
Unit 7.2 Branch and Bound

Algorithms

EE3980

May 14, 2018

Algorithms (EE3980) Unit 7.2 Branch and Bound May 14, 2018 1 / 22

0/1 Knapsack Problem
Given n objects, each with profit pi and weight wi, and a sack of maximum
weight m, select the objects to be placed into the sack such that the profits
of the objects in the sack is maximum. (Note that the object must be placed
as a whole, no fraction, into the sack.)
Recall that the greedy algorithm that allows the fraction of an object to be
placed into the sack generate the optimal solution (maximal profits).

Algorithm 4.1.5. Knapsack
1 Algorithm Knapsack(m,n,w, p, x)
2 // n objects with w[i] and p[i] find x[i] that maximizes

∑
pixi with

∑
wixi ≤ m.

3 {
4 a := Sort(p/w) ; // sort p[a[i]]/w[a[i]] into non-increasing order.
5 for i := 1 to n do x[i] := 0 ;
6 i := 1 ;
7 while (i ≤ n and w[a[i]] ≤ m) do {
8 x[i] := 1 ;
9 m := m − w[a[i]] ;

10 i := i + 1 ;
11 }
12 if (i ≤ n) then x[i] := m/w[a[i]] ;
13 }

Algorithms (EE3980) Unit 7.2 Branch and Bound May 14, 2018 2 / 22

0/1 Knapsack Problem, Bounds

Note that on line 12 the last object included might be a fraction which
violate the requirement of a whole object.

Thus, excluding this line the profit p =

i∑

j=1

pj is the least one can get for the

profit.
We can use this p as a lower bound (lb)for the profits.

The profits, P, with the fraction object is the maximum and can be used as
the upper bound (ub).
Thus, assuming the objects are ordered by p/w, the following function
generates two bounds for the set of objects

Algorithms (EE3980) Unit 7.2 Branch and Bound May 14, 2018 3 / 22

0/1 Knapsack Problem, Bounds Algorithm

Algorithm 7.2.1. Bounds
1 Algorithm Bounds(k, cw, cp, lb, ub)
2 // Estimate two bounds lb and ub for n-object 0/1 knapsack problem
3 {
4 i := k + 1 ; lb := cp ;
5 while (i ≤ n and cw ≤ m) do {
6 lb := lb + p[i] ; cw := cw + w[i] ; i := i + 1 ;
7 }
8 if (i > n) ub := lb ;
9 else ub := lb + (1− (cw − m)/w[i]) ∗ p[i] ;

10 }

The above algorithm has been generalized such that the decision on the first
k objects have been made and cp and cw are the current profits and weights
for the first k objects.
The algorithm estimate the two bounds for the remaining n − k objects.
Note that arguments lb and ub need to be passed by reference (in C++), or
passed by pointer (in C).

Algorithms (EE3980) Unit 7.2 Branch and Bound May 14, 2018 4 / 22

0/1 Knapsack Problem Example

0/1 knapsack problem example:
n = 4, p = (10, 10, 12, 18), w = (2, 4, 6, 9), m = 15.
Complete state space can be shown to be

0/0 32/32 38/38 20/20 0/0 22/22 28/28 10/10 0/0 22/22 28/28 10/10 30/30 12/12 18/18 0/0

32/38 38/38 22/36 28/28 22/32 28/28 30/30 18/18

32/38 22/36 22/32 30/30

32/38 22/32

32/38
x1=1 x1=0

x2=1 x2=0 x2=1 x2=0

x3=1 x3=0 x3=1 x3=0 x3=1 x3=0 x3=1 x3=0

x4=1 x4=0 x4=1 x4=0 x4=1 x4=0 x4=1 x4=0 x4=1 x4=0 x4=1 x4=0 x4=1 x4=0 x4=1 x4=0

Algorithms (EE3980) Unit 7.2 Branch and Bound May 14, 2018 5 / 22

0/1 Knapsack Problem Example — Depth First
0/1 knapsack problem example:
n = 4, p = (10, 10, 12, 18), w = (2, 4, 6, 9), m = 15.
Using depth-first traversal branch and bound approach, we have

0/0 32/32 38/38 20/20 0/0 22/22 28/28 10/10 0/0 22/22 28/28 10/10 30/30 12/12 18/18 0/0

32/38 38/38 22/36 28/28 22/32 28/28 30/30 18/18

32/38 22/36 22/32 30/30

32/38 22/32

32/38
x1=1 x1=0

x2=1 x2=0 x2=1 x2=0

x3=1 x3=0 x3=1 x3=0 x3=1 x3=0 x3=1 x3=0

x4=1 x4=0 x4=1 x4=0 x4=1 x4=0 x4=1 x4=0 x4=1 x4=0 x4=1 x4=0 x4=1 x4=0 x4=1 x4=0

1
fp=32

2
fp=32

3
fp=32

4
fp=32

5
fp=32

6
fp=32

7
fp=38

8
fp=38

9
fp=38

10
fp=38

11
fp=38

Branch and bound stops after 11 steps
The solution is x = (1, 1, 0, 1), fp = 38, fw = 15.

Algorithms (EE3980) Unit 7.2 Branch and Bound May 14, 2018 6 / 22

0/1 Knapsack Problem Example — Breadth First
0/1 knapsack problem example:
n = 4, p = (10, 10, 12, 18), w = (2, 4, 6, 9), m = 15.
Using breadth-first traversal branch and bound approach, we have

0/0 32/32 38/38 20/20 0/0 22/22 28/28 10/10 0/0 22/22 28/28 10/10 30/30 12/12 18/18 0/0

32/38 38/38 22/36 28/28 22/32 28/28 30/30 18/18

32/38 22/36 22/32 30/30

32/38 22/32

32/38
x1=1 x1=0

x2=1 x2=0 x2=1 x2=0

x3=1 x3=0 x3=1 x3=0 x3=1 x3=0 x3=1 x3=0

x4=1 x4=0 x4=1 x4=0 x4=1 x4=0 x4=1 x4=0 x4=1 x4=0 x4=1 x4=0 x4=1 x4=0 x4=1 x4=0

1
fp=32

2
fp=32

3
fp=32

4
fp=32

5
fp=32

6
fp=32

7
fp=32

8
fp=32

9
fp=38

10
fp=38

11
fp=38

12
fp=38

13
fp=38

14
fp=38

15
fp=38

16
fp=38

19
fp=38

Branch and bound stops after 19 steps
The solution is x = (1, 1, 0, 1), fp = 38, fw = 15.

