Unit 3.1 Divide and Conquer

Algorithms

EE/NTHU

Mar. 19, 2018

Unit 3.1 Divide and Conquer Mar. 19, 2018 1/29

Divide and Conquer

@ Divide and Conquer method:

e Given an input set P, Divide and conquer approach splits the input into &
distinct subsets, 1 < k < n, yielding k subproblems.

e These k subproblems are solved individually.

e Then a method must be found that combines the subsolutions into a solution
of the whole problem.

Algoirithm 3.1.1. Divide and conquer

1 Algorithm DandC(P)
2 // Divide and conquer algorithm.
31
4 if Small(P) then return S(P); // Small size, solve immediately and return.
5 else {
6 divide P into smaller instances P1, P, ..., Py, k> 1;
7 // Apply DandC to each of these subproblems and combine for solution.
8 return Combine(DandC(P;), DandC(P2), ..., DandC(P%));
9 }
10 }
v

Unit 3.1 Divide and Conquer Mar. 19, 2018 2/29

Binary Search

@ Given an array A with n elements sorted in nondecreasing order, the following
algorithm determines if the element z is in A or not. If it is, return j such
that A[j] = x, otherwise return 0.

Algoirithm 3.1.2. Binary Search

1 Algorithm BinSrch(A, [, h, x)

2 // Find if zis in A[l: h]. Return j, A[j] = z, if found; otherwise return 0.
31

4 if (I=h) then {

5 if (x = A[l]) then return [;
6 else return 0;

7 } else {

8 mid = |(I+ h)/2];

9 if (z = A[mid]) return mid;

10 else if (z < A[mid]) then return BinSrch(A4, [mid—1,z);
11 else return BinSrch(A, mid+ 1,h, x);

12 }

13 }

@ This algorithm needs to be invoked by BinSrch(A, 1, n,z) in the main
function.

Algorithms (EE/NTHU Unit 3.1 Divide and Conquer Mar. 19, 2018
g

lterative Binary Search

@ lterative binary search.

Algoirithm 3.1.3. Iterative Binary Search

1 Algorithm BinSearch(A, n, x)
2 // Iterative binary search.

4 low:=1; high := n;

5 while (low < high) do {

6 mid := | (low+ high)/2] ;

7 if (x = A[mid]) return mid;

8 else if (z < A[mid]) then high := mid — 1;
9 else low:= mid+ 1;

10 }
11 return O;
12 }

Algorithms (EE/NTHU Unit 3.1 Divide and Conquer Mar. 19, 2018
g

Binary Search Examples

e Example
A={-15-6, 0, 7, 9, 23, 54, 82, 101, 112, 125, 131, 142, 151 }.
(1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14]

Note that » = 14 and A is sorted in nondecreasing order.

BinSearch(A4, 14,151) BinSearch(A4, 14, 9) BinSearch(A, 14, —14)
iter | low high mid iter | low high mid iter | low high mid
1 1 14 7 1 1 14 7 1 1 14 7
2 8 14 11 2 1 6 3 2 1 6 3
3 12 14 13 3 4 6 5 3 1 2 1
4 14 14 14 return 5) 4 2 2 2
return 14) 5 2 1

return 0

Algorithms (EE/NTHU Unit 3.1 Divide and Conquer Mar. 19, 2018 5 /29
g

Binary Search — Correctness

Theorem 3.1.4.

Algorithm BinSearch(A, n, x) works correctly.

Proof. Assuming all comparison operations are properly defined, and initially,
low=1, high=n, A[1] < A[2] < --- < A[n]. If n =0, then the while loop is
not entered and 0 is returned. Otherwise, low < mid < high. If x = A[mid] then
the algorithm terminated successfully. Otherwise, the range is narrowed to either
[low: mid — 1] or [mid+ 1 : high]. Note that if low > mid — 1 or mid+ 1 > high
then the algorithm terminates and returns O, which is also a correct result. Since
n is finite, the while loop can be executed at most (Ign + 1) times. Therefore,
the algorithm always terminates and returns the right answer.]

v

@ To fully test BinSearch algorithm:

o To test all successful searches, z € A[i], i=1,--- ,n
— M cases,

e To test all unsuccessful cases, z ¢ Ali], i=1,---,n
— n+ 1 cases,

e Totally 2n+ 1 cases.

