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Stacks
A stack is a linear list that can store elements to be fetched later, and the
element fetched from the stack is the last one stored.

List In First Out (LIFO).
Stack can be implemented using a simple array and an integer that represents
the top position.
Assume the array is stack[1 : n] with n elements and the stack index is top,
which is initialized to 0.
The following algorithm inserts an element into the stack.

Algorithm 2.1.1. Stack Push – Array
1 Algorithm StkPush(item)
2 // Push an element onto the stack.
3 {
4 if (top ≥ n) then error (” Stack is full! ”) ;
5 else {
6 top := top + 1 ;
7 stack[top] := item ; // Store item.
8 }
9 }
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Stack — Pop

To fetch an item from the stack.

Algorithm 2.1.2. Stack Pop – Array
1 Algorithm StkPop()
2 // Pop the top element from the stack and return its value.
3 {
4 if (top < 1) then error (” Stack is empty! ”) ;
5 else {
6 item := stack[top] ;
7 top := top − 1 ;
8 return item ;
9 }

10 }

Both StkPush and StkPop algorithms have the time complexity of O(1)

It is independent of the size of the stack, n.
And also independent of the number of items stored, top.
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Stack — Status Check

Two functions are useful to check the status of the stack.

Algorithm 2.1.3. Stack Empty Check
1 Algorithm StkEmpty()
2 // Check if the stack is empty.
3 {
4 if (top = 0) then return true ;
5 else return false ;
6 }

Algorithm 2.1.4. Stack Full Check
1 Algorithm StkFull()
2 // Check if the stack is Full.
3 {
4 if (top = n) then return true ;
5 else return false ;
6 }
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Stack — Dynamic Allocated Array
The array stack can be either a static array or a dynamically allocated array.
Using static array, then the number of items to be stored is limited by the
size, n, of the array.
Using a dynamically allocated array, the array size, n, can be enlarged and
then employ the realloc function to adjust the stack space.

This is more flexible to handle problems in different sizes.

Stack can also be implemented using linked list
Assuming NODE is a structure defined as

struct NODE {
TYPE data; // for data storage
struct NODE *link; // pointer to the next node

}

NODE pointer LStack is now the linked list to store the items.
LStack is initialized to NULL.

The variable top is no longer needed.
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Stacks in Linked List

Algorithm 2.1.5. Stack Push – Linked List
1 Algorithm LStkPush(item)
2 // Push the item onto the stack.
3 {
4 temp := new NODE ;
5 temp → data := item ; temp → link := LStack ;
6 LStack := temp ;
7 }

Algorithm 2.1.6. Stack Pop – Linked List
1 Algorithm LStkPop()
2 // Pop an item from the stack.
3 {
4 if (LStack = NULL ) then error (” Stack is empty! ”) ;
5 else {
6 item := LStack → data ; temp := LStack ; LStack := temp → link ;
7 free temp ; return item ;
8 }
9 }
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Linked List Stack Status Check

With enough computer resources, stack implemented using linked list should
not have stack full issue.

Thus, no StkFull check is needed.

Stack empty check is equivalent to check if LStack is NULL.
Again, either LStkPush or LStkPop algorithm is of O(1) time complexity.

Independent to stack size or the number of items stored.

The space complexity of the array stack is Θ(n), where n is the size of the
array.
The space complexity of linked list stack is Θ(m), where m is the number of
items stored.
The linked list stack appears to be more memory efficient, since m ≤ n.
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Queue
Queue is another linear list to store data, but the data fetched is the first one
stored.

First in First out (FIFO).
Queue can also be implemented using simple array.
Assume the array is Q[1 : n] with n elements.

Two integer variables: head for the front of the queue, and tail for the rear of
the queue.

The following algorithm stores an item onto the queue.
Algorithm 2.1.7. Enqueu.