Algorithms (EE3980) Unit 7.2 Branch and Bound May 14, 2018 7 / 22

0/1 Knapsack Problem Example — Least Cost
0/1 knapsack problem example:
n = 4, p = (10, 10, 12, 18), w = (2, 4, 6, 9), m = 15.
Using Least-cost branch and bound approach, we have

0/0 32/32 38/38 20/20 0/0 22/22 28/28 10/10 0/0 22/22 28/28 10/10 30/30 12/12 18/18 0/0

32/38 38/38 22/36 28/28 22/32 28/28 30/30 18/18

32/38 22/36 22/32 30/30

32/38 22/32

32/38
x1=1 x1=0

x2=1 x2=0 x2=1 x2=0

x3=1 x3=0 x3=1 x3=0 x3=1 x3=0 x3=1 x3=0

x4=1 x4=0 x4=1 x4=0 x4=1 x4=0 x4=1 x4=0 x4=1 x4=0 x4=1 x4=0 x4=1 x4=0 x4=1 x4=0

1
fp=32

2
fp=32

3
fp=32

4
fp=38

5
fp=38

6
fp=38

7
fp=38

8
fp=38

9
fp=38

10
fp=38

11
fp=38

Branch and bound stops after 11 steps
The solution is x = (1, 1, 0, 1), fp = 38, fw = 15.

Algorithms (EE3980) Unit 7.2 Branch and Bound May 14, 2018 8 / 22

Branch and Bound Algorithms
Branch and bound method is applicable to all state space search methods.

All children of a search node are generated before any other live node is
explored.
Bounding functions are used to help reducing the number of subtrees to be
explored.

Two tree traversal algorithms are applicable to explore the state space.
Breadth-first search: also known as first-in-first-out (FIFO) strategy.

Need a stack to keep the live nodes.
Depth-first search: also known as the last-in-first-out (LIFO) strategy.

An additional strategy least cost search has been introduced.
Each node is associated with a cost that estimates the solution cost.
To select the next node to explore, select one with the least cost.

The following algorithm is a high level description of the LC-search approach.
The LC-search algorithm uses the following structure.

1 struct listnode {
2 double cost , lb , ub ; // cost and estimated lower and upper bounds
3 struct listnode ∗next, ∗parent ;
4 }

Algorithms (EE3980) Unit 7.2 Branch and Bound May 14, 2018 9 / 22

Branch and Bound Algorithms — LC Search

Algorithm 7.2.2. LC Search
1 Algorithm LCSearch(t)
2 // General framework for least cost search.
3 {
4 if t is an answer node then { write (t) ; return ; }
5 E := t ; // Current search node.
6 Initialize the list of live nodes to be empty ;
7 while (E ̸= ∅) do {
8 for each child x of E do {
9 if x is an answer node then { write (path from x to t) ; return ; }

10 Add(x) ; // x is a new live node.
11 x → parent := E ;
12 }
13 if there are no live nodes then { write (”No answer.”) ; return ; }
14 E := Least() ;
15 }
16 }

Algorithms (EE3980) Unit 7.2 Branch and Bound May 14, 2018 10 / 22

Branch and Bound Algorithms — General
In the above algorithm, two functions are used

Add: add a new live node to the list.
Least: find the minimum cost node from the live node list and remove it from
the list.

The list data structure is used for LCS for searching of least cost node is
needed. In contrast,

DFS uses stack (LIFO),
BFS uses queue (FIFO).
Selecting the next live node is more consuming in LCS approach.

All three search approaches can be used in branch-and-bound method.
For each E-node, in addition to the cost c two more estimates are calculated:
a lower bound lb and an upper bound ub.
In exploring each node, the best cost fc is also tracked.
Thus, when exploring node E if lb > fc then there is no need to traverse the
subtree of E.

And, in selecting E node, the one with the minimum lb should be selected.
By reducing the number of subtrees to be explored, the branch-and-bound
algorithm can be fast.

Algorithms (EE3980) Unit 7.2 Branch and Bound May 14, 2018 11 / 22

Traveling Salesperson Problem
Let G = (V,E) be a directed graph, with |V| = n and cij be the cost of edge
⟨i, j⟩ ∈ E, cij = ∞ if ⟨i, j⟩ /∈ E.
Without loss of generality, we can assume every tour start from vertex 1. So,
the solution space is S = {1, π, 1|π is a permutation of (2, 3, · · · ,n).
Of course, for any solution (1, i1, i2, · · · , in−1, 1) ∈ S, ⟨ij, ij+1⟩ ∈ E,
0 ≤ j ≤ n − 1 and i0 = in = 1.
The objective is to find a path with the minimum cost.
Traveling salesperson problem example

1

2

34

5

20
15

165

2
18

3 16

16
11

30
3

10
19

2
4

4674

10

6

2

7

3

Cost matrix

∞ 20 30 10 11
15 ∞ 16 4 2
3 5 ∞ 2 4
19 6 18 ∞ 3
16 4 7 16 ∞

Algorithms (EE3980) Unit 7.2 Branch and Bound May 14, 2018 12 / 22

Traveling Salesperson Problem — Reduced Cost Matrix
Given a cost matrix, it can reduced as following.
Note that ci,j is the cost from vertex i to vertex j

Thus, if ci,k =
n

min
j=1

ci,j, then ci,k is the minimum cost leaving vertex i.

And, if ck,j =
n

min
i=1

ci,j, then ck,j is the minimum cost entering vertex j.

Original cost matrix

∞ 20 30 10 11
15 ∞ 16 4 2
3 5 ∞ 2 4
19 6 18 ∞ 3
16 4 7 16 ∞

row 1 − 10
row 2 − 2
row 3 − 2
row 4 − 3
row 5 − 4

Row- and Column-reduced cost
matrix

∞ 10 17 0 1
12 ∞ 11 2 0
0 3 ∞ 0 2
15 3 12 ∞ 0
11 0 0 12 ∞

Row-reduced cost matrix

∞ 10 20 0 1
13 ∞ 14 2 0
1 3 ∞ 0 2
16 3 15 ∞ 0
12 0 3 12 ∞

Column 1 is reduced by 1, and
column 3 reduced by 3 are
performed.
The total reduction
R = 10+2+2+3+4+1+3 = 25
is the lower bound for for the
salesperson traveling problem.

Algorithms (EE3980) Unit 7.2 Branch and Bound May 14, 2018 13 / 22

Traveling Salesperson Problem — Reduced Cost Matrix, II

The technique of reduced cost matrix to estimate the lower bound of the
traveling salesperson problem can be extended to estimating path selection.
Suppose an edge ⟨i, j⟩ is selected, the cost of the path is increased by ci,j

All other edges ⟨i, k⟩, k ̸= j cannot be selected. Thus, set ci,k = ∞,
1 ≤ k ≤ n. (Row i)
All edges ⟨k, j⟩, k ̸= i, cannot be selected. Thus, set ck,j = ∞, 1 ≤ k ≤ n.
(Column j)
The edge ⟨j, 1⟩ cannot be selected (unless j is the only vertex not selected).
Thus, set cj,1 = ∞.
Perform reduced matrix technique to the resulting matrix to get the lower
bound, r.
Then the lower bound of path cost of selecting edge ⟨i, j⟩ is R + ci,j + r, where
R is the lower bound before selecting edge ⟨i, j⟩.

