Unit 1.1 Foundations

Algorithms

EE/NTHU

Feb. 26, 2018

Algorithms (EE/NTHU) Unit 1.1 Foundations Feb. 26, 2018 1/18

What is an Algorithm

@ In short, algorithm refers to a method that can be used by a computer for the
solution of a problem.

Definition 1.1.1. Algorithm

An algorithm is a finite set of instructions that, if followed, accomplishes a
particular task. In addition, all algorithms must satisfy the following criteria:

1. Input. Zero of more quantities are externally supplied.
2. Output. At least one quantity is produced.

3. Definiteness. Each instruction is clear and unambiguous.
4

. Finiteness. If we trace out the instructions of an algorithm, then for all cases, the
algorithm terminates after a finite number of steps.

5. Effectiveness. Every instruction must be very basic so that it can be carried out, in
principle, by a person using only pencil and paper. It is not enough that each
operation be definite as in in criterion 3; it also must be feasible.

@ Computational procedures have the properties of definiteness and
effectiveness.
e Operating system of a digital computer is an example.

Algorithms (Foundation) Unit 1.1 Foundations Feb. 26, 2018 2/18

Objectives of Studying Algorithms

@ Algorithms can be implemented in different programming languages.

e A computer program consists of one or more algorithms.

e An algorithm can also be referred to as a procedure, a function, or a
subroutines.

Each statement of an algorithm specifies unambiguous operations.
Algorithm should be independent to programming languages.

@ The objectives of studying algorithms

1. How to devise algorithms?
2. How to validate algorithms?
3. How to analyze algorithms?
4. How to test a program?

@ A good algorithm should be efficient for that specific problem.
e Efficient in both CPU time and storage space.

Algorithms (Foundation) Unit 1.1 Foundations Feb. 26, 2018 3/18

Pseudocode Convention

@ Algorithms can be implemented in many different programming languages
e In this class, we use pseudocode to describe algorithms
@ Pseudocode is not as rigorous as a programming language
e Easier to understand by human being but still need to satisfy algorithm's
requirements (definiteness, effectiveness)
@ The pseudocode adopted is based on C language

e Comments: begin with | // | and continue until the end of a line.

e Statement:
@ Simple statements followed by

@ Compound statements are grouped within and , also called as a block.

e ldentifier convention follows C

@ Basic types (int, float, char, etc) are assumed.

° (also called record) can also be defined.

@ Variables are not declared.

@ Pointers to struct variables and their access follow C convention.
e Assignment: |variable := expression;
@ Boolean values: | true | and | false | exist

and | not

or
@ And relational operators: | < |, | < E| >, and | > |.

@ So are logical operators: | and |,

Algorithms (Foundation) Unit 1.1 Foundations Feb. 26, 2018

Loops in the Pseudocode

@ Arrays postfixed by | [1 |.

e Two dimensional arrays accessed by | A7, j] |

@ Loops in the pseudocode are
@ while loop

while (condition) do {
statement 1 ;

statement n ;

+

@ repeat-until loop

repeat {
statement 1 ;

statement n;
} until (condition);

Unit 1.1 Foundations

for Loop

e Array indexing starts from 1 (Thus, A[0] is usually not defined).

Feb. 26, 2018

@ for loop

for wariable := valuel to value2 step svalue do {
statement 1 ;

statement n ;

by

o

@ Note that "step svalue’ is optional with svalue default to +1
@ The for loop above is equivalent to the while loop below
variable := valuel;

while ((variable — value2) X svalue < 0) do {
statement 1 ;

statement n ;
variable := variable + svalue;

by

@ return exits from a function or an algorithm.

Unit 1.1 Foundations

Feb. 26, 2018

Conditional Statements and /O

@ A conditional statement has the following forms:

if (condition) then statement ;
if (condition) then statement 1 ; else statement 2 ;

@ Cascaded-if can be written as

switch (variable) {
case condition 1: statement 1 ;

case condition n: statement n ;
default: statement n—+1 ;

¥

@ Input and output of an algorithm are specified by | read | and |write
statements.

o No format is needed for either statement.

e An function is included to handle exception cases (error handling).

