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Monotonicity
@ A function f(n) is monotonically increasing if m < n implies f{m) < f(n).
@ A function f(n) is monotonically decreasing if m < n implies f(m) > f(n).
@ A function f(n) is strictly increasing if m < n implies f{m) < f(n).
@ A function f(n) is strictly decreasing if m < n implies f(m) > f(n).

Floor and ceiling functions
@ For any real number z, we denote the greatest integer less than or equal to =

by |z] and the least integer greater than or equal to x by [z].
@ For any real z

g = 1<) <o r] < g+ (1.4.1)
@ For any integer n,

[n/2]+ |n/2] =n. (1.4.2)

@ For any real number z > 0 and integers m,n > 0,
[fz/m]/n] = [x/(mn)], (1.4.3)
LLz/m]/n]| = |=/(mn)], (1.4.4)
[m/n] < (m+ (n—1))/n, (1.4.5)
|m/n] < (m+ (n—1))/n. (1.4.6)

@ The floor function |z| is monotically increasing, so is the ceiling function [z].
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Modular arithmetic

@ For any integer m and positive integer n, the value m mod n is the remainder

(or residue) of the quotient m/n:
m mod n=m— |m/n|n. (1.4.7)

o If (a mod n) = (b mod n), we write ¢ = b (mod n) and say a is equivalent to
b, modulo n.

@ a=b (mod n) if a and b have the same remainder when divided by n.

@ a= b (mod n) if and only if nis a divisor of b — a.

e We write a # b (mod n) if a is not equivalent to b, modulo n.
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Polynomials

@ Given a nonnegative integer n, a polynomial in z of degree n is a function
p(x) of the form

n

p(z) = Z az’, (1.4.8)
k=0
where the constants ag, a1, - , a, are the coefficients of the polynomial and

an # 0.

@ A polynomial is asymptotically positive if and only if a, > 0.

@ For an asymptotically positive polynomial p(x) of degree n, we have
p(z) = O(a").

@ For any real constant ¢ >= 0 then function z“ is monotonically increasing,
and for any real constant ¢ <= 0, the function x¢ is monotonically decreasing.

e We say that a function f(x) is polynomial bounded if f(z) = O(a*) for some
constant .
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Exponentials
@ For all real a > 0, m and n, we have the following identities:

o’ =1, (1.4.9)

a' = a, (1.4.10)
at=1/a, (1.4.11)
Fe 7 S (1.4.12)
oSy ) %5 (1.4.13)
kR R (1.4.14)

@ For all n and a > 1, the function a” is monotonically increasing in n. When
convenient, we assume (0% = 1.
@ For all real constants a and b such that a > 1,

nb

lim — =0, (1.4.15)

n—oo Q"

thus

n’ = o(a"). (1.4.16)
That is any exponential function with a base strictly greater than 1 grows
faster than any polynomial function.
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@ Let e be the base of the natural logarithm function, e = 2.71828 - - -, we have
for all real z
. 2 a8 = zF
e’ =1 xSl ¥ S =) o (1.4.17)
k=0

@ For all real x, we have the inequality
e® >1 -+, (1.4.18)

withe the equality holds only when z = 0.
@ When |z] < 1, we have the approximation

l+z< e <1+z+ 2~ (1.4.19)

e Considering x — 0, we have

e’ =14 z+ 0(%). (1.4.20)
@ For all real x, we have
. T\n
nli)r{)lo(l + 7}}) =e. (1.4.21)
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Logarithms
@ The following notations are adopted

lgn = log,n  (binary logarithm),
Inn = log,n  (natural logarithm),
lg"hn = (lgn)*  (exponentiation),
lglgn = lg(lgn) (composition).

@ We also adopt the convention that the logarithm functions only apply to the
next term in the formula, so that lgn+ k= (Ign) + k.

e If b > 1 is a constant, then for n > 0 the function log, n is strictly increasing.
@ Forall a>0, b>0, ¢> 0 and n,

4! blogb a7
log.(ab) = log, a+ log,b,
log, " = nlog, a,
log.a
1 = <
Vst log, b’
log,(1/a) = —log,a,
1
1 = —
08 ¢ log, b’
alOgb c — Clogb a

9

where the base of each logarithm is not 1.
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1n(1+$)—$—7+§—z+€—"'. (1.4.22)
e Forz> —1,
jﬁx <In(l+2) < (1.4.23)

where the equality holds only for z = 0.

e A function f(n) is polylogarithmically bounded if f(n) = O(Ig" n) for some
constant k. Since

b b
i, SIS, o (1.4.24)
n—%00 (2&)1gn n—oo N
we have
Ig” n = o(n®) (1.4.25)

for any constant a > 0. Thus, any positive polynomial function grows faster
than any polylogarithmic function.

@ Change the base of a logarithm from one constant to another changes the
value by a constant factor, so in conjunction with the O-notation, the use of
log, or lg or log, are equivalent.
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Factorials
@ The factorial function, n!, is define for integers n > 0 as

1 if n=20
| — ’
" { n-(n—1"! if n>0. (1.4.26)
Thus, n!=1-2-3---n.
@ A weak upper bound on the factorial function is n! < n”.
@ Stirling’s approximation

n\" 4
nl = V27mn (E> (1 + @(71)) (1.4.27)
@ Thus
= e
Rl L = ),
lg(n!) = ©O(nlgn).
@ Forn>1
n! = V27n (ﬁ)n e, (1.4.28)
e
where
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Function iteration
o The notation f(?(z) is used to denote function f(z) iteratively applied i times

to an initial value of x.
@ That is, let f(x) be a function over the reals. Given a nonnegative integer 7,

define TR
@Y <Pn if 1=0,
o For example, if f(z) = 2z, then f((z) = 2°z.
o Note the difference of f(9(z) and f*(z), which is f(x) raised to the ith power.

Iterative logarithm function
@ The iterative logarithm function is defined as

lg* z = min{i > 0[1g” z < 1}. (1.4.30)
@ Example la 251,
lg*4 =2,
lg" 16 = 3,
lg™ 65536 = 4,

lg* 265536 — 5.

The iterative logarithm function is a very slow growing function.
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Fibonacci numbers
@ The Fibonacci numbers are defined as

Fo = 0,
AN (1.4.31)
Fy = <Sp=r 2R3 T for 7 > 2.

@ The first few Fibonacci numbers are

0,1,1,2,3,5,8,13.21, 34,55, - - .

@ The Fibonacci number is related to the golden ratio, ¢, and its conjugate, ¢,

as Nt /2]
¢ =@’
S . 1.4.32
= ( )
And,
6 Aq2 +2\/5 — 1.61803---, (14.33)
5 = 1 _2\/5 —  _0.61803--- .
@ It can be shown that &'
F; = 1.4.34
MJ (1.4.34)

Thus, the Fibonacci numbers grow exponentially.
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