Algorithms (EE3980) Unit 7.2 Branch and Bound May 14, 2018 14 / 22

Traveling Salesperson Problem — Reduced Cost Matrix, III
Example

Original cost matrix

∞ 20 30 10 11
15 ∞ 16 4 2
3 5 ∞ 2 4
19 6 18 ∞ 3
16 4 7 16 ∞

Cost-reduced cost matrix, R = 25.

∞ 10 17 0 1
12 ∞ 11 2 0
0 3 ∞ 0 2
15 3 12 ∞ 0
11 0 0 12 ∞

Selecting edge ⟨1, 3⟩

∞ ∞ ∞ ∞ ∞
1 ∞ ∞ 2 0
∞ 3 ∞ 0 2
4 3 ∞ ∞ 0
0 0 ∞ 12 ∞

c1,3 = 17.
Row 1 is set to ∞
Column 3 is set to ∞
c3,1 is set to ∞
Then column 1 can be reduced by 11.
(r = 11)
The lower bound for selecting edge
⟨1, 3⟩ is
R + c1,3 + r = 25 + 17 + 11 = 53.

Algorithms (EE3980) Unit 7.2 Branch and Bound May 14, 2018 15 / 22

Traveling Salesperson Problem

The full state space is shown below

5
57

4
75

5
62

3
37

4
50

3
59

5
58

4
72

5
56

2
54

4
61

2
71

5
52

3
28

5
51

2
51

3
36

2
40

4
52

3
40

4
46

2
41

3
52

2
65

4
57

5
75

3
62

5
37

3
50

4
59

4
58

5
72

2
56

5
54

2
61

4
71

3
52

5
28

2
51

5
51

2
36

3
40

3
52

4
40

2
46

4
41

2
52

3
65

3
57

4
37

5
47

2
58

4
53

5
60

2
28

3
50

5
36

2
40

3
41

4
52

2
35

3
53

4
25

5
31

1
25

Algorithms (EE3980) Unit 7.2 Branch and Bound May 14, 2018 16 / 22

Traveling Salesperson Problem — Depth-First Search BB

Using depth-first search with BB, we have

5
57

4
75

5
62

3
37

4
50

3
59

5
58

4
72

5
56

2
54

4
61

2
71

5
52

3
28

5
51

2
51

3
36

2
40

4
52

3
40

4
46

2
41

3
52

2
65

4
57

5
75

3
62

5
37

3
50

4
59

4
58

5
72

2
56

5
54

2
61

4
71

3
52

5
28

2
51

5
51

2
36

3
40

3
52

4
40

2
46

4
41

2
52

3
65

3
57

4
37

5
47

2
58

4
53

5
60

2
28

3
50

5
36

2
40

3
41

4
52

2
35

3
53

4
25

5
31

1
25

1

25

2

35

3

57

4

57

5

57

6

75

7

37

8

62

9

37

10

37

11

47

11

53

12

25

13

28

14

52

15

28

16

28

17

50

18

36

19

31

DFS BB stops in 19 steps
The solution is 1− 4− 2− 5− 3− 1, total cost is 28.

Algorithms (EE3980) Unit 7.2 Branch and Bound May 14, 2018 17 / 22

Traveling Salesperson Problem — Least-Cost Search BB

Using least-cost search with BB, we have

5
57

4
75

5
62

3
37

4
50

3
59

5
58

4
72

5
56

2
54

4
61

2
71

5
52

3
28

5
51

2
51

3
36

2
40

4
52

3
40

4
46

2
41

3
52

2
65

4
57

5
75

3
62

5
37

3
50

4
59

4
58

5
72

2
56

5
54

2
61

4
71

3
52

5
28

2
51

5
51

2
36

3
40

3
52

4
40

2
46

4
41

2
52

3
65

3
57

4
37

5
47

2
58

4
53

5
60

2
28

3
50

5
36

2
40

3
41

4
52

2
35

3
53

4
25

5
31

1
25

1

25

2

35

3

53

4

25

5

31

6

28

7

50

8

36

9

52

10

28

11

28

LCBB stops in 11 steps
The solution is 1− 4− 2− 5− 3− 1, total cost is 28.

Algorithms (EE3980) Unit 7.2 Branch and Bound May 14, 2018 18 / 22

Theories
Some theories concerning branch-and-bound approaches.

Theorem 7.2.3.
Let t be a state space tree. The number of nodes of t generated by FIFO, LIFO
and LC branch-and-bound algorithms cannot be decreased by the expansion of
any node x with lb(x) >= upper, where upper is the upper bound on the cost of a
minimum-cost solution node in the tree t.

Theorem 7.2.4.
Let U1 and U2, U1 < U2, be two initial upper bounds on the cost of a
minimum-cost solution node in the state space tree t. The FIFO, LIFO, and LC
branch-and-bound algorithms beginning with U1 will generate no more nodes than
they would if they started with U2 as the initial upper bound.

Theorem 7.2.5.
The use of a better lower bound function lb in conjunction with FIFO and LIFO
branch-and-bound algorithms does not increase the number of nodes generated.

Algorithms (EE3980) Unit 7.2 Branch and Bound May 14, 2018 19 / 22

Theories, II

Theorem 7.2.6.
If a better lower bound function is used in a LC branch-and-bound algorithm, the
number of nodes generated may increase.

Theorem 7.2.7.
The number of nodes generated during FIFO and LIFO branch-and-bound search
for a least-cost solution the number of nodes generated may increase when a
stronger dominance relation is used.

Theorem 7.2.8.
Let D1 and D2 be two dominance relations. Let D2 be stronger than D1 such that
(i, j) ∈ D2, i ̸= j, implies lb(i) < lb(j). An LC branch-and-bound using D1

generates at least as many nodes as the one using D2.

Algorithms (EE3980) Unit 7.2 Branch and Bound May 14, 2018 20 / 22

Branch and Bound

Branch and bound methods belong to the all state space search method.
To avoid extensive searching of all states, bounding functions for lower bound
and upper bound are keys.
Accurate bounding functions can decrease the state space that needs to be
searched.
Three traversal techniques can be used to explore the state space
– depth first search, breadth first search and least cost search.
Least cost searching is shown to be effective in some problems.
With good bounding function and effective traversal method, branch and
bound can solve real problems with significant time saving.

Algorithms (EE3980) Unit 7.2 Branch and Bound May 14, 2018 21 / 22

Summary

0/1 knapsack problem
Branch-and-bound algorithms
Least-cost branch-and-bound
The salesperson traveling problem
Theories on branch-and bound algorithms

Algorithms (EE3980) Unit 7.2 Branch and Bound May 14, 2018 22 / 22

Unit 8. Lower Bound Theory

Algorithms

EE3980

May 16, 2018

Algorithms (EE3980) Unit 8. Lower Bound Theory May 16, 2018 1 / 29

Lower Bounds

Given a problem, one can device algorithms to solve the problem.
Once an algorithm is developed, we know how to analyze the time and space
complexity.
Over all the algorithms, the one with the minimum complexity is usually
preferred.
If we know the lower bound of a given problem, then we can strive to solve it
with the lowest complexity possible.

