
Unit 3.1 Divide and Conquer

Algorithms

EE/NTHU

Mar. 19, 2018

Algorithms (EE/NTHU) Unit 3.1 Divide and Conquer Mar. 19, 2018 1 / 29

Divide and Conquer

Divide and Conquer method:
Given an input set P, Divide and conquer approach splits the input into k
distinct subsets, 1 < k < n, yielding k subproblems.
These k subproblems are solved individually.
Then a method must be found that combines the subsolutions into a solution
of the whole problem.

Algoirithm 3.1.1. Divide and conquer
1 Algorithm DandC(P)
2 // Divide and conquer algorithm.
3 {
4 if Small(P) then return S(P) ; // Small size, solve immediately and return.
5 else {
6 divide P into smaller instances P1,P2, . . . ,Pk, k > 1 ;
7 // Apply DandC to each of these subproblems and combine for solution.
8 return Combine(DandC(P1), DandC(P2), . . . , DandC(Pk)) ;
9 }

10 }

Algorithms (EE/NTHU) Unit 3.1 Divide and Conquer Mar. 19, 2018 2 / 29

Binary Search
Given an array A with n elements sorted in nondecreasing order, the following
algorithm determines if the element x is in A or not. If it is, return j such
that A[j] = x, otherwise return 0.

Algoirithm 3.1.2. Binary Search
1 Algorithm BinSrch(A, l, h, x)
2 // Find if x is in A[l : h]. Return j, A[j] = x, if found; otherwise return 0.
3 {
4 if (l = h) then {
5 if (x = A[l]) then return l ;
6 else return 0 ;
7 } else {
8 mid := ⌊(l + h)/2⌋ ;
9 if (x = A[mid]) return mid ;

10 else if (x < A[mid]) then return BinSrch(A, l,mid − 1, x) ;
11 else return BinSrch(A,mid + 1, h, x) ;
12 }
13 }

This algorithm needs to be invoked by BinSrch(A, 1,n, x) in the main
function.

Algorithms (EE/NTHU) Unit 3.1 Divide and Conquer Mar. 19, 2018 3 / 29

Iterative Binary Search

Iterative binary search.

Algoirithm 3.1.3. Iterative Binary Search
1 Algorithm BinSearch(A,n, x)
2 // Iterative binary search.
3 {
4 low := 1 ; high := n ;
5 while (low ≤ high) do {
6 mid := ⌊(low + high)/2⌋ ;
7 if (x = A[mid]) return mid ;
8 else if (x < A[mid]) then high := mid − 1 ;
9 else low := mid + 1 ;

10 }
11 return 0 ;
12 }

Algorithms (EE/NTHU) Unit 3.1 Divide and Conquer Mar. 19, 2018 4 / 29

Binary Search Examples

Example
A = { -15, -6, 0, 7, 9, 23, 54, 82, 101, 112, 125, 131, 142, 151 }.

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14]

Note that n = 14 and A is sorted in nondecreasing order.

BinSearch(A, 14, 151)
iter low high mid
1 1 14 7
2 8 14 11
3 12 14 13
4 14 14 14

return 14

BinSearch(A, 14, 9)
iter low high mid
1 1 14 7
2 1 6 3
3 4 6 5

return 5

BinSearch(A, 14,−14)
iter low high mid
1 1 14 7
2 1 6 3
3 1 2 1
4 2 2 2
5 2 1

return 0

Algorithms (EE/NTHU) Unit 3.1 Divide and Conquer Mar. 19, 2018 5 / 29

Binary Search – Correctness

Theorem 3.1.4.
Algorithm BinSearch(A,n, x) works correctly.