1 Algorithm Enqueue(item)
2 // Insert the item onto the queue.
3 {
4 tail := (tail + 1) mod n ;
5 if (head = tail) then error (” Queue is full! ”) ;
6 else {
7 Q[tail ] := item ;
8 }
9 }
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Queue, II

Algorithm 2.1.8. Dequeue.
1 Algorithm EmptyQ()
2 // Check if the queue is empty or not.
3 {
4 if (head = tail) then return true ;
5 else return false ;
6 }

Algorithm 2.1.9. Dequeue.
1 Algorithm Dequeue()
2 // Removes and returns the first item of the queue.
3 {
4 if EmptyQ() then error (” Queue is empty! ”) ;
5 else {
6 head := (head + 1) mod n ;
7 item := Q[head ] ;
8 return item ;
9 }

10 }
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Stack and Queue

Time complexities of both Enqueue() and Dequeue() algorithms are O(1).
Space complexities are Θ(n), n is the size of the array Q.

Queue also can be implemented using linked list

Both stack and queue are useful data structures to store temporary data.
Storing and retrieving data are very efficient.

Stack is Last In First Out
A simple array with an addition variable is sufficient.

Queue is First In First Out
An simple array with two additional variables.
The array elements are used in a circular fashion.
Enlarging queue size is a little more complicated than stack.

Both can also be implemented using linked lists.
Space utilization is more efficient.
Time complexity remains the same.
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Trees

Definition 2.1.10. Tree.
A tree is a finite set of one or more nodes such that there is a specially designated
node called the root and the remaining nodes are partitioned into n ≥ 0 disjoint
sets T1, …, Tn, where each of these sets is a tree. The sets T1, …, Tn are called
the subtrees of the root.
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Trees, II

The number of subtrees of a node is called its degree.
Nodes that have degree 0 are called leaf or terminal nodes.

The other nodes are nonterminals.
The roots of the subtree of a node X are the children of X.

The node X is the parent of its children.

The ancestors of a node are all the nodes along the path from the root to
that node.
Children of the same parent are said to be siblings.
The degree of a tree is the maximum degree of the nodes in the tree.
The root is at level 1. If a node is at level p, then its children are at level
p + 1.
The height or depth of a tree is the maximum level of any node in the tree.
A forest is a set of n > 0 disjoint trees.
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Binary Trees

Definition. 2.1.11. Binary Tree.
A binary tree is a finite set of nodes that is either empty or consists of a root and
two disjoint binary trees called the left and right subtrees.
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Dictionaries

An abstract data type that supports the operations insert, delete and search
is called a dictionary.
At high level dictionaries can be categorized as comparison methods and
direct access methods.

Binary search tree is one of the comparison methods.
Hashing is an example of direct access method.
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Binary Search Trees

Definition 2.1.12. Binary search tree.
A binary search tree is a binary tree. It may be empty. If it is not empty, then it
satisfies the following properties:

1. Every element has a key and no two elements have the same key (i.e., the
keys are distinct).

2. The keys (if any) in the left subtree are smaller than the key in the root.
3. The keys (if any) in the right subtree are larger than the key in the root.
4. The left and right subtrees are also binary search trees.
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Binary Search Trees – Data Structure

Linked list can be used to store binary search trees.
Each node has four items: parent, lchild, rchild, key.

An additional item, leftsize, is needed for search by rank algorithm.
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Binary Search Trees – Min and Max
Given a binary tree, the tree node with the minimum or maximum key can be
found by the following algorithms.

Algorithm 2.1.13. Find the minimum in Binary Search Tree
1 Algorithm BSTmin(T)
2 // Find the minimum in a binary tree T.
3 {
4 t := T ;
5 while (t → lchild ̸= NULL ) t := t → lchild ;
6 return t ;
7 }

Algorithm 2.1.14. Find the maximum in Binary Search Tree
1 Algorithm BSTmax(T)
2 // Find the maximum in a binary tree T.
3 {
4 t := T ;
5 while (t → rchild ̸= NULL ) t := t → rchild ;
6 return t ;
7 }
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Binary Search Trees – Search

Search in a binary search tree can be easily done.
This is a recursive version.

