
Unit 1.2 Analysis

Algorithms

EE/NTHU

Mar. 5, 2018

Algorithms (EE/NTHU) Unit 1.2 Analysis Mar. 5, 2018 1 / 33

Evaluating an Algorithm

Some criteria to judge an algorithm
Does it do what we want it to do?
Does it work correctly according to the original specifications of the task?
Is there documentation that describes how to use it and how it works?
Are procedures created in such a way that they perform logical sub-functions?
Is the code readable?

Definition 1.2.1. Space/Time complexity
The space complexity of an algorithm is the amount of memory it needs to run to
completion. The time complexity of an algorithm is the amount of computer time
it needs to run to completion.

Performance evaluation can be divided into two phases:
Performance analysis: a priori estimates,
Performance measurement: a posteriori testing.

Algorithms (Analysis) Unit 1.2 Analysis Mar. 5, 2018 2 / 33

Algorithm Examples

Examples for space and time complexities analysis.

Algorithm 1.2.2. Expression
1 Algorithm expr(x, y, z)
2 // Arithmetic expression.
3 {
4 return x + y + y ∗ z + (x + y − z)/(x + y) + 4.0 ;
5 }

Given arguments x, y, and z, the value of the expression is calculated.

Algorithms (Analysis) Unit 1.2 Analysis Mar. 5, 2018 3 / 33

Algorithm Examples, II
Both algorithms calculate the sum of the array A with n elements.

Algorithm 1.2.3. Simple Sum
1 Algorithm Sum(A,n)
2 // Simple summation of n-element array A[1 : n].
3 {
4 Sum := 0 ;
5 for i := 1 to n do
6 Sum := Sum + A[i] ;
7 return Sum ;
8 }

Algorithm 1.2.4. Recursive Sum
1 Algorithm RSum(A,n)
2 // Recursive summation of n-element array A[1 : n].
3 {
4 if (n ≤ 0) then return 0 ; // Termination check.
5 else return A[n]+ RSum(A,n − 1) ;
6 }

Algorithms (Analysis) Unit 1.2 Analysis Mar. 5, 2018 4 / 33

Space Complexity
The memory space needed for the preceding algorithms consists two parts:

A fixed part that is independent of the size of the problem.
Function instructions, constants, simple variables (such as indexing variables).

The variable part that depends on the particular problem.
Space for the referenced variables, recursion stack space, etc.

The total space S(P) for an algorithm P is
S(P) = c + SP(instance characteristic). (1.2.1)

where c is a constant.
For Algorithm Expression the memory space needed are for variables x, y, z,
and the result. Thus, no memory is needed that is specific to the instance of
the problem, i.e., SP(instance characteristic) = 0.
For Algorithm Sum, SSum(n) ≥ (n + 3).

n for array A, and one for each variable: n, i and Sum.
For Algorithm RSum, SRSum(n) ≥ 3(n + 1).

Each recursive call needs to store formal parameters, local variables, and
return address.
For this problem, it needs to store pointer to A, n and the return address.
(assume it takes 3 words)
The number of recursive calls is n + 1. Thus, total memory space needed is at
least 3(n + 1).

Algorithms (Analysis) Unit 1.2 Analysis Mar. 5, 2018 5 / 33

Time Complexity

The time complexity T(P) of an algorithm is the time required to execute an
algorithm.

In a general sense, the compile time should be included. But, the compile time
does not depend on the size of the problem and, thus, is not the focus of the
analysis.
The execution time should include all operations. Yet, this would make the
analysis difficult.

The time complexity is simplified to count the number of program steps when
the algorithm execute, tP.

In a loose sense, a program step is an expression.

As in the following example, one can add an variable count to the algorithm
Sum to count the number of program steps.
From the example, the number of program steps for an array with n elements,
the total number of program steps executed is 2n + 3. Thus tSum = 2n + 3.