Algorithms (Foundation) Unit 1.1 Foundations Feb. 26, 2018 7/ 18

Algorithm Declaration

@ An algorithm consists of a heading and a body. The heading has the form:

Algorithm Name(parameter list) J

@ Name is the name of the algorithm and parameter list is all the parameters.
e Simple variables to the algorithm are passed by value or reference.
e Arrays and structures are passed by reference.

@ Body of the algorithm has one or more statements enclosed by { and }.
@ A pseudocode example

Algorithm 1.1.2. Max

1 Algorithm Max(A, n)

2 // Find the largest element of an n-element array A.

34

4 Result := A[1]; // Initialize Result.

5 for i:=2 to ndo // Loop though all elements.

6 if (A[¢] > Result) then Result:= A[i]; // Record the larger one.

7 return Result; // Done.

8}]

Algorithms (Foundation) Unit 1.1 Foundations Feb. 26, 2018 8 /18

Algorithm Example, Selection Sort

@ Sorting problem as an example.
@ Input: An array of n elements, A[l : n].

@ Problem description: Arrange the elements in increasing (or decreasing)
order.

@ Solution: From those elements that are currently unsorted, find the smallest
one and place it next in the sorted list.

Algorithm 1.1.3. Selection Sort.

1 Algorithm SelectionSort(A4, n)
2 // Sort the array A[l : n] into nondecreasing order.
34
4 for i:=1 to ndo { // for every Ali]
5 j:=1; // Initialize j to i
6 for k:=14i+4+ 1 to ndo // Search for the smallest among the rest.
7 if (A[k] < A[j]) then j:= k; // Found, remember it in j.
8 t:= Ali]; A[7] := A[j]; A[j] :==t; // Swap A[i] and A[j].
o}
10 }

Algorithms (Foundation) Unit 1.1 Foundations Feb. 26, 2018 9/18

Selection Sort — Correctness

Theorem 1.1.4.

Algorithm SelectionSort(A, n) correctly sorts a set of n > 1 elements; the
result remains in A[l : n] such that A[1] < A[2] <--- < A[n].

Proof. For any ¢, 1 < i< n, lines 5-8 select the smallest element among A[i: n]
and place it to A[i], thus, A[i] < A[j] for j > i.

In addition, these operations does not affect A[l : ¢ — 1]. Thus, when i=n
the entire A is arranged in the non-decreasing order. []

v

@ Note that the upper limit of the for loop in line 4 can be changed to n — 1
without effecting the correctness of the algorithm.

@ The two examples above are both brute-force approach algorithms.

e Algorithm derived from the definition of the problem.
e You should be able to write this kind of algorithm with ease.

Algorithms (Foundation) Unit 1.1 Foundations Feb. 26, 2018 10 / 18

Recursive Algorithms

@ A recursive function is a function that is defined in terms of itself.
@ An algorithm is said to be recursive if the algorithm is invoked in the body of
the algorithm.
e An algorithm that calls itself is direct recursive.
e An algorithm A is said to be indirect recursive if it calls another function
which in turns calls A.
@ Using recursion, computer algorithm can be developed quickly.
@ Example of recursive function:
e Factorial function can be defined in. mathematical form as

1 =alY ifn=1,
= X{n= 1)k
@ Then the brute-force approach implementation:

Algorithm 1.1.5. Factorial.

1 Algorithm Factorial(n)
2 // Calculate factorial function, n!, n > 1.

34

4 if (n=1) return 1; // Termination check.

5 return n X Factorial(n — 1); // Recursion formula.
6 }

Algorithms (Foundation) Unit 1.1 Foundations Feb. 26, 2018 11 / 18

Tower of Hanoi

@ The Tower of Hanoi consists of three rods and n disks of different radius,
which can slide onto any rod. All disks are placed in a one stack in ascending
order of size on one rod, the smallest at the top, originally. This entire stack
is to move to another rod obeying the following rules:

1. Only one disk can be moved at a time.

2. Only the top disk of any stack can be moved onto another stack and placed at
the top.

3. No disk can be placed onto a smaller disk.

@ Example of 3-disk Tower of Hanoi

)|

A B

Initial condition. Final state.