Algorithm 2.1.15. Recursive Search for Binary Search Tree
1 Algorithm BSTsearch_R(T, x)
2 // Recursive search key x in binary tree T.
3 {
4 if (T = NULL or x = T → key) then return T ;
5 if (x < T → key) then return BSTsearch_R(T → lchild, x) ;
6 else return BSTsearch_R(T → rchild, x) ;
7 }

For a binary tree of height h, the time complexity for all three above
algorithms are O(h).
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Binary Search Trees – Iterative Search

Search in binary search tree can also be done iteratively.

Algorithm 2.1.16. Iterative Search for Binary Search Tree
1 Algorithm BSTsearch(T, x)
2 // Iterative search key x in binary tree T.
3 {
4 t := T ;
5 while (( t ̸= NULL ) and (x ̸= t → key)) do {
6 if (x < t → key) then t := t → lchild ;
7 else t := t → rchild ;
8 }
9 return t ;

10 }

The searching time is the same as the recursive version, O(h).
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Binary Search Trees – Search by Rank
If each node in the binary search tree has an additional item, leftsize, which
is one plus the number of elements in the left subtree, then the following
algorithm performs search by rank.

Algorithm 2.1.17. Search by Rank with Binary Search Tree
1 Algorithm BSTsearchRank(T, k)
2 // Search the k-th element in binary tree T
3 {
4 t := T ;
5 while ((t ̸= NULL ) and (k ̸= t → leftsize)) do {
6 if (k < t → leftsize) then t := t → lchild ;
7 else {
8 k := k − t → leftsize ; t := t → rchild ;
9 }

10 }
11 return t ;
12 }

Time complexity is O(h).
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Binary Search Trees – Successor

The successor of a node in a binary tree can also be found in O(h) time.

Algorithm 2.1.18. Find the successor
1 Algorithm BSTsuccessor(T)
2 // Find the successor of T in a binary tree.
3 {
4 if (T → rchild ̸= NULL) then
5 return BSTmin(T → rchild) ;
6 P := T → parent ;
7 while (P ̸= NULL and T = P → rchild) {
8 T := P ; P := P → parent ;
9 }

10 return P ;
11 }

The predecessor can also be found similarly.
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Binary Search Trees – Insertion
Algorithm 2.1.19. Binary Search Tree Insertion.

1 Algorithm BSTinsert(T, x)
2 // Insert a node with key x into the binary search tree T.
3 {
4 t := T ; P := t → parent ;
5 while (t ̸= NULL ) { // Repeat until P is a leaf node.
6 P := t ;
7 if (x < t → key) t := t → lchild ; // Maintain BST property.
8 else t := t → rchild ;
9 }

10 q := new TreeNode ; // Create a new treeNode.
11 q → lchild := NULL ; q → rchild := NULL ; q → key := x ;
12 if (P = NULL ) T := q ; // The tree was empty.
13 if (x < P → key) P → lchild := q ; // Insert.
14 else P → rchild := q ;
15 return T ;
16 }

The time complexity is O(h).
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Binary Search Trees – Deletion

Delete a node need to consider the following cases:
Deletion of a leaf node is straightforward.

Remove the corresponding link from its parent.
Deletion of a nonleaf node that has only one child is also straightforward.

Replace the data of deleted node by its child’s data
Then remove the child node.

Deletion of a nonleaf node that has two children can be done in the following
way:

Replace the data of the deleted node by the largest element of its left subtree or
the smallest element of its right subtree.
Then delete the replacing element from the subtree it is taken.

Deletion of a binary search tree of height h can be done in O(h) time.
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Binary Search Tree, Tree Height

Given a binary tree with n nodes, then the maximum height is n.
Thus the worst-case complexity of the above BST algorithms are O(n).
However, we have the following theorem.

Theorem 2.1.20.
The expected height of a randomly built binary search tree on n distinct keys is
O(lg n).

Proof please see textbook [Cormen], pp. 300-303.

Thus, binary search tree is a good choice for dictionary applications.
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Comparing to Other Trees

More tree data structure have been proposed for dictionary applications.
Worst-case O(lg n) complexity can be achieved.