Algorithms (Analysis) Unit 1.2 Analysis Mar. 5, 2018 6 / 33

Time Complexity, II
Algorithm 1.2.5. Sum – Program Step Counting

1 Algorithm Sum(A,n)
2 // count is a global variable with initial value of 0.
3 {
4 Sum := 0 ;
5 count := count + 1 ; // for assignment
6 for i := 1 to n do {
7 count := count + 1 ; // for loop control
8 Sum := Sum + A[i] ;
9 count := count + 1 ; // for assignment

10 }
11 count := count + 1 ; // for loop termination
12 count := count + 1 ; // for return
13 return Sum ;
14 }

This algorithm is the same as Algorithm (1.2.3) but with lines 5, 7, 9, 11, 12
added
After execution, global variable count has the number of program steps
executed.

Algorithms (Analysis) Unit 1.2 Analysis Mar. 5, 2018 7 / 33

Time Complexity, III
The RSum algorithm can also be modified to count the number of program
steps as the following page.
The number of program steps for an array A with n, n > 0, elements is

tRSum(n) = 2 + tRSum(n − 1)

Including the case of n = 0, we have the following recurrence relationship:

tRSum(n) =
{

2 if n = 0,
2 + tRSum(n − 1) if n > 0.

This recursive formula can expanded for n > 0 as

tRSum(n) =2 + tRSum(n − 1)

=2 + 2 + tRSum(n − 2)

...
=2n + tRSum(0)

=2n + 2

Algorithms (Analysis) Unit 1.2 Analysis Mar. 5, 2018 8 / 33

Time Complexity, IV

Algorithm 1.2.6. RSum – Program Step Counting
1 Algorithm RSum(A,n)
2 // count is a global variable with initial value of 0.
3 {
4 count := count + 1 ; // for if statement
5 if (n ≤ 0) then {
6 count := count + 1 ; // for return statement
7 return 0 ;
8 }
9 else {

10 count := count + 1 ; // for the expression and return statements
11 return A[n] + RSum(A,n − 1) ;
12 }
13 }

This algorithm is the same as Algorithm (1.2.4) with lines 4, 6, 10 added.

Algorithms (Analysis) Unit 1.2 Analysis Mar. 5, 2018 9 / 33

Time Complexity, V

Definition 1.2.7. Input Size
The input size of a problem is defined to be the number of words (or the number
of elements) needed to describe the instance of the problem.

For the algorithm Sum(A,n) the input size is (n + 1), n for the number of
elements of the array, and 1 for the value of n.
The following algorithm adds two m × n matrices, A and B, together to form
a resulting matrix, C.

Algorithm 1.2.8. Matrix Addition
1 Algorithm MAdd(A,B,C,m,n)
2 // C[1 : m, 1 : n] := A[1 : m, 1 : n] + B[1 : m, 1 : n], all are m × n matrices.
3 {
4 for i := 1 to m do
5 for j := 1 to n do
6 C [i, j] := A[i, j] + B[i, j] ;
7 }

Algorithms (Analysis) Unit 1.2 Analysis Mar. 5, 2018 10 / 33

Time Complexity, VI
Adding count to count the number of program steps as the following.

Algorithm 1.2.9. Matrix Addition – Counting Steps
1 Algorithm MAdd(A,B,C,m,n)
2 // count is a global variable with 0 initial value.
3 {
4 for i := 1 to m do {
5 count := count + 1 ; // loop-i control
6 for j := 1 to n do {
7 count := count + 1 ; // loop-j control
8 C [i, j] := A[i, j] + B[i, j] ;
9 count := count + 1 ; // element addition

10 }
11 count := count + 1 ; // loop-j termination
12 }
13 count := count + 1 ; // loop-i termination
14 }

Time complexity is 2mn + 2m + 1

Input size is 2mn + 2

Algorithms (Analysis) Unit 1.2 Analysis Mar. 5, 2018 11 / 33

Time Complexity – Table Approach

An alternative approach to find algorithm complexity is the table approach
For example

Statement s/e freq. Total steps
1 Algorithm Sum (A,n) 0 − 0
2 // Simple summation. 0 − 0
3 { 0 − 0
4 Sum := 0 ; 1 1 1
5 for i := 1 to n do 1 n + 1 n + 1
6 Sum := Sum + A[i] ; 1 n n
7 return Sum ; 1 1 1
8 } 0 − 0
Total 2n + 3

where s/e is step per execution,
freq. is the frequency of execution.

Algorithm Sum(A,n) has the time complexity of 2n + 3.