Algorithms (EE/NTHU Unit 3.1 Divide and Conquer Mar. 19, 2018 6 /29
g

Binary Search — Complexities

@ The space complexity of BinSearch(A, n, z) is (n+ 4)

e n for array A, and then low, high, mid and x take 4 spaces.

@ The number of comparisons for each element of A
[1] 2] [3] [4] [5] [6] [7] [8] [9] ([10] [11] [12] [13] [14]
a=4{-15,-6, 0, 7, 9, 23, 54, 82, 101, 112, 125, 131, 142, 151 }.
Comp.,, 3 4 2 4 3 4 1 4 3 4 2 4 3 4
@ Thus, for successful search

e Best case: 1 comparison
e Worst case: 4 comparisons

4
e Average case: ﬁ = 3.21 comparisons

Algorithms (EE/NTHU) Unit 3.1 Divide and Conquer Mar. 19, 2018 7 /29

Binary Search — Unsuccessful Search

@ For unsuccessful search

z < A[l]: 3 comparisons.

o All other cases: 4 comparisons.
e Best case: 3 comparisons.
()

Worst case: 4 comparisons.

3+4x14 59
Average case: T A 3.93.
@ The binary decision tree for 14-element array searching

Algorithms (EE/NTHU) Unit 3.1 Divide and Conquer Mar. 19, 2018 8 /29

Binary Search — Number of Comparisons

Theorem 3.1.5.

If nis the in range [2°~1 2%), then BinSearch(A4, n, t) makes at most k element
comparisons for a successful search and either kK — 1 or £ comparisons for an
unsuccessful search. In other words, the time for a successful search is O(lgn) and
for an unsuccessful search is ©(lg n).

v

Proof. Consider the binary decision tree describing the comparisons of the
BinSearch(A, n, x) algorithm. All successful searches end at a circular node
whereas all unsuccessful searches end at a square node. If 251 < n < 2%, then all
circular nodes are at levels 1, 2, -- -, k whereas all square nodes are at levels k£ and
k4 1. The number of comparisons needed to terminate a circular node at level 7 is
¢ whereas the number of comparisons needed to terminate at a square node at
level 7is ©— 1. Thus, the theorem follows.]

V.

@ The above theorem is the worst case time complexity of BinSearch
algorithm.

Algorithms (EE/NTHU Unit 3.1 Divide and Conquer Mar. 19, 2018 9 /29
g

Binary Search — Average-case Complexity

@ To determine the average case complexity, focus on the binary decision tree
again.
@ Successful searches terminate at circular nodes — internal nodes.
e The distance from any internal node to the root is the level —1.
e The internal node path length, I, is the sum of the distances of all internal
nodes to the root.
@ Unsuccessful searches terminate at the square nodes — external nodes.
e The external node path length, F, is the sum of the distances of all external
nodes to the root.

@ It can be shown that

E=IT+n+1 (3.1.1)
@ Let A,(n) be the average number of comparisons in a successful search then
Aslny="17 I/m. (3.1.2)

@ Let A,(n) be the average number of comparisons in a unsuccessful search
then
Au(n) = E/(n+1). (3.1.3)
@ Note that for a binary decision tree with n internal nodes, there are n+ 1
external nodes.

Algorithms (EE/NTHU Unit 3.1 Divide and Conquer Mar. 19, 2018 10 / 29
g

Binary Search — Time Complexities

@ Combining these equations

As(n) = (1+1/n)Au(n) —1/n. (3.1.4)

o As(n) and A,(n) have similar complexity.
@ From Theorem (3.1.5) we know that F is proportional to nlg n.