Proof. Assuming all comparison operations are properly defined, and initially,
low = 1, high = n, A[1] ≤ A[2] ≤ · · · ≤ A[n]. If n = 0, then the while loop is
not entered and 0 is returned. Otherwise, low ≤ mid ≤ high. If x = A[mid] then
the algorithm terminated successfully. Otherwise, the range is narrowed to either
[low : mid − 1] or [mid + 1 : high]. Note that if low > mid − 1 or mid + 1 > high
then the algorithm terminates and returns 0, which is also a correct result. Since
n is finite, the while loop can be executed at most (lg n + 1) times. Therefore,
the algorithm always terminates and returns the right answer. □

To fully test BinSearch algorithm:
To test all successful searches, x ∈ A[i], i = 1, · · · ,n
– n cases,
To test all unsuccessful cases, x /∈ A[i], i = 1, · · · ,n
– n + 1 cases,
Totally 2n + 1 cases.

Algorithms (EE/NTHU) Unit 3.1 Divide and Conquer Mar. 19, 2018 6 / 29

Binary Search – Complexities

The space complexity of BinSearch(A,n, x) is (n + 4)

n for array A, and then low, high, mid and x take 4 spaces.

The number of comparisons for each element of A
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14]

a = { -15, -6, 0, 7, 9, 23, 54, 82, 101, 112, 125, 131, 142, 151 }.
Comp., 3 4 2 4 3 4 1 4 3 4 2 4 3 4

Thus, for successful search
Best case: 1 comparison
Worst case: 4 comparisons
Average case: 45

14
= 3.21 comparisons

Algorithms (EE/NTHU) Unit 3.1 Divide and Conquer Mar. 19, 2018 7 / 29

Binary Search – Unsuccessful Search
For unsuccessful search

x < A[1]: 3 comparisons.
All other cases: 4 comparisons.
Best case: 3 comparisons.
Worst case: 4 comparisons.
Average case: 3 + 4 ∗ 14

15
=

59

15
= 3.93.

The binary decision tree for 14-element array searching

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Algorithms (EE/NTHU) Unit 3.1 Divide and Conquer Mar. 19, 2018 8 / 29

Binary Search – Number of Comparisons

Theorem 3.1.5.
If n is the in range [2k−1, 2k), then BinSearch(A,n, x) makes at most k element
comparisons for a successful search and either k − 1 or k comparisons for an
unsuccessful search. In other words, the time for a successful search is O(lg n) and
for an unsuccessful search is Θ(lg n).

Proof. Consider the binary decision tree describing the comparisons of the
BinSearch(A,n, x) algorithm. All successful searches end at a circular node
whereas all unsuccessful searches end at a square node. If 2k−1 ≤ n < 2k, then all
circular nodes are at levels 1, 2, · · · , k whereas all square nodes are at levels k and
k+1. The number of comparisons needed to terminate a circular node at level i is
i whereas the number of comparisons needed to terminate at a square node at
level i is i − 1. Thus, the theorem follows. □

The above theorem is the worst case time complexity of BinSearch
algorithm.

Algorithms (EE/NTHU) Unit 3.1 Divide and Conquer Mar. 19, 2018 9 / 29

Binary Search – Average-case Complexity
To determine the average case complexity, focus on the binary decision tree
again.
Successful searches terminate at circular nodes – internal nodes.

The distance from any internal node to the root is the level −1.
The internal node path length, I, is the sum of the distances of all internal
nodes to the root.

Unsuccessful searches terminate at the square nodes – external nodes.
The external node path length, E, is the sum of the distances of all external
nodes to the root.

It can be shown that
E = I + n + 1 (3.1.1)

Let As(n) be the average number of comparisons in a successful search then
As(n) = 1 + I/n. (3.1.2)

Let Au(n) be the average number of comparisons in a unsuccessful search
then

Au(n) = E/(n + 1). (3.1.3)
Note that for a binary decision tree with n internal nodes, there are n + 1
external nodes.

Algorithms (EE/NTHU) Unit 3.1 Divide and Conquer Mar. 19, 2018 10 / 29

Binary Search – Time Complexities

Combining these equations

As(n) = (1 + 1/n)Au(n)− 1/n. (3.1.4)

As(n) and Au(n) have similar complexity.

From Theorem (3.1.5) we know that E is proportional to n lg n.
Thus, both Au(n) and As(n) are both proportional to lg n.
The following table summaries the time complexity of BinSearch(A,n, x).