Algorithms (Analysis) Unit 1.2 Analysis Mar. 5, 2018 12 / 33

Table Approach, II

RSum example

frequency Total steps
Statement s/e n = 0 n > 0 n = 0 n > 0

1 Algorithm RSum (A,n) 0 − − 0 0
2 // Recursive summation.
3 { 0 − − 0 0
4 if (n ≤ 0) then 1 1 1 1 1
5 return 0 ; 1 1 0 1 0
6 else return
7 A[n]+RSum (A,n − 1); 1 + x 0 1 0 1 + x
8 } 0 − − 0 0
Total 2 2 + x

x = tRSum(n − 1)

Thus,
tRSum(n) =

{
2 if n = 0,
2 + tRSum(n − 1) if n > 0.

Algorithms (Analysis) Unit 1.2 Analysis Mar. 5, 2018 13 / 33

Table Approach, III

MAdd example

Statement s/e freq. total steps
1 Algorithm MAdd (A,B,C,m,n) 0 − 0
2 // C := A + B, all are m × n matrices.
3 { 0 − 0
4 for i := 1 to m do 1 m + 1 m + 1
5 for j := 1 to n do 1 m(n + 1) mn + m
6 C [i, j] := A[i, j] + B[i, j] ; 1 mn mn
7 } 0 − 0
Total 2mn + 2m + 1

Thus, tMAdd(n) = 2mn + 2m + 1.

Algorithms (Analysis) Unit 1.2 Analysis Mar. 5, 2018 14 / 33

Fibonacci Number
Fibonacci number is defined as

f0 = 0, f1 = 1, fn = fn−1 + fn−2, n ≥ 2. (1.2.2)

The following algorithm calculate fn using iterative approach.

Algorithm 1.2.10. Fibonacci
1 Algorithm Fibonacci(n)
2 // Compute the n-th Fibonacci number.
3 {
4 if (n ≤ 1) then return n ; // f0 or f1, just return n.
5 else {
6 fim2 := 0 ; fim1 := 1 ; // fim2 = fi−2, fim1 = fi−1.
7 for i := 2 to n do {
8 fi := fim1 + fim2 ; // fi = fi−1 + fi−2.
9 fim2 := fim1 ; fim1 := fi ; // Update fi−2 and fi−1.

10 }
11 return fi ; // fn = fi.
12 }
13 }

Algorithms (Analysis) Unit 1.2 Analysis Mar. 5, 2018 15 / 33

Fibonacci Number, II

frequency Total steps
Statement s/e n ≤ 1 n ≥ 2 n ≤ 1 n ≥ 2
1 Algorithm Fibonacci (n) 0 − − 0 0
2 // Compute the n-th Fibonacci number.
3 { 0 − − 0 0
4 if (n ≤ 1) then 1 1 1 1 1
5 return n ; 1 1 0 1 0
6 else { 0 − − 0 0
7 fim2 := 0 ; fim1 := 1 ; 2 0 1 0 2
8 for i := 2 to n do { 1 0 n 0 n
9 fi := fim1 + fim2 ; 1 0 n − 1 0 n − 1

10 fim2 = fim1 ; fim1 = fi ; 2 0 n − 1 0 2n − 2
11 } 0 − − 0 0
12 return fi ; 1 0 1 0 1
13 } 0 − − 0 0
14 } 0 − − 0 0
Total 2 4n + 1

Thus,
t Fibinacci =

{
2, n ≤ 1,
4n + 1, n ≥ 2.

Algorithms (Analysis) Unit 1.2 Analysis Mar. 5, 2018 16 / 33

Time Complexity

The time complexity – the execution time – of an algorithm depends on the
input.

Thus, it is usually expressed as a function of the input size.
It can be expressed as a function of part of the input size.

For example, tMAdd as a function of m, number of rows, only.
If such complexity is of interest to a user.

In evaluating the time complexity of an algorithm, the number of steps is not
well defined.

It can be a simple comparison, an addition, a multiplication, or even a complex
expression.
Thus, the exact number is not very important.
The growth of the time complexity as the input size grows is usually of more
interest.

The asymptotic complexity will be studied more later.