@ Thus, both A,(n) and A4(n) are both proportional to 1g n.

@ The following table summaries the time complexity of BinSearch(A, n, z).

Successful Unsuccessful
search search
Best case O(1) O(lgn)
Average case O(lgn) O(lgn)
Worst case O(lgn) O(lgn)

Algorithms (EE/NTHU Unit 3.1 Divide and Conquer Mar. 19, 2018 11 / 29
g

Binary Search — Improved

@ In the algorithm BinSearch(A, n, z), two element comparisons are needed for
each iteration.

@ The following algorithm reduces the number of element comparisons to 1 per
iteration.
e Though the execution time shortened, the complexity does not change.

Algorithm 3.1.6. Binary search with 1 comparison /iteration

1 Algorithm BinSearchi(A, n, z)
2 // Improved binary search algorithm.

4 low:=1; high:=n+1;

5 while (low < high—1) do {

6 mid := | (low + high)/2] ;

7 if (z < A[mid]) then high := mid;
8 else low := mid;

9

}
10 if (z = A[low]) then return low;
11 else return 0;

.

Algorithms (EE/NTHU Unit 3.1 Divide and Conquer Mar. 19, 2018 12 / 29
g

Finding the Maximum and Minimum

@ Given a set of n elements, find the maximum and the minimum.

@ The following algorithm is a straightforward implementation to solve the
problem.

Algorithm 3.1.7. Find maximum and minimum

1 Algorithm SMaxMin(A, n, maz, min)

2 // Set max to the maximum and min to the minimum of array A[l : n].
34

4 mazx := min := A[l];

5 for 7:=2 to ndo {

6 if (A[¢] > max) then max := A[i];

7 if (A[i] < min) then min := A[i];

8 }

9}

@ The space complexity is (n + 4).

@ The time complexity, in terms of number of comparisons, is
o Best case: 2(n—1).
o Average case: 2(n—1).
e Worst case: 2(n—1).

Algorithms (EE/NTHU Unit 3.1 Divide and Conquer Mar. 19, 2018 13 / 29
g

Finding the Maximum and Minimum — Improved

@ The preceding algorithm can be improved as

Algorithm 3.1.8. Find maximum and minimum

1 Algorithm SMaxMin1(A, n, max, min)

2 // Set max to the maximum and min to the minimum of A[l : n].
31

4 mazx := min := A[l];

5 for 7:=2 to ndo {

6 if (A[i] > max) then max := A[i];

7 else if (A[7] < min) then min := A[{];

8 }

9}

@ The space complexity is still (n+ 4).

@ The time complexity, in terms of number of comparisons, is

o Best case: n— 1, if a is increasing order.
e Worst case: 2(n— 1), if A is in decreasing order.

Algorithms (EE/NTHU Unit 3.1 Divide and Conquer Mar. 19, 2018 14 / 29
g

Finding the Maximum and Minimum — Divide and Conquer

@ Using Divide and Conquer approach, we have the following algorithm
Algorithm 3.1.9. Find maximum and minimum
1 Algorithm MaxMin(A, I, h, mazx, min)
2 // Set max to the maximum and min to the minimum of A[l: h].
3 {
4 if (I= h) then max := min = A[l];
5 else if (I=h—1) then {
6 if (A[l] < A[h]) then { maz:= A[h]; min:= A[l]; }
7 else { max := A[l]; min:= Alh]; }
8 }
9 else {
10 mid = |(I4+ h)/2];
11 MaxMin(A, [, mid, maz, min) ;
12 MaxMin(A, mid + 1, h, mazxl, minl) ;
13 if (mazx < mazl) maz := mazl;
14 if (min > minl) min := minl ;
15 }
16 })
Algorithms (EE/NTHU) Unit 3.1 Divide and Conquer Mar. 19, 2018 15 / 29

Finding the Maximum and Minimum — Example

e Example
A=1{22 13, -5, -8, 15, 60, 17, 31, 47 }
[1] [2] [3] [4] [5] [6] [7] [8] [9]

@ The calling tree of MaxMin(A, 1,9, maz, min)

@ ©

2 1,5,22,—8 2

3 /36\ D)

1,3,22,—5 4,5,15,—8

4 /15\ 2

1,2,22,13 3,3,—5,—5

@ Red color is the calling sequence.

