertionSort(A, low + (i − 1) ∗ r, low + i ∗ r − 1) ;
13 Swap(low + i − 1, low + (i − 1) ∗ r + ⌈ r/2⌉ −1) ;
14 }
15 j := Select2(A, ⌈⌊ n/r⌋/2⌉, low, low + ⌈ n/r⌉ −1) ; // find median of medians
16 Swap(low, j) ; // move median of median to A[low]
17 j := Partition(A, low, high + 1) ;
18 if (k < j − low) high := j ; // reduce to A[low : j]
19 else if (k > j − low) { // reduce to A[j + 1 : high]
20 k := k − (j − low + 1) ;
21 low := j + 1 ;
22 }
23 }
24 return j ;
25 }

Algorithms (EE/NTHU) Unit 3.3 More on Divide and Conquer Algorithms Mar. 26, 2018 8 / 32

Matrix Multiplication

Given two n × n matrix A and B, A[i, j] ∈ R, B[i, j] ∈ R, 1 ≤ i, j,≤ n, then
n × n matrix C is the product of A and B, (C = A · B),

C[i, j] =
n∑

k=1

A[i, k]× B[k, j], 1 ≤ i, j ≤ n. (3.3.3)

Note that to calculate C[i, j], one needs n multiplications and n − 1
additions.
Thus to calculate C, which has n2 elements, the time complexity is Θ(n3).

Algorithms (EE/NTHU) Unit 3.3 More on Divide and Conquer Algorithms Mar. 26, 2018 9 / 32

Matrix Multiplication – Divide and Conquer
Suppose n = 2k, we can apply divide and conquer approach to matrix
multiplication problem.
Divide each matrix into 4 submatrices with n

2
× n

2
dimensions each, then

[
A11 A12

A21 A22

] [
B11 B12

B21 B22

]
=

[
C11 C12

C21 C22

]
(3.3.4)

where
C11 = A11B11 + A12B21

C12 = A11B12 + A12B22

C21 = A21B11 + A22B21

C22 = A21B12 + A22B22

(3.3.5)

To calculate matrix C, we need
Eight matrix multiplications (n

2
× n

2
),

Four matrix additions (O(n2) complexity due to n2 elements in C).
Let T(n) be the complexity, then

T(n) =
{

b, n ≤ 2
8 · T(n/2) + c · n2, n > 2.

(3.3.6)

where b and c are constants.
Algorithms (EE/NTHU) Unit 3.3 More on Divide and Conquer Algorithms Mar. 26, 2018 10 / 32

Matrix Multiplication – Divide and Conquer, II
If n = 2k

T(n) = 8T(n/2) + c · n2

= 8

[
8T(n/4) + c ·

(n
2

)2
]
+ c · n2

= 82T(n/4) + c · n2 (2 + 1)

= 83T(n/8) + c · n2 (4 + 2 + 1)

= 8k−1T(n/2k−1) + c · n2
k−2∑

i=0

2i

= 23k−3b + c · n2
(
·2k−1

)

=
n3

8
b + c · n2

(n
2

)

=

(
b
8
+

c
2

)
n3

= O(n3)

Thus, this divide and conquer approach does not improve the computational
complexity

Algorithms (EE/NTHU) Unit 3.3 More on Divide and Conquer Algorithms Mar. 26, 2018 11 / 32

Strassen’s Matrix Multiplication
Given Equations (3.3.4) and (3.3.5), define the following

P = (A11 + A22)(B11 + B22)
Q = (A21 + A22)B11

R = A11(B12 − B22)
S = A22(B21 − B11)
T = (A11 + A12)B22

U = (A21 − A11)(B11 + B12)
V = (A12 − A22)(B21 + B22)

(3.3.7)

Then
C11 = P + S − T + V
C12 = R + T
C21 = Q + S
C22 = P + R − Q + U

(3.3.8)

To find matrix C, we need 7 matrix multiplications of n
2
× n

2
and 18 matrix

additions.
Since matrix multiplications, O(n3), is more expensive than matrix addition,
O(n2), for large n this approach might be more efficient.

Algorithms (EE/NTHU) Unit 3.3 More on Divide and Conquer Algorithms Mar. 26, 2018 12 / 32

Strassen’s Matrix Multiplication, II
The recurrence relation for the computation time T(n) is

T(n) =
{

b, n ≤ 2,
7 · T(n/2) + c · n2, n > 2.