Algorithms (Analysis) Unit 1.2 Analysis Mar. 5, 2018 17 / 33

Amortized Analysis
In C, array size is fixed. To handle data without prior knowledge of its size,
dynamically allocated array should be used.

Algorithm 1.2.11.
1 Algorithm Dynamic_Store(A, size, index, item)
2 // Store item into a dynamic array A of size.
3 {
4 if (size = 0) then { // Initial call.
5 size := 1 ; A := malloc(size× sizeof(typeA)) ;
6 }
7 else if (index > size) then { // Array A is full. Double A.
8 size := 2× size ;
9 B := malloc(size × sizeof(typeA)) ;

10 for i := 1 to index − 1 do B[i] := A[i] ; // Copy old data.
11 free(A) ;
12 A := B ; // Pointer assignment.
13 }
14 A[index] := item ; // Store into array A.
15 index := index + 1 ;
16 }

Algorithms (Analysis) Unit 1.2 Analysis Mar. 5, 2018 18 / 33

Amortized Analysis, II
All function parameters are assumed to be called by reference.
Before the first call to Dynamic_Store algorithm, variable size should be
initialized to 0 and index to 1.
When the algorithm is called, one array storage operation is needed most of
the time.

In this case, the complexity is Θ(1).
However, when index = 2k + 1, k = 0, 1, 2, . . ., then 2k + 1 array storage
operations are needed.

Let n = index, in this case, n operations are needed.
The complexity is Θ(n).

Overall complexity is O(n).
This overestimated the time complexity.

Amortized analysis should be used for tighter bound.
Three methods available:

Aggregate analysis
Accounting method
Potential method

Algorithms (Analysis) Unit 1.2 Analysis Mar. 5, 2018 19 / 33

Aggregate Analysis
The aggregate analysis performs the algorithm n times to get T (n)
operations, then the average performance of the algorithm is then T (n)/n.
For the Dynamic_Store(A, size, index, item) algorithm the cost of index = i,
ci is

ci =

{
i if i = 2k + 1, k ∈ N,
1 otherwise. (1.2.3)

index 1 2 3 4 5 6 7 8 9
size 1 2 4 4 8 8 8 8 16
ci 1 2 3 1 5 1 1 1 9∑

ci 1 3 6 7 12 13 14 15 24

Total cost for n Dynamic_Store calls is

T (n) =
n∑

i=1

ci ≤ n +

⌊lg n⌋∑

j=1

2j < n + 2n = 3n. (1.2.4)

Thus, the amortized cost of a single call is 3.
The amortized complexity of the algorithm is O(1).

Algorithms (Analysis) Unit 1.2 Analysis Mar. 5, 2018 20 / 33

The Accounting Method

The amortized analysis performs a sequence of n calls of the algorithm to
find the average cost.
The actual cost ci of the algorithm may vary for different instance i.
The amortized cost ĉi can be anything but to approach the actual cost over
n calls, the following relationship must hold for all n > 0.

n∑

i=1

ĉi ≥
n∑

i=1

ci. (1.2.5)

The accounting method is then to select a amortized cost ĉi and show that
Eq. (1.2.5) holds.

The smaller
(n∑

i=1

ĉi −
n∑

i=1

ci

)
the more accurate amortized cost is.

Algorithms (Analysis) Unit 1.2 Analysis Mar. 5, 2018 21 / 33

The Accounting Method, II

For the Dynamic_Store algorithm example
Choose ĉi = 3, we have

index 1 2 3 4 5 6 7 8 9
size 1 2 4 4 8 8 8 8 16
ci 1 2 3 1 5 1 1 1 9∑

ci 1 3 6 7 12 13 14 15 24
ĉi 3 3 3 3 3 3 3 3 3∑

ĉi 3 6 9 12 15 18 21 24 27∑
ĉi −

∑
ci 2 3 3 5 3 5 7 9 3

When
∑

ĉi −
∑

ci > 0, we have net credits for future operations.

It can be shown that
n∑

i=1

ĉi −
n∑

i=1

ci ≥ 3 for all n ≥ 2.

Thus, the amortize cost per operation is 3 and the amortized complexity is
O(1).