@ Blue color is the returning sequence.

Algorithms (EE/NTHU Unit 3.1 Divide and Conquer Mar. 19, 2018 16 / 29
g

Finding the Maximum and Minimum — Complexity

@ To find the complexity of the recursive MaxMin algorithm, let T(n) be the
number of comparisons.
@ The recurrence relation is

{ T([n/2)+ T([n/2]) +2 n>2
1 n=2 (3.1.5)
0 n=1

o If n=2% then
T(n) =2T(n/2) + 2
=2(2T(n/4)+2)+ 2
=4(T(n/4)) +4+ 2
= 8(T(n/8)) +8+ 4+ 2

k—1
=2 T2)+) 2°
=1

_ okl 9k o
= 3n/2 — 2 (3.1.6)

@ This is the best-case, average-case and worst-case complexity.

Unit 3.1 Divide and Conquer Mar. 19, 2018 17 / 29

Finding the Maximum and Minimum — Analysis

@ The worst-case time complexity of the recursive version of MaxMin algorithm
(Algorithm 3.1.9) is 25% better than the straightforward implementation
(Algorithm 3.1.8)

e However, Algorithm (3.1.9) has larger space complexity, ©(|lgn| x 6), in
addition to the space needed for the array.

e The number of recursions is |lgn|.
e The variables for each recursive function call: 4, j, mazx, min, maxl, and minl.

@ In Algirithm (3.1.9), there are two integer comparisons
o Lines 4 (i=j) and 5 (i =j—1).

@ Let's consider the time complexity if these comparisons are not negligible.

@ These integer comparisons can be reduced in number as the following
algorithm

Unit 3.1 Divide and Conquer Mar. 19, 2018 18 / 29

Finding the Maximum and Minimum — Reduced Integer

Comparison

Algorithm 3.1.10. Find maximum and minimum
1 Algorithm MaxMini(A, [, h, max, min)
2 // Set max to the maximum and min to the minimum of A[l: h].
34
Z if (> h—1) then {
5 if (A[l] < A[h]) then { maz:= A[h]; min:= A[l]; }
6 else { mazx:= A[l]; min:= Alh]; }
7 }
8 else {
9 mid:= |[(I+ h)/2];
10 MaxMin(A, I, mid, maz, min) ;
11 MaxMin(A, mid 4 1, h, mazxl, minl) ;
12 if (max < mazl) maz := mazl;
13 if (min > minl) min := minl;
14 }
15 }
o
Algorithms (EE/NTHU) Unit 3.1 Divide and Conquer Mar. 19, 2018 19 / 29

Finding the Maximum and Minimum — Complexity

@ Let C'(n) be the number of comparisons, including integer comparisons, for
the MaxMin1 algorithm, then

_f 2C(n/2)+3 n>2
C(n) —{ 5 n— 9 (3.1.7)

and assume n = 2F then

“5n/2-8 (3.1.8)

@ This is the best-case, average-case and worst-case complexity.

@ Note for the straightforward implementation, Algorithm (3.1.8), the
worst-case complexity, including integer comparison, is 3(n — 1).

Algorithms (EE/NTHU) Unit 3.1 Divide and Conquer Mar. 19, 2018 20 /29

Finding the Maximum and Minimum — Comparisons

e Comparing the straightforward implementation, Algorithm (3.1.8), and the
divide and conquer approach, Algorithm (3.1.10)

@ Divide and conquer approach is effective if the key comparison, A[i] > Alj],
is dominating.