Successful Unsuccessful
search search

Best case Θ(1) Θ(lg n)
Average case Θ(lg n) Θ(lg n)
Worst case Θ(lg n) Θ(lg n)

Algorithms (EE/NTHU) Unit 3.1 Divide and Conquer Mar. 19, 2018 11 / 29

Binary Search – Improved
In the algorithm BinSearch(A,n, x), two element comparisons are needed for
each iteration.
The following algorithm reduces the number of element comparisons to 1 per
iteration.

Though the execution time shortened, the complexity does not change.

Algorithm 3.1.6. Binary search with 1 comparison/iteration
1 Algorithm BinSearch1(A,n, x)
2 // Improved binary search algorithm.
3 {
4 low := 1 ; high := n + 1 ;
5 while (low < high − 1) do {
6 mid := ⌊(low + high)/2⌋ ;
7 if (x < A[mid]) then high := mid ;
8 else low := mid ;
9 }

10 if (x = A[low]) then return low ;
11 else return 0 ;
12 }

Algorithms (EE/NTHU) Unit 3.1 Divide and Conquer Mar. 19, 2018 12 / 29

Finding the Maximum and Minimum
Given a set of n elements, find the maximum and the minimum.
The following algorithm is a straightforward implementation to solve the
problem.

Algorithm 3.1.7. Find maximum and minimum
1 Algorithm SMaxMin(A,n,max,min)
2 // Set max to the maximum and min to the minimum of array A[1 : n].
3 {
4 max := min := A[1] ;
5 for i := 2 to n do {
6 if (A[i] > max) then max := A[i] ;
7 if (A[i] < min) then min := A[i] ;
8 }
9 }

The space complexity is (n + 4).
The time complexity, in terms of number of comparisons, is

Best case: 2(n − 1).
Average case: 2(n − 1).
Worst case: 2(n − 1).

Algorithms (EE/NTHU) Unit 3.1 Divide and Conquer Mar. 19, 2018 13 / 29

Finding the Maximum and Minimum – Improved

The preceding algorithm can be improved as

Algorithm 3.1.8. Find maximum and minimum
1 Algorithm SMaxMin1(A,n,max,min)
2 // Set max to the maximum and min to the minimum of A[1 : n].
3 {
4 max := min := A[1] ;
5 for i := 2 to n do {
6 if (A[i] > max) then max := A[i] ;
7 else if (A[i] < min) then min := A[i] ;
8 }
9 }

The space complexity is still (n + 4).
The time complexity, in terms of number of comparisons, is

Best case: n − 1, if a is increasing order.
Worst case: 2(n − 1), if A is in decreasing order.

Algorithms (EE/NTHU) Unit 3.1 Divide and Conquer Mar. 19, 2018 14 / 29

Finding the Maximum and Minimum – Divide and Conquer
Using Divide and Conquer approach, we have the following algorithm

Algorithm 3.1.9. Find maximum and minimum
1 Algorithm MaxMin(A, l, h,max,min)
2 // Set max to the maximum and min to the minimum of A[l : h].
3 {
4 if (l = h) then max := min := A[l] ;
5 else if (l = h − 1) then {
6 if (A[l] < A[h]) then { max := A[h] ; min := A[l] ; }
7 else { max := A[l] ; min := A[h] ; }
8 }
9 else {

10 mid := ⌊(l + h)/2⌋ ;
11 MaxMin(A, l,mid,max,min) ;
12 MaxMin(A,mid + 1, h,max1,min1) ;
13 if (max < max1) max := max1 ;
14 if (min > min1) min := min1 ;
15 }
16 }

Algorithms (EE/NTHU) Unit 3.1 Divide and Conquer Mar. 19, 2018 15 / 29

Finding the Maximum and Minimum – Example

Example
A = { 22, 13, −5, −8, 15, 60, 17, 31, 47 }

[1] [2] [3] [4] [5] [6] [7] [8] [9]

The calling tree of MaxMin(A, 1, 9,max,min)

1,2,22,13 3,3,−5,−5

1,3,22,−5 4,5,15,−8

1,5,22,−8

6,7,60,17 8,9,47,31

6,9,60,17

1,9,60,−8
1

2

3

4 5

6

7

8 9

1 2

3 4

5

6 7

8

9

Red color is the calling sequence.
Blue color is the returning sequence.