Some problems have been studied extensively and the results are listed in this
unit.

Lower bounds for searching and sorting algorithms are studied first.

Algorithms (EE3980) Unit 8. Lower Bound Theory May 16, 2018 2 / 29

Ordered Searching
Comparison based complexity analysis is assumed.
To find x in an ordered array A[i], A[i] < A[j] if i < j.
A series of comparisons are to be performed.
Each comparison can have one of three results:

x < A[i], x = A[i], or x > A[i].
Array A can be stored as a tree.
A linear search is shown below.

The worst-case complexity is O(n).

A[1]

Fail A[2]

Fail A[3]

Fail A[4]

Fail Fail

Algorithms (EE3980) Unit 8. Lower Bound Theory May 16, 2018 3 / 29

Ordered Searching, II
A binary search tree is shown below.
For any array of n elements, there are n + 1 possible fails.
If there are k levels in the tree, then there are at most 2k − 1 internal nodes.
Therefore, for an array with n elements for the tree with k levels, n ≤ 2k − 1,
or k ≥ lg(n + 1).

Fail Fail Fail Fail Fail Fail Fail Fail Fail Fail Fail Fail Fail Fail Fail Fail

A[1] A[3] A[5] A[7] A[9] A[11] A[13] A[15]

A[2] A[6] A[10] A[14]

A[4] A[12]

A[8]

Algorithms (EE3980) Unit 8. Lower Bound Theory May 16, 2018 4 / 29

Ordered Searching, III

Theorem 8.1.1.
Let A[1 : n], n ≥ 1, contains n distinct elements, ordered so that
A[1] < A[2] < · · · < A[n]. Let FIND(n) be the minimum number of comparisons
needed, in the worst case, by any comparison-based algorithm to recognize
whether x ∈ A[1 : n]. Then FIND(n) ≥ ⌈lg(n + 1)⌉.

As a consequence of this algorithm, the binary search algorithm is an optimal
worst-case algorithm for the ordered searching problem.

Algorithms (EE3980) Unit 8. Lower Bound Theory May 16, 2018 5 / 29

Sorting

Given an array A[1 : n] with all elements distinct. The sorting problem is to
rearrange the array A such that A[i] < A[j], if 1 ≤ i < j ≤ n.
An example of sorting 3-integer array, {1, 2, 3}, is shown below.

Each internal node performs a comparison, A[i] < A[j].
The comparison can have only two results: true or false.

Each external node represents one of the possible sorting results.
With 3 elements, there are 6 = 3! external nodes.

1,3,2 3,1,2 2,1,3 2,3,1

1,2,3 1 < 3 1 < 3 3,2,1

2 < 3 2 < 3

1 < 2
yes no

yes no yes no

yes no yes no

Algorithms (EE3980) Unit 8. Lower Bound Theory May 16, 2018 6 / 29

Sorting — Lower Bound

Given A[1 : n], the comparison based algorithm should have a state space
with n! external nodes, and these external nodes are the leaves of the binary
tree.
Assuming that the binary tree has k levels, it takes k comparisons to perform
the sorting algorithm.
Let T(n) be the minimum number of comparisons to sort A[1 : n], then

2T(n) ≥ n!

And
T(n) ≥ ⌈lg n!⌉

By Stirling’s approximation

lg n! = n lg n − n/(lg 2) + (lg n)/2 +O(1)

Thus, any comparison-based sorting algorithm needs at least Ω(n lg n) time.

Algorithms (EE3980) Unit 8. Lower Bound Theory May 16, 2018 7 / 29

Sorting Complexity Example — Merge Sort

Merge sort starts by comparing two elements to form n/2 groups of 2
elements.
Then two two-element groups are sorted.

3 comparisons are needed to form n/4 groups.
The next step compares 4-element groups to form n/8 groups.

7 comparisons are needed to sort two 4-element groups.
Thus, the total number of comparisons is

T(n) =
k∑

i=1

n
2i (2

i − 1) =

k∑

i=1

n − n
k∑

i=1

1

2i

where k = lg n.
Thus, T(n) = n lg n −O(n).
Merge sort achieves the lowest time complexity, but the coefficients can still
be improved.

See textbook [Horowitz], pp. 481-483.

Algorithms (EE3980) Unit 8. Lower Bound Theory May 16, 2018 8 / 29

Merging
Given two ordered arrays A[1 : m] and B[1 : n], a third ordered array
C[1 : m + n] is formed by merging these two arrays together.
Given the numbers m and n, there are

(m+n
n

)
combinations of possibilities

combining A[1 : m] and B[1 : n].
Using comparison based algorithms, a tree can be formed and there should be
at least

(m+n
n

)
external nodes.

Let MERGE(m,n) be the minimum number of comparisons to merge A[1 : m]
and B[1 : n], then

MERGE(m,n) ≥
⌈

lg
(

m + n
n

)⌉
.

It has been shown in Unit 3 that the upper bound of MERGE(m,n), thus
⌈

lg
(

m + n
n

)⌉
≤ MERGE(m,n) ≤ m + n − 1.

A special case when m = n

Theorem 8.1.2.
MERGE(m,m) = 2m − 1, for m ≥ 1.

Algorithms (EE3980) Unit 8. Lower Bound Theory May 16, 2018 9 / 29

Finding the Largest Element
To find the largest element of an n-element array A, there must be at least
n − 1 nodes in the tree.

After k comparisons, only one element remains that is greater than any other
element. The smallest k is n − 1.

Thus, the minimum number of comparisons for finding the largest elements
of an n-element array is L1(n) = n − 1.
Example of the comparison tree of finding the largest element of a 3-element
array, A[1 : 3].

A[3] A[2] A[1] < A[3] A[1]

A[2] < A[3] A[2] < A[3]

A[1] < A[2]

A[3] A[1]

yes no

yes no yes no

yes no

Algorithms (EE3980) Unit 8. Lower Bound Theory May 16, 2018 10 / 29

Largest and 2nd Largest

Given an unordered set A[1 : n], finding the largest element needs n − 1
comparison.
The comparison tree can be arranged as the following.

P1 P2 P3 P4 P5 P6 P7 P8

P1 P3 P5 P7

P3 P5

P3

Algorithms (EE3980) Unit 8. Lower Bound Theory May 16, 2018 11 / 29

Largest and 2nd Largest, II

To find the 2nd largest element, one needs to compare only those elements
that compared to the largest element and were found to be smaller.

There are only lg n such elements.
To find the largest among them needs lg n − 1 comparison.

Thus to find the largest and second largest elements needs n + lg n − 2
comparisons.

Theorem 8.1.3.
Any comparison-based algorithm that computes the largest and the second largest
element of a set of n unordered elements requires n − 2 + ⌈lg n⌉ comparisons.