@ But, when the key comparison is on the same order as the integer comparison
then the straightforward implementation may be more effective.

e Due to the recursion overhead.

@ Design and analysis of computer algorithms needs to be carried out for
specific problem instance.

@ Divide-and-conquer approach often results in recursive implementation.
e Space complexity can be larger.
@ The following algorithm finds Maximum and Minimum with 3|n/2|
comparisons.

o If nis even, it needs 3(n—2)/2 + 1 = 3n/2 — 2 comparisons.
e If nis odd, it needs 3(n — 1)/2 comparisons.

Algorithms (EE/NTHU Unit 3.1 Divide and Conquer Mar. 19, 2018 21 / 29
g

Finding the Maximum and Minimum — Iterative Algorithm

Algorithm 3.1.11. lterative maximum and minimum

1 Algorithm MaxMin_I(A, n, mazx, min)

2 // Find the maximum and the minimum of array A with n elements.

3 {

4 if (n mod 2 =0) then { // nis even.

5 if (A[l] > A[2]) then { maz := A[l]; min:= A[2]; }

6 else { min:= A[l]; max:= A[2]; }

7 1:=3;

8 } else { // nis odd.

9 min = A[l]; maz := A[l]; i := 2;
10 }
11 while (¢ < n) do { // 3 comparisons for 2 elements.
12 if (A[Z] > A[i+ 1)) { J:= Ali]; j:= A[i+ 1]; } // Jis the larger one.
13 else { j:= A[i]; J:= A[i+ 1]; } // jis the smaller one.
14 if (j < min) min := j; // compare j to min.
15 if (J > max) maz:= J; // compare J to maz.
16 7:— 025
17 }
18 }

v
Algorithms (EE/NTHU) Unit 3.1 Divide and Conquer Mar. 19, 2018 22 / 29

Maximum Subarray Problem

@ Suppose the stock price of a company is known for a period of time. What is
the maximum profit one can obtain for a single buy and sell transaction?

Stock Price

100

Price

60
0 2 4 6 8 10 12 14 16 18

Day

o

@ The stock price data can be transformed into daily price change information
as shown below. Then the problem is to find the range of the subarray with
the maximum contiguous sum.

Day 1 2 3 4 5 6 7 8 9
Price 100 113 110 85 105 102 86 63 81
Change 0 13 -3 -25 20 -3 -16 -23 18
Day 10 11 12 13 14 15 16 17
Price 101 94 106 101 79 94 90 97
Change 20 -7 12 -5 -22 15 -4 7

Algorithms (EE/NTHU Unit 3.1 Divide and Conquer Mar. 19, 2018 23 /29
g

Maximum Subarray Problem, |l

@ Maximum subarray problem:

o Input: an array of size n, Aln.
e Output: range, low and high, such that

high k
; Ali] = 1§r;1213<§n 2 Al1]. (3.1.9)

e Note that for the buying day for the stock is actually low — 1.

@ Brute-force approach
e To try out all possible ranges, 1 < i< k< n.
n—1
] n(n—1)
Total ber of possbilities: =
e Total number of p iliti ; 5
o Thus, the computational complexity of brute-force approach is Q(n?).

e Since the summation operation needs to be carried out, the actual complexity
should be ©(n?).