Data structure Search Insert Delete
Binary search tree O(n) (wc) O(n) (wc) O(n) (wc)

O(lg n) (av) O(lg n) (av) O(lg n) (av)
AVL tree O(lg n) (wc) O(lg n) (wc) O(lg n) (wc)
2-3 tree O(lg n) (wc) O(lg n) (wc) O(lg n) (wc)
Red-Black tree O(lg n) (wc) O(lg n) (wc) O(lg n) (wc)
B-tree O(lg n) (wc) O(lg n) (wc) O(lg n) (wc)
Splay tree O(lg n) (am) O(lg n) (am) O(lg n) (am)

(wc): worst case.
(av): average case.
(am): amortized cost.
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Binary Trees – Maximum Nodes

Lemma 2.1.21.
The maximum number of nodes on level i of a binary tree is 2i−1. Also, the
maximum number of nodes in a binary tree of depth k is 2k − 1, k > 0.
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Complete Binary Trees

A binary tree of depth k has exactly 2k − 1 nodes is called a full binary tree of
depth k.
A full binary tree can be stored into a linear array with 2k − 1 elements. The
root is stored in the first element, followed by its left child, and then the right
child. All the nodes at the same level will be stored sequentially, from left to
right.
A binary tree with n nodes and depth k is complete if and only if its nodes
correspond to the nodes that are numbered one to n in a full binary tree of
depth k.

That is it can be stored in the first n elements of a linear array following the
rules above.
In a complete binary tree, the leaf nodes occur one at most two adjacent levels.
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Complete Binary Trees and Arrays

Lemma 2.1.22.
If a complete binary tree with n nodes is represented by a linear array, then for any
node with index i, 1 ≤ i ≤ n, we have:

1. parent(i ) is at ⌊i/2⌋, if i ̸= 1. When i = 1, i is the root and has no parent.
2. lchild(i ) is at 2i, if 2i ≤ n. If 2i > n, i has no left child.
3. rchild(i ) is at 2i + 1, if 2i + 1 ≤ n. If 2i + 1 > n, i has no right child.

The linear array storage of complete binary tree is efficient with no waste.
But for general binary tree, there could be spaces wasted, especially for skewed
trees.
Insertion and deletion of nodes are difficult to perform.
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Priority Queues

Any data structure that supports the operations of search min (or max),
insert, and delete min (or max) is called a priority queue.

Definition 2.1.23. Heap
A max (min) heap is a complete binary tree with the property that the value at
each node is at least as large as (as small as) the values at its children (if they
exist). This property is called the heap property.

By definition, the search time for max (or min) heap is O(1).
But, insert and delete function need to be carefully implemented.

A max heap can be implemented using an array A[1 : n].
The functions insert and delete are illustrated in the following.
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Heap Insertion

The following algorithm insert an item to a max heap, which is represented
by an array A.

Algorithm 2.1.24. Heap insertion.
1 Algorithm HeapInsert(A,n, item)
2 // Insert the n-th element, item, to the max heap, A.
3 {
4 i := n ; A[n] := item ;
5 while ((i > 1) and (A[⌊i/2⌋] < item)) do {
6 A[i ] := A[⌊i/2⌋] ; i := ⌊i/2⌋ ;
7 }
8 A[i ] := item ;
9 }

HeapInsert algorithm takes O(lg n) time in worst case.
Note that for a max heap, the root is always the largest element.

Also for all the subtrees.
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Heap Insertion, Example
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Heap Increase Key

For an item in the max heap, some applications may need to increase the
value (priority) of the item.
The following algorithm perform such task and maintain the heap property.
The time complexity if O(lg n).

Algorithm 2.1.25. Heap Increase Key.
1 Algorithm HeapIncKey(A, i, key)
2 // Increase A[i ] to key.
3 {
4 if (A[i ] > key) error ( ”new key is smaller” ) ;
5 A[i ] := key ;
6 while (i > 1 and A[⌊i/2⌋] < A[i ]) do {
7 t := A[i ] ; A[i ] := A[⌊i/2⌋] ; A[⌊i/2⌋] := t ;
8 i := ⌊i/2⌋ ;
9 }

10 }
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Heap Remove Max

The following algorithm remove the maximum from the max heap and then
calls Heapify to maintain the max heap property.
It can be shown that the complexity is also O(lg n).