Algorithms (EE3980) Unit 8. Lower Bound Theory May 16, 2018 12 / 29

The Largest to the k-th Largest Elements

The comparison tree of finding the largest to the k-th largest elements of
A[1 : n] needs to have n · (n − 1) · · · (n − k + 1) external nodes.
Thus, let Lk(n) be the minimum number of comparisons of finding the
largest to the k largest elements

Lk(n) ≥
⌈

lg
(
n · (n − 1) · · · (n − k + 1)

)⌉
.

More detailed analysis shows that

Theorem 8.1.4.
Lk(n) ≥ n − k +

⌈
lg
(
n · (n − 1) · · · (n − k + 2)

)⌉
for all integers k and n, where

1 ≤ k ≤ n.

Note that this is an estimate of the lower bound.

Algorithms (EE3980) Unit 8. Lower Bound Theory May 16, 2018 13 / 29

Find the Largest k elements

Theorem 8.1.5.
Given an unordered set with n elements, the (k − 1)th largest element itself needs
at least (k − 1)

⌈
lg n

2(k − 1)

⌉
comparisons to be identified.

Proof please see textbook [Horowitz], p. 491.

Theorem 8.1.6.
Given an unordered set with n elements, all k − 1 largest elements can be found
with at least n − k + (k − 1)

⌈
lg n

2(k − 1)

⌉
comparisons.

Proof please see textbook [Horowitz], pp. 491-492.

Algorithms (EE3980) Unit 8. Lower Bound Theory May 16, 2018 14 / 29

Finding the Maximum and Minimum

Given n distinct elements, find the maximum and the minimum.
Using comparison-based algorithms, define 4-tuple (a, b, c, d) as

a is the number of elements that have not been compared,
b is the number of elements that have won and never lost,
c is the number of elements that have lost and never won,
d is the number of elements that have both won and lost.

Then given a state (a, b, c, d), an additional comparison can result in one of
the following states:

(a − 2, b + 1, c + 1, d) if a ≥ 2 // Compare two items from a.
(a − 1, b + 1, c, d) // Compare one item from a
(a − 1, b, c + 1, d) if a ≥ 1 // with one item from b
(a − 1, b, c, d + 1) // or from c.
(a, b − 1, c, d + 1) if b ≥ 2 // Compare two items from b.
(a, b, c − 1, d + 1) if c ≥ 2 // Compare two items from c.

Algorithms (EE3980) Unit 8. Lower Bound Theory May 16, 2018 15 / 29

Finding the Maximum and Minimum, II

The initial state is (n, 0, 0, 0) since all elements have not been compared.
Then it takes n/2 comparisons, comparing elements in a, to move to the
state (0,n/2,n/2, 0).
The final state is (0, 1, 1,n− 2) since we want to find the maximum, only one
element left in a, and the minimum, only one element left in b, the rest
elements must be in d.

The minimum number is n − 2 since d can only be increased by 1 with each
comparison.

Theorem 8.1.7.
Any algorithm that computes the largest and the smallest elements of a set of n
unordered elements requires ⌈3n/2⌉ − 2 comparisons.

Algorithms (EE3980) Unit 8. Lower Bound Theory May 16, 2018 16 / 29

Problem Reduction

Definition 8.1.8. Problem reduction.
Let P1 and P2 be any two problems. We say P1 reduces to P2, denoted by
P1 ∝ P2, in time τ(n) if an instance of P1 can be converted into an instance of
P2 and solution for P1 can be obtained from a solution of P2 in time ≤ τ(n).

Example
P1 is the problem of selection (Finding the kth smallest element.)
P2 is the problem of sorting.
If the input have n numbers and the number are sorted in an array A[1 : n],
The k th smallest element of the input can be obtained as A[k].
Thus, P1 reduces to P2 in O(1) time.

Note there are three steps in this formulation
Convert the inputs of problem P1 to P2

In this example, no special action is required.
Solve problem P2.

O(n lg n) if comparison based algorithm is adopted.
Convert the solution of P2 to that of P1.

O(1) since A[k] is the solution of P1.

Algorithms (EE3980) Unit 8. Lower Bound Theory May 16, 2018 17 / 29

Problem Reduction, II

Example 2
Given two sets S1 and S2 with m elements each.
P1 is the problem to check if S1 and S2 are disjoint, i.e., S1 ∩ S2 = ∅.
P2 is the sorting problem.
Then P1 ∝ P2 in O(m) time.

Let S1 = {k1, k2, · · · , km} and S2 = {h1, h2, · · · , hm}, then we can create a
set X = {(k1, 1), (k2, 1), · · · , (km, 1), (h1, 2), (h2, 2), · · · , (hm, 2)}.
This X can be created in 2m time (O(m)).
Then X can be sorted by the first element of each tuple.

O(n lg n), n = 2m, if comparison-based method is used.
After sorting, we can check whether there are two successive elements (x, 1)
and (y, 2) such that x = y.

2m − 1 comparisons are needed (O(m)).
If there are no such elements, then S1 and S2 are disjoint; otherwise they are
not.

Algorithms (EE3980) Unit 8. Lower Bound Theory May 16, 2018 18 / 29

Lower Bounds Through Reductions

Given two problems P1 and P2 such that P1 reduces to P2 in τ(n),
The input of P1 is converted to the input of P2 and the solution is obtained
from P2 in τ(n).
Suppose problem P1 can be solved in time T1(n) and
Problem P2 can be solved in time T2(n), then

T1(n) ≤ τ(n) + T2(n). (8.1.1)

Or,
T2(n) ≥ T1(n)− τ(n). (8.1.2)

Thus, the lower bound for solving problem P2 is T1(n)− τ(n).

Algorithms (EE3980) Unit 8. Lower Bound Theory May 16, 2018 19 / 29

Finding Convex Hull

Let P1 be a sorting problem on n numbers.
T1(n) = O(n lg n).

These numbers can be transformed into n points on a 2-D plane as
{(k1, k 2

1), (k2, k 2
2), · · · , (kn, k 2

n)}.
This transformation takes O(n) time.

Let P2 be the problem of finding the convex hull of the n points.
T2(n) is solution time for P2(n).

Note that the n points arranged in sorted order (sorted by x coordinate) form
a convex hull with the first point appended to the end.
In this case

T2(n) ≤ T1(n)−O(n) = O(n lg n)−O(n). (8.1.3)
Thus, we have

Lemma 8.1.9. Find Convex Hull
Computing the convex hull of n given points in the plane needs Ω(n lg n) time.

Algorithms (EE3980) Unit 8. Lower Bound Theory May 16, 2018 20 / 29

Multiplying Triangular Matrices

Given an n × n matrix A whose elements are {ai,j|1 ≤ i, j ≤ n}
A is said to be upper triangular if aij = 0 whenever i > j.
A is said to be lower triangular if aij = 0 for i < j.
A is said to be triangular if it is either upper triangular or lower triangular.
We are interested in the question if multiplying two lower (or upper)
triangular matrices is faster than multiplying two full matrices.
Let M(n) be the time complexity of multiplying two full matrices, and Mt(n)
be the time complexity of multiplying two lower triangular matrices.