Algorithms (Analysis) Unit 1.2 Analysis Mar. 5, 2018 22 / 33

The Potential Method

The potential method associates a non-negative potential function, Φi, with
the i-th operation of the algorithm such that

ĉi = ci +Φi − Φi−1 (1.2.6)

The amortized cost at the i-th operation is the actual cost plus the potential
difference between those two operation.
The potential function represents the energy barrier for each operation.
Thus,

n∑

i=1

ĉi =
n∑

i=1

(ci +Φi − Φi−1)

=
n∑

i=1

ci +Φn − Φn−1 +Φn−1 − Φn−2 · · ·+Φ1 − Φ0

=
n∑

i=1

ci +Φn − Φ0 (1.2.7)

Algorithms (Analysis) Unit 1.2 Analysis Mar. 5, 2018 23 / 33

The Potential Method, II
Note that Eq. (1.2.5) still needs to be satisfied.
Thus,

Φn ≥ Φ0, for all n ≥ 1. (1.2.8)
where Φ0 can be chosen arbitrarily, and is usually set to be 0.
Again, the average amortized cost represents the amortized complexity of the
algorithm.

Take the Dynamic_Store algorithm as an example, note that
index > size/2, thus we can choose the following potential function.

Φi = 2i − sizei, (1.2.9)

where i = index and Φ0 = 0.

index 1 2 3 4 5 6 7 8 9
size 1 2 4 4 8 8 8 8 16
ci 1 2 3 1 5 1 1 1 9
Φi 1 2 2 4 2 4 6 8 2
ĉi 3 3 3 3 3 3 3 3 3

Note that Φi ≥ 0.
Algorithms (Analysis) Unit 1.2 Analysis Mar. 5, 2018 24 / 33

The Potential Method, III

In the case that index ≤ size no malloc is needed and sizei = sizei−1.

ĉi = ci + 2i − sizei − 2(i − 1) + sizei−1

= 1 + 2i − 2i + 2 = 3. (1.2.10)

Note that ci is given in Eq. (1.2.3).
In the case that index > size when calling Dynamic_Store we have
sizei = 2× sizei−1 = 2(i − 1).

ĉi = ci + 2i − sizei − 2(i − 1) + sizei−1

= i + 2i − 2i + 2− 2i + 2 + i − 1 = 3. (1.2.11)

Thus, we have the amortized cost per operation is ĉi = 3.
The amortized complexity of the algorithm is O(1).

Algorithms (Analysis) Unit 1.2 Analysis Mar. 5, 2018 25 / 33

Binary Counter

The m-bit incrementing binary counter algorithm is shown below.

Algorithm 1.2.12.
1 Algorithm BinCount(m,D)
2 // Increment m-bit binary array D[m − 1 : 0].
3 {
4 i := 0 ;
5 while (i < m and D[i] = 1) do {
6 D[i] := 0 ;
7 i := i + 1 ;
8 }
9 if (i < m) then D[i] := 1 ;

10 }

In this algorithm, the while loop on lines 5-8 determines the cost of the
operation, but it is not a constant.
Worst-case complexity is O(m) due to the while loop on lines 5-8).
How about the average-case complexity?

Algorithms (Analysis) Unit 1.2 Analysis Mar. 5, 2018 26 / 33

Binary Counter – Example

Example of BinCount(m,D) partial execution result with m = 5 is shown
below (Assuming D[m − 1 : 0] are all 0’s initially.)

D[4] D[3] D[2] D[1] D[0] ci
∑

ci
0 0 0 0 1 1 1
0 0 0 1 0 2 3
0 0 0 1 1 1 4
0 0 1 0 0 3 7
0 0 1 0 1 1 8
0 0 1 1 0 2 10
0 0 1 1 1 1 11
0 1 0 0 0 4 15
0 1 0 0 1 1 16
0 1 0 1 0 2 18
0 1 0 1 1 1 19
0 1 1 0 0 3 22
0 1 1 0 1 1 23
0 1 1 1 0 2 25
0 1 1 1 1 1 26
1 0 0 0 0 5 31

Algorithms (Analysis) Unit 1.2 Analysis Mar. 5, 2018 27 / 33

Binary Counter – Aggregate Analysis

Let the number of bits that change states be the cost of operation, ci.
The aggregate analysis execute the algorithm n times to find the total cost of
operation and then the average can be found.
Note that bit D[0] changes state on every call.
Bit D[1] changes state every other time.
Bit D[2] changes state every fourth time.
Hence, we have

n∑

i=1

ci = n + n/2 + n/4 + · · ·+ n/2m < 2n. (1.2.12)

Thus, the total amortized cost is O(n)
And the amortized cost per operation is O(1).