Algorithm 2.1.26. Heap Remove Max.
1 Algorithm HeapRmMax(A,n)
2 // Remove the maximum from the heap A[1 : n] as return it.
3 {
4 if (n = 0) then error (” heap is empty! ”) ;
5 x := A[1] ; A[1] := A[n] ;
6 Heapify(A, 1,n − 1) ;
7 return x ;
8 }
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Heapify – Maintain Heap Property

Algorithm 2.1.27. Maintain heap property
1 Algorithm Heapify(A, i,n)
2 // To maintain max heap property for the tree with root A[i ].
3 // The size of A is n.
4 {
5 j := 2× i ; item := A[i ] ; done := false ; // A[2× i ] is the lchild.
6 while ((j ≤ n) and ( not done)) do { // A[2× i + 1] is the rchild.
7 if ((j < n) and (A[j ] < A[j + 1])) then j := j + 1 ;
8 if (item > A[j ]) then done := true ; // If larger than children, done.
9 else { // Otherwise, continue.

10 A[⌊j/2⌋] := A[j ] ; j := 2× j ;
11 }
12 }
13 A[⌊j/2⌋] := item ;
14 }

The algorithm compares the value of the root with its children.
If not larger, moves the larger value to the root and continue downwards.

The time complexity is O(lg n).
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Heap Sort
The HeapRmMax(A,n) algorithm removes the largest element from the array
A, and then the algorithm Heapify(A, 1,n− 1) adjusts the array A[1 : n− 1]
such that it satisfies the max heap property.
Removing the largest element takes O(1) time, and maintaining the max
heap property takes O(lg n) time.
Thus, one can use these algorithms to perform sort function.
In order to do that, the array needs to satisfy max heap property first.
The Heapify algorithm can also be use for this job.

Starting from the deepest internal nodes down to the root, perform Heapify
on these internal nodes.
Leave nodes have not lchild nor rchild, and thus no need to perform Heapify
on them.
Around n/2 nodes to Heapify and each takes O(lg n) time.
Total complexity is O(n lg n).

After that one can remove the maximum element and then perform Heapify
to maintain the max heap property.

This process repeats until the entire A array is sorted.
Heapify is called n times and each iteration take O(lg n) time.
Total time complexity is O(n lg n).
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Heap Sort

Algorithm 2.1.28. Heap sort.
1 Algorithm HeapSort(A,n)
2 // Sort A[1 : n] into nondecreasing order.
3 {
4 for i := ⌊n/2⌋ to 1 step −1 do // Init A[1 : n] to be a max heap.
5 Heapify(A, i,n) ;
6 for i := n to 2 step −1 do { // Move maximum to the end.
7 t := A[i ] ; A[i ] := A[1] ; A[1] := t ; // Then make A[1 : i − 1] a max

heap.
8 Heapify(A, 1, i − 1) ;
9 }

10 }

The time complexity of O(n lg n) is the best for comparison based sorting
algorithms.
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Date Structures for Priority Queue

Priority queues have many applications.
Various data structures that support priority queue.

Data Structure Insert Remove max/min
Min heap O(lg n) (wc) O(lg n) (wc)
Min-max heap O(lg n) (wc) O(lg n) (wc)
Deap O(lg n) (wc) O(lg n) (wc)
Leftist tree O(lg n) (wc) O(lg n) (wc)
Binomial heap O(lg n) (wc) O(lg n) (wc)

O(1) (am) O(lg n) (am)
Fibonacci heap O(lg n) (wc) O(lg n) (wc)

O(1) (am) O(lg n) (am)
2-3 tree O(lg n) (wc) O(lg n) (wc)
Red-Black tree O(lg n) (wc) O(lg n) (wc)
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Summary

Stacks and queues
Insert, delete and status check
Array and linked list representations

Trees
Binary search tree

Recursive and iterative searches
Insert and delete
Application: dictionary

Heap
Max and min heap
Insert and delete
Application: priority queue
Heap sort
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