Algorithms (EE/NTHU) Unit 3.1 Divide and Conquer Mar. 19, 2018 16 / 29

Finding the Maximum and Minimum – Complexity
To find the complexity of the recursive MaxMin algorithm, let T(n) be the
number of comparisons.
The recurrence relation is

T(n) =

T(⌈n/2⌉) + T(⌈n/2⌉) + 2 n > 2
1 n = 2
0 n = 1

(3.1.5)

If n = 2k, then
T(n) = 2T(n/2) + 2

= 2(2T(n/4) + 2) + 2

= 4(T(n/4)) + 4 + 2

= 8(T(n/8)) + 8 + 4 + 2

= 2k−1T(2) +

k−1∑

i=1

2i

= 2k−1 + 2k − 2

= 3n/2− 2 (3.1.6)

This is the best-case, average-case and worst-case complexity.
Algorithms (EE/NTHU) Unit 3.1 Divide and Conquer Mar. 19, 2018 17 / 29

Finding the Maximum and Minimum – Analysis

The worst-case time complexity of the recursive version of MaxMin algorithm
(Algorithm 3.1.9) is 25% better than the straightforward implementation
(Algorithm 3.1.8)
However, Algorithm (3.1.9) has larger space complexity, Θ(⌊lg n⌋ × 6), in
addition to the space needed for the array.

The number of recursions is ⌊lg n⌋.
The variables for each recursive function call: i, j, max, min, max1, and min1.

In Algirithm (3.1.9), there are two integer comparisons
Lines 4 (i = j) and 5 (i = j − 1).

Let’s consider the time complexity if these comparisons are not negligible.
These integer comparisons can be reduced in number as the following
algorithm

Algorithms (EE/NTHU) Unit 3.1 Divide and Conquer Mar. 19, 2018 18 / 29

Finding the Maximum and Minimum – Reduced Integer
Comparison

Algorithm 3.1.10. Find maximum and minimum
1 Algorithm MaxMin1(A, l, h,max,min)
2 // Set max to the maximum and min to the minimum of A[l : h].
3 {
4 if (l ≥ h − 1) then {
5 if (A[l] < A[h]) then { max := A[h] ; min := A[l] ; }
6 else { max := A[l] ; min := A[h] ; }
7 }
8 else {
9 mid := ⌊(l + h)/2⌋ ;

10 MaxMin(A, l,mid,max,min) ;
11 MaxMin(A,mid + 1, h,max1,min1) ;
12 if (max < max1) max := max1 ;
13 if (min > min1) min := min1 ;
14 }
15 }

Algorithms (EE/NTHU) Unit 3.1 Divide and Conquer Mar. 19, 2018 19 / 29

Finding the Maximum and Minimum – Complexity

Let C (n) be the number of comparisons, including integer comparisons, for
the MaxMin1 algorithm, then

C (n) =
{

2C (n/2) + 3 n > 2
2 n = 2

(3.1.7)

and assume n = 2k then

C (n) = 2C (n/2) + 3

= 4C (n/4) + 6 + 3

= 2k−1C (2) + 3

k−2∑

i=0

2i

= 2k + 3× 2k−1 − 3

= 5n/2− 3 (3.1.8)

This is the best-case, average-case and worst-case complexity.
Note for the straightforward implementation, Algorithm (3.1.8), the
worst-case complexity, including integer comparison, is 3(n − 1).

Algorithms (EE/NTHU) Unit 3.1 Divide and Conquer Mar. 19, 2018 20 / 29

Finding the Maximum and Minimum – Comparisons

Comparing the straightforward implementation, Algorithm (3.1.8), and the
divide and conquer approach, Algorithm (3.1.10)
Divide and conquer approach is effective if the key comparison, A[i] > A[j],
is dominating.
But, when the key comparison is on the same order as the integer comparison
then the straightforward implementation may be more effective.