(3.3.9)

where b and c are two constants.
If n = 2k, then

T(n) = 7 · T(n/2) + c · n2

= 72 · T(n/4) + 7 · c · (n/2)2 + c · n2

= 72 · T(n/4) + c · n2(7/4 + 1)

= 7k−1 · T(n/2k−1) + c · n2
k−2∑

i=0

(7/4)i

= 7k−1 · b + c · n2
(
(7/4)k−1 − 1

)
/(3/4)

≈ n lg 7
7

+ c ′nlg 4+lg 7−lg 4

= O(nlg 7) = O(n2.807)

Algorithms (EE/NTHU) Unit 3.3 More on Divide and Conquer Algorithms Mar. 26, 2018 13 / 32

Strassen’s Matrix Multiplication, III

Compared to direct matrix multiplication, O(n3), Strassen’s approach can be
faster for large n.

But, coding is much more complex

100 101 102 103 104 105 106 107 108 109

1

10

n

R
at

io

n3/nlg 7

Algorithms (EE/NTHU) Unit 3.3 More on Divide and Conquer Algorithms Mar. 26, 2018 14 / 32

Convex Hull Problem
Given a set S that contains points on a 2-D plane, the convex hull is defined
as the smallest convex polygon that contains all the points in S.
A polygon is convex if for any two points p1, p2 inside of of the polygon, the
straight line segment connecting p1 and p2 is fully contained in the polygon.
The vertices of the convex hull of a set S is a subset of S.

But, not necessarily a proper subset.

Algorithms (EE/NTHU) Unit 3.3 More on Divide and Conquer Algorithms Mar. 26, 2018 15 / 32

Convex Hull – Direct Implementation

The convex hull of S can be found using the definition above
For any p1 ∈ S, if p1 is inside the triangle formed by p2, p3, p4 ∈ S, with
p1 /∈ {p2, p3, p4}, then p1 is not a vertex of the convex hull.

This direct implementation has the time complexity of O(n4).
n points to be tested, n3 for all possible triangles.

Algorithms (EE/NTHU) Unit 3.3 More on Divide and Conquer Algorithms Mar. 26, 2018 16 / 32

Convex Hull – Direct Implementation, II

To test if a point p1 is inside of a triangle △p2p3p4

Let L be the horizontal line passing through p1 = (x1, y1), note that L can be
described by the linear equation y = y1, then check if L intersects with any of
the line segments, p2p3, p3p4, p4p2. If not, then p1 is outside of △p2p3p4.
Otherwise let (xa, y1) and (xb, y1) be the intersect points, if xa ≤ x1 ≤ xb then
p1 is inside of the triangle. (Note that it is possible xa = xb.)

Algorithms (EE/NTHU) Unit 3.3 More on Divide and Conquer Algorithms Mar. 26, 2018 17 / 32

Convex Hull – Graham’s Scan
Algorithm 3.3.4. Convex Hull

1 Algorithm ConvexHull(ptslist)
2 // Find the convex hull in the ptrlist.
3 {
4 Let the first element of ptrlist has the smallest y coordinate ;
5 Sort(ptrlist) ; // Sort by angle between p and x-axis.
6 Scan(ptrlist) ;
7 PrintList(ptrlist) ;
8 }

1

2
3

4

56
7

8

9
1

2
3

4

56
7

8

9

Algorithms (EE/NTHU) Unit 3.3 More on Divide and Conquer Algorithms Mar. 26, 2018 18 / 32

Convex Hull – Graham’s Scan, II

1

2
3

4

56
7

8

9
1

2
3

4

56
7

8

9

1

2
3

4

56
7

8

9
1

2
3

4

56
7

8

9

Algorithms (EE/NTHU) Unit 3.3 More on Divide and Conquer Algorithms Mar. 26, 2018 19 / 32

Convex Hull – Graham’s Scan, III

1

2
3

4

56
7

8

9
1

2
3

4

56
7

8

9

1

2
3

4

56
7

8

9
1

2
3

4

56
7

8

9

Algorithms (EE/NTHU) Unit 3.3 More on Divide and Conquer Algorithms Mar. 26, 2018 20 / 32

Convex Hull – Graham’s Scan, IV

1

2
3

4

56
7

8

9
1

2
3

4

56
7

8

9

1

2
3

4

56
7

8

9
1

2
3

4

56
7

8

9

Algorithms (EE/NTHU) Unit 3.3 More on Divide and Conquer Algorithms Mar. 26, 2018 21 / 32