Algorithms (EE/NTHU Unit 3.1 Divide and Conquer Mar. 19, 2018 24 / 29
g

Maximum Subarray Problem — Brute-Force Approach

Algorithm 3.1.12. Maximum Subarray — Brute-Force Approach

1 Algorithm MaxSubArrayBF (A, n, low, high)

2 // Find low and high to maximize > A[i], low < 7 < high.
3 {

4 maz := 0; low:= 1; high := n;

5 for j:=1to ndo { // Try all possible ranges: A[j: k].
6 for k:=jto ndo {

7 sum :=0;

8 for i:=jto kdo {

9 sum := sum + Ali] ;

10 }

11 if (swm > max) then { // Record the maximum value and range.
12 max := sum; low := j; high := k;

13 }

14 }

15 }

16 return max;

17 }

Algorithms (EE/NTHU Unit 3.1 Divide and Conquer Mar. 19, 2018 25 /29
g

Maximum Subarray Problem — Divide and Conquer

Algorithm 3.1.13. Maximum Subarray — Divide-and-Conquer Approach

1 Algorithm MaxSubArray(A, begin, end, low, high)

2 // Find low and high to maximize > A[i], begin < low < i < high < end.

3 {

4 if (begin = end) { // termination condition.

5 low := begin; high := end; return A[begin];

6 ¥

7 mid := | (begin + end)/2] ;

8 Isum := MaxSubArray(A, begin, mid, llow, lhigh) ; // left region

9 rsum := MaxSubArray(A, mid + 1, end, rlow, rhigh); // right region
10 zsum := MaxSubArrayXB(A, begin, mid, end, xlow, zhigh); // cross boundary
11 if (Isum >= rsum and lsum >= zsum) then { // lsum is the largest
12 low := llow; high := lhigh; return lsum;
13 }
14 else if (rsum >= lsum and rsum >= zsum) then { // rsum is the largest
15 low := rlow; high := rhigh; return rsum;
16 }
17 low := zlow; high := xhigh; return zsum; // cross-boundary is the largest
18 }

.
Algorithms (EE/NTHU) Unit 3.1 Divide and Conquer Mar. 19, 2018 26 / 29

Maximum Subarray Problem — Cross Boundary

Algorithm 3.1.14. Maximum Subarray — Cross Boundary

1 Algorithm MaxSubArrayXB(A, begin, mid, end, low, high)

2 // Find low and high to maximize > A[i], begin < low < mid < high < end.

34

4 [sum :=0; low := mid; sum :=0;

5 for ¢:= mid to begin step —1 do { // find low to maximize > A[low : mid]
6 sum := sum + A[i];

7 if (sum > lsum) then {

8 lsum := sum; low := 1;

9 }
10 }
11 rsum := 0; high := mid+ 1; sum := 0;
12 for ¢:= mid+ 1 to end do { // find end to maximize > A[mid+ 1 : high]
13 sum := sum+ A[i];
14 if (sum > rsum) then {
15 rsum := sum; high := i;
16 }
17 }
18 return lsum + rsum;
19 }

Algorithms (EE/NTHU) Unit 3.1 Divide and Conquer Mar. 19, 2018 27 /29

Maximum Subarray Problem — Complexity

@ The number of comparisons for divide-and-conquer algorithm, MaxSubArray,
is dominated by

T(n) =2-T(n/2) + Txp(n). (3.1.10)
where T'xp is the number of comparisons of the algorithm MaxSubArrayXB.
e And,
TXB(TL> = n. (3.1.11)

e Thus, assuming n = 2%,
Tlreh= 2% T(n/2)3=m
=2(2- T(n/2*) + n/2) +n
= 22T (n/2%) 4 2n

=28 T(n/2%) + k- n
=n+n-lgn (3.1.12)
@ The computational complexity of the divide-and-conquer MaxSubArray is
O(n-lgn).

Algorithms (EE/NTHU) Unit 3.1 Divide and Conquer Mar. 19, 2018 28 /29

Summary

@ Divide and conquer
@ Binary search

Recursive algorithm
Iterative algorithm
Correctness
Complexity
Improved algorithm

@ Finding maximum and minimum

Straightforward implementation
Straightforward implementation, improved
Divide and conquer approach

Complexity

Algorithm with reduced integer comparisons
Comparisons of different algorithms

@ Maximum subarray problem

e Brute-force approach
e Divide-and-conquer approach
e Computational complexity