Due to the recursion overhead.

Design and analysis of computer algorithms needs to be carried out for
specific problem instance.

Divide-and-conquer approach often results in recursive implementation.
Space complexity can be larger.

The following algorithm finds Maximum and Minimum with 3⌊n/2⌋
comparisons.

If n is even, it needs 3(n − 2)/2 + 1 = 3n/2− 2 comparisons.
If n is odd, it needs 3(n − 1)/2 comparisons.

Algorithms (EE/NTHU) Unit 3.1 Divide and Conquer Mar. 19, 2018 21 / 29

Finding the Maximum and Minimum – Iterative Algorithm

Algorithm 3.1.11. Iterative maximum and minimum
1 Algorithm MaxMin_I(A,n,max,min)
2 // Find the maximum and the minimum of array A with n elements.
3 {
4 if (n mod 2 = 0) then { // n is even.
5 if (A[1] > A[2]) then { max := A[1] ; min := A[2] ; }
6 else { min := A[1] ; max := A[2] ; }
7 i := 3 ;
8 } else { // n is odd.
9 min := A[1] ; max := A[1] ; i := 2 ;

10 }
11 while (i < n) do { // 3 comparisons for 2 elements.
12 if (A[i] > A[i + 1]) { J := A[i] ; j := A[i + 1] ; } // J is the larger one.
13 else { j := A[i] ; J := A[i + 1] ; } // j is the smaller one.
14 if (j < min) min := j ; // compare j to min.
15 if (J > max) max := J ; // compare J to max.
16 i := i + 2 ;
17 }
18 }

Algorithms (EE/NTHU) Unit 3.1 Divide and Conquer Mar. 19, 2018 22 / 29

Maximum Subarray Problem
Suppose the stock price of a company is known for a period of time. What is
the maximum profit one can obtain for a single buy and sell transaction?

0 2 4 6 8 10 12 14 16 18
60

80

100

Day

Pr
ice

Stock Price

The stock price data can be transformed into daily price change information
as shown below. Then the problem is to find the range of the subarray with
the maximum contiguous sum.

Day 1 2 3 4 5 6 7 8 9
Price 100 113 110 85 105 102 86 63 81
Change 0 13 -3 -25 20 -3 -16 -23 18
Day 10 11 12 13 14 15 16 17
Price 101 94 106 101 79 94 90 97
Change 20 -7 12 -5 -22 15 -4 7

Algorithms (EE/NTHU) Unit 3.1 Divide and Conquer Mar. 19, 2018 23 / 29

Maximum Subarray Problem, II

Maximum subarray problem:
Input: an array of size n, A[n].
Output: range, low and high, such that

high∑

i=low

A[i] = max
1≤j≤k≤n

k∑

i=j
A[i]. (3.1.9)

Note that for the buying day for the stock is actually low − 1.
Brute-force approach

To try out all possible ranges, 1 ≤ j ≤ k ≤ n.

Total number of possbilities:
n−1∑

i=1

=
n(n − 1)

2
.

Thus, the computational complexity of brute-force approach is Ω(n2).
Since the summation operation needs to be carried out, the actual complexity
should be Θ(n3).

Algorithms (EE/NTHU) Unit 3.1 Divide and Conquer Mar. 19, 2018 24 / 29

Maximum Subarray Problem – Brute-Force Approach

Algorithm 3.1.12. Maximum Subarray – Brute-Force Approach
1 Algorithm MaxSubArrayBF(A,n, low, high)
2 // Find low and high to maximize

∑
A[i], low ≤ i ≤ high.