Convex Hull – Graham’s Scan Algorithm

Algorithm 3.3.5. Graham’s Scan Algorithm
1 Algorithm Scan(list)
2 // Remove internal points.
3 {
4 p1 := list ; p2 := p1 → next ;
5 while (p2 → next ̸= NULL) do { // For all points on the sorted list.
6 p3 := p2 → next ;
7 if (Area(p1, p2, p3) > 0) then // −−−−→p1p2p3 turning left, accept p2.
8 p1 := p1 → next ;
9 else {

10 p1 → next := p3 ; // Remove p2 from the list.
11 p3 → prev := p1 ;
12 delete p2 ;
13 p1 := p1 → prev ; // Backtrack p1.
14 }
15 p2 := p1 → next ;
16 }
17 }

Algorithms (EE/NTHU) Unit 3.3 More on Divide and Conquer Algorithms Mar. 26, 2018 22 / 32

Convex Hull – Graham’s Scan Algorithm, II

In the preceding algorithm, the points are in linked list form consists

struct Point {
double x,y;
struct Point *next, *prev;

}

Note that this is a double linked list.

Let p1(x1, y1), p2(x2, y2) and p3(x3, y3) be three points in a plane the
function Area(p1, p2, p3) is defined as

det

∣∣∣∣∣∣

x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣∣
(3.3.10)

It can be shown that
If the area is positive then p3 is located to the left of the vector −−→p1p2.
If the area is negative then p3 is located to the right of the vector −−→p1p2.
If the area is zero then p3 is colinear with −−→p1p2.

Algorithms (EE/NTHU) Unit 3.3 More on Divide and Conquer Algorithms Mar. 26, 2018 23 / 32

Convex Hull – Graham’s Scan Algorithm, Complexity

The Algorithm (3.3.4) consists of 3 steps
(line 4) finding the first element with the smallest y coordinate can be done in
O(n) time,
(line 5) sort by the angle can be done in O(n lg n) time,
(line 6) Graham’s Scan can be done in O(n) time.

Thus, the time complexity is O(n lg n).

Algorithms (EE/NTHU) Unit 3.3 More on Divide and Conquer Algorithms Mar. 26, 2018 24 / 32

Quick Hull Algorithm
Divide and conquer approach can be used to find the convex hull.

Algorithm 3.3.6. QuickHull
1 Algorithm QuickHull(list,CHull)
2 // Generate Convex Hull for points in list.
3 {
4 Find p1 ∈ list with the smallest x coordinate .
5 Find p2 ∈ list with the largest x coordinate .
6 Let X1 := {p| Area(p1, p2, p) > 0}. // Upper half.
7 Let X2 := {p| Area(p1, p2, p) < 0}. // Lower half.
8 Hull(p1, p2,X1,UpperHull) ; // Create upper hull.
9 Hull(p2, p1,X2,LowerHull) ; // Lower hull.

10 CHull := Merge(UpperHull,LowerHull) ; // Merge them.
11 }

Finding p1 and p2 takes O(n) time.
Finding X1 and X2 takes O(n) time.
Merge takes no more than O(n) time.
The time complexity can be dominated by Hull function.

Algorithms (EE/NTHU) Unit 3.3 More on Divide and Conquer Algorithms Mar. 26, 2018 25 / 32

Quick Hull Algorithm, II
Algorithm 3.3.7. QuickHull

1 Algorithm Hull(p1, p2, list,CHull)
2 // Find convex Hull for p1, p2 and list.
3 {
4 Find p3 ∈ list with the largest | Area(p1, p2, p3)| ;
5 Let X1 := {p| Area(p1, p3, p) > 0}. // All points left to −−→p1p3/
6 if (X1 = ∅) then H1 := {p1, p3} ; // No more points.
7 else HULL(p1, p3,X1,H1) ; // Recursive call if more points.
8 Let X2 := {p| Area(p3, p2, p) > 0}.
9 if (X2 = ∅) then H2 := {p3, p2} ;

10 else HULL(p3, p2,X2,H2) ;
11 CHull := Merge(H1,H2) ; // Combine those two hulls.
12 }

Finding p3, X1, and X2 take O(m) time, if list has m points.
Thus, if T(m) is the time for HULL algorithm we have

T(m) = T(m1) + T(m2) +O(m), (3.3.11)

where m1 + m2 ≤ m.
This recurrence relationship is the same as QuickSort.