Note that Mt(n) ≤ M(n).

And M(n) = Ω(n2) since there are 2n2 elements in the input and n2

elements in the output.

Algorithms (EE3980) Unit 8. Lower Bound Theory May 16, 2018 21 / 29

Multiplying Triangular Matrices, II

Let P1 be the problem of multiplying two full matrices A and B, each of size
n × n.
Let P2 be the problem of multiplying two lower triangular matrices.
The problem of P1 can be transformed into an instance of P2 problem as

A ′ =

0 0 0
0 0 0
0 A 0

 B ′ =

0 0 0
B 0 0
0 0 0

where 0 denotes a zero matrix, that is, an n × n matrix with all elements 0.
Note that both A ′ nd B ′ are lower triangular matrices.
And

A ′B ′ =

0 0 0
0 0 0

AB 0 0

Algorithms (EE3980) Unit 8. Lower Bound Theory May 16, 2018 22 / 29

Multiplying Triangular Matrices, III

Thus, the product of full matrices can be obtained from product of lower
triangular matrices.
Transforming full matrices to triangular matrices takes O(n2) time.
Getting the product AB from A ′B ′ also takes O(n2).
And we have

Mt(3n) ≥ M(n)−O(n2) = Ω(n2)−O(n2) = Ω(n2) (8.1.4)

Or
Mt(n) ≥ Ω((

n
3
)2) = Ω(n2) = Ω(M(n)). (8.1.5)

Thus we have

Lemma 8.1.10. Multiplying triangular matrices
Mt(n) = Ω(M(n)).

Since M(n) ≥ Mt(n) we conclude that Mt(n) = Θ(M(n)).

Algorithms (EE3980) Unit 8. Lower Bound Theory May 16, 2018 23 / 29

Inverting a Lower Triangular Matrix

An n × n matrix I is an identity matrix if

Ij,k =

{
1, if j = k,
0, otherwise. (8.1.6)

Given an n× n matrix A, if there exists a matrix B such that AB = I, then B
is called the inverse of A and A is said to be invertible. Also, the inverse of A
is denoted as A−1.
Note that not every matrix is invertible.
Given an n × n lower triangular matrix A, if all the diagonal elements
ai,j ̸= 0, 1 ≤ i, j ≤ n, then A is invertible.
In the following we are interested in the time complexity of inverting a lower
triangular matrix, especially, compared to the full matrix multiplication.

Algorithms (EE3980) Unit 8. Lower Bound Theory May 16, 2018 24 / 29

Inverting a Lower Triangular Matrix, II

Let P1 be the problem of multiplying two full matrices, and P2 be the
problem of inverting a lower triangular matrix.
Let It(n) be the time complexity of inverting a lower triangular matrix of
dimension n × n, and M(n) is the complexity of multiplying two full matrices.
Given two full n× n matrices A and B, the following 3n× 3n lower triangular
matrix can be constructed

C =

I 0 0
B I 0
0 A I

 (8.1.7)

where I is the identity matrix of dimension n × n and 0 is the zero matrix of
the same dimension.

Algorithms (EE3980) Unit 8. Lower Bound Theory May 16, 2018 25 / 29

Inverting a Lower Triangular Matrix, III

And it can be shown that the inverse matrix is

C−1 =

I 0 0
−B I 0
AB −A I

 (8.1.8)

Thus, matrix product can be obtained from inverting a matrix.
Furthermore, we have It(3n) ≤ M(n)−O(n2).
Since M(n) = Ω(n2) we have the following Lemma.

Lemma 8.1.11.
It(n) = Ω(M(n)).

Algorithms (EE3980) Unit 8. Lower Bound Theory May 16, 2018 26 / 29

Inverting a Lower Triangular Matrix, IV

Given an n × n lower triangular matrix A, we can partition it into 4
submatrices of dimension n

2
× n

2
each as

A =

[
A11 0
A21 A22

]
(8.1.9)

where both A11 and A22 are lower triangular matrices, but A21 can be full.
It can be shown that

A−1 =

[
A−1

11 0
−A−1

22 A21A−1
11 A−1

22

]
(8.1.10)

Thus, the inverse of A can be constructed using divide-and-conquer approach.
The inverse of submatrices A11 and A22 are first found, 2It(

n
2
), and then two

matrix multiplications are performed, 2M(
n
2
), followed by negating all

elements of the products, O(
n
4
)).

Algorithms (EE3980) Unit 8. Lower Bound Theory May 16, 2018 27 / 29

Inverting a Lower Triangular Matrix, V
And the currence equation is

It(n) = 2It(
n
2
) + 2M(

n
2
) +

n2

4

= 4It(
n
4
) + 4M(

n
4
) + 2

n2

16
+ 2M(

n
2
) +

n2

4

= 2M(
n
2
) + 4M(

n
4
) + · · ·+ n2

4
+

n2

8
+ · · ·

= O(M(n) + n2)

The last equality comes from M(n) = Ω(n2). The following Lemma is
obtained.

Lemma 8.1.12.
It(n) = O(M(n)).

Combining the last two lemmas, we conclude that It(n) = Θ(M(n)). That is
inverting a lower triangular matrix has the same time complexity as
multiplying two full matrices.

Algorithms (EE3980) Unit 8. Lower Bound Theory May 16, 2018 28 / 29

Summary

Theoretical lower bounds
Ordered searching
Sorting

Merge sort

Merging ordered arrays
Finding the largest element
The largest and 2nd largest elements
The largest to the k-th largest elements
Finding the maximum and the minimum
Problem reduction
Lower bound through problem reduction
Finding convex hull.
Lower triangular matrix multiplication
Lower triangular matrix inversion

Algorithms (EE3980) Unit 8. Lower Bound Theory May 16, 2018 29 / 29

Unit 9. NP-complete Problems

Algorithms

EE3980

May 21, 2018

Algorithms (EE3980) Unit 9. NP-complete Problems May 21, 2018 1 / 41

Algorithm Time Complexities

Time complexity of an algorithm depicts the execution time as a function of
the input size.

It is desirable to have the time complexity as a polynomial of the input size
with a small degree.

O(n), O(n lg n), O(n2)

For some problems the algorithms have been found are not polynomials.
For example, the traveling salesperson problem and 0/1 knapsack problem.
O(n22n), O(2n/2).
These problems can have extreme long execution time for a moderate size
problem.

The goal of the unit is to identify those problems that have no known
algorithms with polynomial time complexity.

Algorithms (EE3980) Unit 9. NP-complete Problems May 21, 2018 2 / 41

Nondeterministic Algorithms

The algorithms described so far can always be executed with exact results
– deterministic algorithms.
A different class of algorithms, nondeterministic algorithms, allow the
execution results to be not uniquely defined.