3 {
4 max := 0 ; low := 1 ; high := n ;
5 for j := 1 to n do { // Try all possible ranges: A[j : k].
6 for k := j to n do {
7 sum := 0 ;
8 for i := j to k do {
9 sum := sum + A[i] ;

10 }
11 if (sum > max) then { // Record the maximum value and range.
12 max := sum ; low := j ; high := k ;
13 }
14 }
15 }
16 return max ;
17 }

Algorithms (EE/NTHU) Unit 3.1 Divide and Conquer Mar. 19, 2018 25 / 29

Maximum Subarray Problem – Divide and Conquer

Algorithm 3.1.13. Maximum Subarray – Divide-and-Conquer Approach
1 Algorithm MaxSubArray(A, begin, end, low, high)
2 // Find low and high to maximize

∑
A[i], begin ≤ low ≤ i ≤ high ≤ end.

3 {
4 if (begin = end) { // termination condition.
5 low := begin ; high := end ; return A[begin] ;
6 }
7 mid := ⌊(begin + end)/2⌋ ;
8 lsum := MaxSubArray(A, begin,mid, llow, lhigh) ; // left region
9 rsum := MaxSubArray(A,mid + 1, end, rlow, rhigh) ; // right region

10 xsum := MaxSubArrayXB(A, begin,mid, end, xlow, xhigh) ; // cross boundary
11 if (lsum >= rsum and lsum >= xsum) then { // lsum is the largest
12 low := llow ; high := lhigh ; return lsum ;
13 }
14 else if (rsum >= lsum and rsum >= xsum) then { // rsum is the largest
15 low := rlow ; high := rhigh ; return rsum ;
16 }
17 low := xlow ; high := xhigh ; return xsum ; // cross-boundary is the largest
18 }

Algorithms (EE/NTHU) Unit 3.1 Divide and Conquer Mar. 19, 2018 26 / 29

Maximum Subarray Problem – Cross Boundary
Algorithm 3.1.14. Maximum Subarray – Cross Boundary

1 Algorithm MaxSubArrayXB(A, begin,mid, end, low, high)
2 // Find low and high to maximize

∑
A[i], begin ≤ low ≤ mid ≤ high ≤ end.

3 {
4 lsum := 0 ; low := mid ; sum := 0 ;
5 for i := mid to begin step −1 do { // find low to maximize

∑
A[low : mid]

6 sum := sum + A[i] ;
7 if (sum > lsum) then {
8 lsum := sum ; low := i ;
9 }

10 }
11 rsum := 0 ; high := mid + 1 ; sum := 0 ;
12 for i := mid + 1 to end do { // find end to maximize

∑
A[mid + 1 : high]

13 sum := sum + A[i] ;
14 if (sum > rsum) then {
15 rsum := sum ; high := i ;
16 }
17 }
18 return lsum + rsum ;
19 }

Algorithms (EE/NTHU) Unit 3.1 Divide and Conquer Mar. 19, 2018 27 / 29

Maximum Subarray Problem – Complexity
The number of comparisons for divide-and-conquer algorithm, MaxSubArray,
is dominated by

T(n) = 2 · T(n/2) + TXB(n). (3.1.10)
where TXB is the number of comparisons of the algorithm MaxSubArrayXB.
And,

TXB(n) = n. (3.1.11)
Thus, assuming n = 2k,

T(n) = 2 · T(n/2) + n
= 2(2 · T(n/22) + n/2) + n
= 22 · T(n/22) + 2n
= · · ·
= 2k · T(n/2k) + k · n
= n + n · lg n (3.1.12)

The computational complexity of the divide-and-conquer MaxSubArray is
Θ(n · lg n).

Algorithms (EE/NTHU) Unit 3.1 Divide and Conquer Mar. 19, 2018 28 / 29

Summary

Divide and conquer
Binary search

Recursive algorithm
Iterative algorithm
Correctness
Complexity
Improved algorithm

Finding maximum and minimum
Straightforward implementation
Straightforward implementation, improved
Divide and conquer approach
Complexity
Algorithm with reduced integer comparisons
Comparisons of different algorithms

Maximum subarray problem
Brute-force approach
Divide-and-conquer approach
Computational complexity

Algorithms (EE/NTHU) Unit 3.1 Divide and Conquer Mar. 19, 2018 29 / 29