Algorithms (Analysis) Unit 1.2 Analysis Mar. 5, 2018 28 / 33

Binary Counter – Accounting Method
In accounting method, we need find ĉi that satisfies Eq. (1.2.5).

D[4] D[3] D[2] D[1] D[0] ci
∑

ci ĉi
∑

ĉi
0 0 0 0 1 1 1 2 2
0 0 0 1 0 2 3 2 4
0 0 0 1 1 1 4 2 6
0 0 1 0 0 3 7 2 8
0 0 1 0 1 1 8 2 10
0 0 1 1 0 2 10 2 12
0 0 1 1 1 1 11 2 14
0 1 0 0 0 4 15 2 16
0 1 0 0 1 1 16 2 18
0 1 0 1 0 2 18 2 20
0 1 0 1 1 1 19 2 22
0 1 1 0 0 3 22 2 24
0 1 1 0 1 1 23 2 26
0 1 1 1 0 2 25 2 28
0 1 1 1 1 1 26 2 30
1 0 0 0 0 5 31 2 32

ĉi = 2 is a choice and the amortized cost per operation is O(1).
Algorithms (Analysis) Unit 1.2 Analysis Mar. 5, 2018 29 / 33

Binary Counter – Potential Method
In potential method, we need to find the potential function that satisfies Eqs.
(1.2.7) and (1.2.8), then the amortized cost can be found using Eq. (1.2.9).
Define the potential function as

Φi =

m−1∑

i=0

D[i]. (1.2.13)

That is Φi is the number of set bits (D[i] = 1).
Let ri be the number of bits reset to 0 for the i-th operation, then

ci = ri + 1. (1.2.14)

Note that ri is simply the number iteration for the while loop on lines 5-8 of
Algorithm (1.2.12), and the extra 1 comes from line 9.
Thus for the i-th operation,

Φi = Φi−1 − ri + 1. (1.2.15)

And
ĉi = ci +Φi − Φi−1 = ri + 1 + Φi−1 − ri + 1− Φi−1 = 2. (1.2.16)

Thus, the amortized cost per operation is O(1).
Algorithms (Analysis) Unit 1.2 Analysis Mar. 5, 2018 30 / 33

Binary Counter – Potential Method, II

Potential method in 5-bit binary counter example.

D[4] D[3] D[2] D[1] D[0] ci Φi ĉi
0 0 0 0 1 1 1 2
0 0 0 1 0 2 1 2
0 0 0 1 1 1 2 2
0 0 1 0 0 3 1 2
0 0 1 0 1 1 2 2
0 0 1 1 0 2 2 2
0 0 1 1 1 1 3 2
0 1 0 0 0 4 1 2
0 1 0 0 1 1 2 2
0 1 0 1 0 2 2 2
0 1 0 1 1 1 3 2
0 1 1 0 0 3 2 2
0 1 1 0 1 1 3 2
0 1 1 1 0 2 3 2
0 1 1 1 1 1 4 2
1 0 0 0 0 5 1 2

Algorithms (Analysis) Unit 1.2 Analysis Mar. 5, 2018 31 / 33

Amortized Analysis

In amortized analysis a sequence of n operations are performed to find the
worst-case total operations.
The time complexity of a single operation is then the total operation cost
divided by the number of operation, n.
Three methods are available:

Aggregate analysis,
More systematic.

Accounting method,
Usually the amortized cost is assumed and proven to be correct.

Potential method,
Need to find the potential function.
A tool to prove the amortized cost.

Algorithms (Analysis) Unit 1.2 Analysis Mar. 5, 2018 32 / 33

Summary

Space and time complexities
Algorithm examples
Time complexity

Counting number of steps
Table approach.

Amortized analysis
Aggregate analysis
Acounting method
Potential method

Algorithms (Analysis) Unit 1.2 Analysis Mar. 5, 2018 33 / 33