Three extra functions as following
1. Choice(S): chooses one of the elements of set S arbitrarily.
2. Failure(): signals an unsuccessful completion.
3. Success(): signals an successful completion.

All three functions can be execute efficiently, i.e., O(1).
Example

x := Choice(1,n)
x is assigned with an integer in the range [1,n].

Algorithms (EE3980) Unit 9. NP-complete Problems May 21, 2018 3 / 41

Nondeterministic Algorithms — Example
Example: Nondeterministic search
Given an array A[1 : n] with n integers, the following algorithm will find the
index j such that A[j] = x or j = 0 if x /∈ A.

Algorithm 9.1.1. Nondeterministic Search
1 Algorithm NDSearch(A,n, x)
2 // A nondeterministic search algorithm.
3 {
4 j := Choice (1,n) ;
5 if (A[j] = x) then { write (j) ; Success () ; }
6 write (0) ; Failure () ;
7 }

It is assumed that the nondeterministic algorithm NDSearch(A,n, x) can find
the correct index j such that A[j] = x or 0 if no such x in A[1 : n].
And it takes O(1) time to execute.
As compared to the deterministic algorithm that has time complexity of O(n).
It can be assumed there are n processors to make choices then one of them
will succeed.

Algorithms (EE3980) Unit 9. NP-complete Problems May 21, 2018 4 / 41

Nondeterministic Algorithms — Example, II

Nondeterministic sort algorithm:
Given an n-integer array A, the following algorithm sorts A into a
nondecreasing order.

Algorithm 9.1.2. Nondeterministic Sort
1 Algorithm NDSort(A,n)
2 // Sort n positive integers.
3 {
4 for i := 1 to n do B[i] := 0 ; // initialize B array.
5 for i := 1 to n do {
6 j := Choice (1,n) ;
7 if (B[j] ̸= 0) Failure () ; // Repeated assignment.
8 B[j] := A[i] ;
9 }

10 for i := 1 to n − 1 do // Verify order.
11 if (B[i] > B[i + 1]) then Failure () ;
12 write (B[1 : n]) ;
13 Success () ;
14 }

Algorithms (EE3980) Unit 9. NP-complete Problems May 21, 2018 5 / 41

Nondeterministic Algorithms — Example, III

Note that an auxiliary array B is used.
If the for loop on lines 5-9 is successfully executed, array B is a permutation
of array A.
Lines 10, 11 check if a nondecreasing order is achieved.
If so, the sorting is done.
The time complexity of NDSort algorithm is O(n).

As compared to O(n lg n) in the deterministic case.

There is no programming language or computer that can implement or
execute the nondeterministic algorithms.
The nondeterministic algorithms are tools for theoretical study in computer
science.
The primary objective of nondeterministic algorithm is whether an algorithm
can result in a success
– Verification Algorithms.

Algorithms (EE3980) Unit 9. NP-complete Problems May 21, 2018 6 / 41

Decision and Optimization Problems

Definition. 9.1.3.
1. Any problem for which the answer is either one or zero (true or false) is called

a decision problem.
2. An algorithm for a decision problem is termed a decision algorithm.
3. Any problem that involves the identification of an optimal (either minimum

or maximum) value of a given cost function is known as an optimization
problem.

4. An optimization algorithm is used to solve an optimization problem.

The nondeterministic algorithms are mostly for studying decision problems.
Though there might be many failures when a nondeterministic algorithm
executes, the concern is whether a success can be achieved.
If a decision problem can be solved in polynomial time, then the
corresponding optimization problem can solve in polynomial time, too.
On the other hand, if a optimization problem cannot be solved in polynomial
time, then the corresponding decision problem cannot be solved in polynomial
time, either.

Algorithms (EE3980) Unit 9. NP-complete Problems May 21, 2018 7 / 41

Decision and Optimization Problems — Example

Example: Maximum Clique Problem.
A maximal complete subgraph of a graph G(V,E) is a clique.
The size of a clique is the number of vertices in the clique.
The maximum clique problem is an optimization problem that is to determine
the largest clique in G.
The corresponding decision problem is to determine whether G has a clique of
size at least k for some given k.
Let DClique(G, k) be the deterministic algorithm for the decision problem.
If the number of vertices in G is n, then the optimization problem can be
solved by applying DClique repeatedly for different k, k = n,n − 1, · · · , until
the output of DClique is 1.
If the time complexity of DClique is f(n) then the optimization problem has
the complexity less than or equal to n · f(n).
On the other hand, if the optimization problem can be solved in g(n) time,
then the decision problem can be solved in time ≤ g(n).
If the decision problem can be solved in polynomial time, then the
optimization problem can also be solved in polynomial time.
If the optimization problem cannot be solved in polynomial time, then the
corresponding decision problem cannot be solved in polynomial time, either.

Algorithms (EE3980) Unit 9. NP-complete Problems May 21, 2018 8 / 41

Nondeterministic Algorithm Time Complexity

Definition 9.1.4.
The time required by a nondeterministic algorithm performing on any given input
is the minimum number of steps needed to reach a successful completion if there
exists a sequence of choices leading to such a completion. In case a successful
completion is not possible, then the time required is O(1). A nondeterministic
algorithm is of complexity O(f(n)) if for all inputs of size n, n ≥ n0, that result in
a successful completion, the time required is at most c · f(n) for some constants c
and n0.

Note the difference to the time complexity of a deterministic algorithm.

Algorithms (EE3980) Unit 9. NP-complete Problems May 21, 2018 9 / 41

Nondeterministic Algorithm Time Complexity Example
Given n objects with profits p[1 : n] and weights w[1 : n], and numbers m and
r, the following nondeterministic algorithm determined if there is an
assignment x[1 : n], x[i] = 0 or 1, 1 ≤ i ≤ n, such that

n∑

i=1

x[i] · p[i] ≥ r and
n∑

i=1

x[i] · w[i] ≤ m.

Algorithm 9.1.5. 0/1 Knapsack Decision Algorithm.
1 Algorithm NDKP(p,w,n,m, r, x)
2 // Nondeterministic algorithm to decide if there is a solution assignment.
3 {
4 W := 0 ; P := 0 ;
5 for i := 1 to n do {
6 x[i] := Choice (0, 1) ; // assign x[]
7 W := W + x[i]× w[i] ; P := P + x[i]× p[i] ;
8 }
9 if ((W > m) or (P < r)) then Failure () ;

10 else Success () ;
11 }

The time complexity of a successful completion of this algorithm is O(n).
Algorithms (EE3980) Unit 9. NP-complete Problems May 21, 2018 10 / 41

Nondeterministic Algorithm Time Complexity Example, II
Given a graph G(V,E) with n vertices, the following algorithm determines if
there is a clique of size k in G.