Worst-case complexity is O(m2), and average-case is O(m lg m).
Algorithms (EE/NTHU) Unit 3.3 More on Divide and Conquer Algorithms Mar. 26, 2018 26 / 32

Quick Hull Example

p1

p2

X1

X2

p1

p2p3

X1

X2

p1

p2

p1

p2

Algorithms (EE/NTHU) Unit 3.3 More on Divide and Conquer Algorithms Mar. 26, 2018 27 / 32

Time Complexity of Divide and Conquer Algorithms
In Algorithm DandC (Algorithm 3.1.1) the problem is divided into k
subproblems; each solved recursively; then the results are combined to form
the final solution.
The execution time can be assumed to have a general recurrence equation as

T(n) = a · T(n/k) + f(n). (3.3.12)
where f(n) is the time to divide problem into k subsets and to combine the
subsets to form the final solution.
Let n = km, then T(n) = a · T(n/k) + f(n)

= a ·
(

a · T(n/k2) + f(n/k)
)
+ f(n)

= a2 · T(n/k2) + a · f(n/k) + f(n)

= am · T(n/km) +

m−1∑

i=0

ai · f(n/ki)

= alogk n · T(1) +

m−1∑

i=0

ai · f(n/ki)

= nlogk a +

m−1∑

i=0

ai · f(n/ki) (3.3.13)

Algorithms (EE/NTHU) Unit 3.3 More on Divide and Conquer Algorithms Mar. 26, 2018 28 / 32

Master Method
Note that

T(1) is taken out since it is a constant,
The summation of the second part has m = logk n terms.

1 If there is a positive ϵ such that nlogk a = nϵ · f(n) then for large n

T(n) = Θ(nlogk a). (3.3.14)

2 If there is a positive ϵ such that nlogk a = f(n)/nϵ and if a · f(n/k) ≤ c · f(n)
for some constant c < 1 for large n

T(n) = Θ(f(n)). (3.3.15)
3 If f(n) = Θ(nlogk a) then

T(n) = Θ(nlogk a lg n). (3.3.16)

This comes from the m summation terms. m = logk n = Θ(lg n).

In general, the time complexity of the divide-and-conquer algorithms fall into
one of the three scenarios as shown in Eqs. (3.3.14, 3.3.15, 3.3.16).
However, exceptions exist.

Algorithms (EE/NTHU) Unit 3.3 More on Divide and Conquer Algorithms Mar. 26, 2018 29 / 32

Master Method – Example

Example 1, Algorithm MaxMin

T(n) = 2T(n/2) + 2

a = 2, k = 2, nlogka = n and f(n) = 2.
Use Eq. (3.3.14) we have T(n) = Θ(n).
Example 2, Algorithm MaxSubArray

T(n) = 2T(n/2) + n

a = 2, k = 2, nlogka = n and f(n) = n.
Use Eq. (3.3.16) we have T(n) = Θ(n lg n).
Example 3, MatrixMultiplication

T(n) = 8T(n/2) + n2

a = 8, k = 2, nlogka = n3 and f(n) = n2.
Use Eq. (3.3.14) we have T(n) = Θ(n3).

Algorithms (EE/NTHU) Unit 3.3 More on Divide and Conquer Algorithms Mar. 26, 2018 30 / 32

Master Method – Example
Example 4,

T(n) = 2T(n/2) + n2

a = 2, k = 2, nlogka = n and f(n) = n2.
Use Eq. (3.3.15) we have T(n) = Θ(n2).
This can also be derived as follows.

T(n) = 2T(n/2) + n2

= 2
(
2T(n/4) + (n/2)2

)
+ n2

= 4T(n/4) + n2(1 + 1/2)

= 2mT(n/2m) + n2
m−1∑

i=0

1/2i

= n + n2 · 2 · (1− 2−m)

= Θ(n2)

Thus, the Master method can be effective to find the complexity of divide
and conquer algorithms.

Algorithms (EE/NTHU) Unit 3.3 More on Divide and Conquer Algorithms Mar. 26, 2018 31 / 32

Summary

Selection problem
Matrix multiplication

Strassen’s matrix multiplication
Convex hull problem

Graham’s scan algorithm
Quick hull algorithm

Time complexity of divide and conquer algorithms
Master method

Algorithms (EE/NTHU) Unit 3.3 More on Divide and Conquer Algorithms Mar. 26, 2018 32 / 32