Algorithms (Foundation) Unit 1.1 Foundations Feb. 26, 2018 12 / 18

Tower of Hanoi — Solution

A B C A B C
Initial condition. Step 4.

A B C A B C
Step 1. Step 5.

A B C A B C
Step 2. Step 6.

A B C A B C
Step 3. Step 7.

Algorithms (Foundation) Unit 1.1 Foundations Feb. 26, 2018 13 / 18

Tower of Hanoi — Algorithm

@ Using recursive function Tower of Hanoi problem can be solved easily.
@ Assuming n disks to be moved.
@ z, y, and z are three rods.

Algorithm 1.1.6. Tower of Hanoi.

1 Algorithm TowerOfHanoi(n, z, y, 2)

2 // Move the top n disks from rod z to rod y using rod z.

3 {

4 if (n > 1) then { // If there are disks to be moved.

5 TowerOfHanoi(n — 1, %, 2,4); // move n — 1 disks from z to z using y.
6 write (” Move disk ”,n,” from rod 7, z,” to rod 7, y);

7 TowerOfHanoi(n — 1,2 y,x); // move n— 1 disks from z to y using x.
8 }

9}

@ The algorithm description is simple, the execution can be lengthy.
@ For the 3-disk case, as shown in the preceding figure,

e At the end of line 5, disks are shown as Step 3,

e Step 4 corresponds to line 6,

e And line 7 calls itself recursively to reach Step 7.

Algorithms (Foundation) Unit 1.1 Foundations Feb. 26, 2018

Tower of Hanoi — Analysis

@ How many times the function TowerOfHanoi needs to be executed?

o Let the disks be numbered from 1 to n. Disk n is the largest disk.
e Disk n needs to be moved only once.

e But in order to move disk n disk n — 1 needs to be moved twice.
e Thus, disk n — 2 needs to be moved four times.

e The total number of movements for n-disk problem is

n—1

Ne%zs 38 B (1.1.1)

=0

@ The legend has it that when 64-disk Tower of Hanoi is solved, the world
would end.

e Do we need to worry this problem?

Algorithms (Foundation) Unit 1.1 Foundations Feb. 26, 2018 15 / 18

Permutations

@ Given a set, A, of n elements, it is known that there are n! permutations.
@ For example, given the set {1, 2,3} all possible permutations are:
o (1,2,3), (1,3,2), (2,1,3), (2,3,1), (3,1,2), (3,2,1).
@ Using recursive function, all permutation can be generated easily.
@ A: set to be permuted, n: number of elements, k: recursion index.

Algorithm 1.1.7. Permutation.

1 Algorithm Permutation(A4,k, n)

2 // To generate all permutation list.

34

4 if (k= n) then write (A[l: n]); // output one permutation.

5 else // Alk: n] has more permutation, generate them recursively.

6 for ¢:=k to ndo {

7 t:= Alk]; Alk] := A[i]; A[] :=t; // Swap A[i] with A[k].
8 Permutation(A4,k+ 1,n); // All permutations of alk+ 1, n]
9 t:= Alk]; A[k] := A¢]; A[i] :=t; // Swap back A[i] and A[k].
10 }

11}

@ A call of Permutation(A4, 1, n) will generate all permutations.

Algorithms (Foundation) Unit 1.1 Foundations Feb. 26, 2018 16 / 18

Recursive Algorithms

@ As shown by the preceding examples, recursive algorithms are powerful and
elegant.

e Recursive algorithms tend to be short in coding.
@ But, recursive algorithms need to use a large program stack space to keep all
local variables, in addition to the function arguments.
e Thus, recursive algorithms may not be the most efficient one in terms of
execution time and space.
@ To avoid infinite recursion, a recursive algorithm must have termination
checks.
o Line 4 of algorithms (1.1.5), (1.1.6), and (1.1.7).

Unit 1.1 Foundations Feb. 26, 2018 17 / 18

Summary

What is an algorithm?

Objectives of studying algorithms.
Pseudo conventions.

Brute force approach

e Selection sort
o Proof of correctness

@ Recursive algorithms

e Factorial function
e Tower of Hanoi
e Permutations

Unit 1.1 Foundations Feb. 26, 2018 18 / 18