Algorithm 9.1.6. Nondeterministic Graph Clique Decision
1 Algorithm NDCK(V,E,n, k)
2 // If G(V,E) contains a clique of size k.
3 {
4 S := ∅ ; // initialize S to be empty set.
5 for i := 1 to k do { // find k distinct vertices
6 t := Choice (1,n) ;
7 if (t ∈ S) then Failure () ;
8 S := S ∪ {t} ; // Add t to set S.
9 }

10 for (all pairs (i, j) such that i ∈ S, j ∈ S and i ̸= j) do
11 if (i, j) /∈ E then Failure () ;
12 Success () ;
13 }

The time complexity is dominated by the for loop on lines 10,11,
O(k 2) ≤ O(n2).
There is no known polynomial time algorithm for the deterministic graph
clique decision problem.

Algorithms (EE3980) Unit 9. NP-complete Problems May 21, 2018 11 / 41

P and NP
An algorithm A is of polynomial complexity if there exists a polynomial p
such that the computing time of A is O(p(n)) for every input of size n.

Definition 9.1.7. P and NP
P is the set of all decision problems solvable by deterministic algorithms in
polynomial time. NP is the set of all decision problems solvable by
nondeterministic algorithms in polynomial time.

Since deterministic algorithms are special cases of nondeterministic
algorithms, we have P ⊆ NP.
It is not known which of the following is true: P = NP or P ̸= NP.
The common belief of their relationship is shown below

P NP

Algorithms (EE3980) Unit 9. NP-complete Problems May 21, 2018 12 / 41

Polynomial Time Transformation (Reducibility)

Given two problems Q1 and Q2, if there is a polynomial time transformation
such that Q1 can be transformed into Q2 we say that Q1 transforms to Q2

and denotes Q1 ∝ Q2.
It is also commonly referred as Q1 reduces to Q2.

Given the polynomial transformation Q1 ∝ Q2, if Q2 can be solved in
polynomial time, then Q1 can be solved in polynomial time as well.

Lemma 9.1.8.
If Q1 ∝ Q2, then if Q2 ∈ P then Q1 ∈ P (and, equivalently, Q1 /∈ P then Q2 /∈
P).

Lemma 9.1.9.
If Q1 ∝ Q2 and Q2 ∝ Q3, then Q1 ∝ Q3.

Algorithms (EE3980) Unit 9. NP-complete Problems May 21, 2018 13 / 41

NP-complete

A problem Q is said to be NP-complete if Q ∈ NP and for all other Q ′ ∈
NP, Q ′ ∝ Q.

Thus, the NP-complete problems are the hardest problems in NP.
If any one can be solved in polynomial time, then all problems in NP can be
solved in polynomial time.

Lemma 9.1.10.
If Q1 and Q2 belong to NP, if Q1 is NP-complete and Q1 ∝ Q2 then Q2 is
NP-complete.

Definition 9.1.11. Polynomial equivalency.
Two problems Q1 and Q2 are said to be polynomial equivalent if and only if Q1 ∝ Q2

and Q2 ∝ Q1.

To show a problem Q2 is NP-complete, it is adequate to show Q1 ∝ Q2,
where Q1 is a problem already known to be NP-complete.

Algorithms (EE3980) Unit 9. NP-complete Problems May 21, 2018 14 / 41

Satisfiability Problem

Let x1, x2, · · · , xn be boolean variables such that xi can be either true or
false.
Let xi denote the negation of xi.
A literal is either a boolean variable or its negation.
A formula in the propositional calculus is an expression that can be
constructed using literals and the operators and and or.
Examples of formulas

(x1 ∧ x2) ∨ (x3 ∧ x4), (x3 ∨ x4) ∧ (x1 ∨ x2)

The symbol ∨ denotes or and ∧ denotes and.
A formula is in conjunctive normal form (CNF) if and only if it is represented
as

∧k
i=1 ci, where ci are clauses each represented as

∨
lij. The lij are literals.

Example of CNF: (x3 ∨ x4) ∧ (x1 ∨ x2).
A formula is in disjunctive normal form if and only if it is represented as∨k

i=1 ci and each clause ci is represented as
∧

li,j.
Example of DNF: (x1 ∧ x2) ∨ (x3 ∧ x4).

Algorithms (EE3980) Unit 9. NP-complete Problems May 21, 2018 15 / 41

Satisfiability Problem, II
The satisfiability problem is to determine whether a formula is true for some
assignment of truth values to the variables.
The CNF-satisfiability is the satisfiability problem for CNF formula.
Given an expression E and n boolean variables represented by the array
x[1 : n] = (x1, x2, · · · , xn), the following nondeterministic algorithm find a set
of truth value assignments that satisfies E, that is, E(x1, x2, · · · , xn) = true.

Algorithm 9.1.12. Nondeterministic Satisfiability.
1 Algorithm NSat(E,n, x)
2 // Nondeterministic algorithm for satisfiability problem.
3 {
4 for i := 1 to n do // Choose a truth value assignment.
5 x[i] := Choice (false , true) ;
6 if E(x) then Success () ;
7 else Failure () ;
8 }

The time complexity is O(n) (for loop on lines 4-5) plus the time to
evaluation expression E.

Algorithms (EE3980) Unit 9. NP-complete Problems May 21, 2018 16 / 41

Cook’s Theorem

It is known from Algorithm (9.1.12) that the satisfiability decision problem is
in NP, and we have the following theorem by Cook.

Theorem 9.1.13. Cook’s Theorem.
Satisfiability is in P if and only if P = NP.

Proof please see textbook [Horowitz], pp. 527-535,
or [Cormen] pp. 1074-1077.
S.A. Cook, ”The complexity of theorem proving procedures.” In Proceedings
of the Third Annual ACM Symposium on Theory of Computing, pp. 151-158,
1971.

In other words, satisfiability problem is NP-complete.
This is the first known NP-complete problem.

Then others can be reduced from it.

Algorithms (EE3980) Unit 9. NP-complete Problems May 21, 2018 17 / 41

NP-Hard and NP-Complete
Definition. 9.1.14. NP-hard and NP-complete.
A problem Q is NP-hard if and only if satisfiability reduces to Q (satisfiability
∝ Q). A problem Q is NP-complete if and only if Q is NP-hard and Q ∈ NP.

There are NP-hard problems that are not NP-complete.
Only a decision problem can be NP-complete.
If Q1 is a decision problem and Q2 is the corresponding optimization
problem, then it is quite possible that Q1 ∝ Q2.
An NP-complete decision problem may have its corresponding optimization
problem be NP-hard.
There are also decision problems that are NP-hard.

P

NP

NP-hard

NP-complete

Algorithms (EE3980) Unit 9. NP-complete Problems May 21, 2018 18 / 41

3-Satisfiability Problem (3-SAT)
3-satisfiability problem is a special case of the CNF-satisfiability problem,
where each clause has exactly three literals.
A clause, Ck, of k literals can be converted into a CNF of 3 literals, C ′

k, as
the following. (yi’s are auxiliary variables.)

k = 1, C1 = x1,
C ′

1 = (x1 ∨ y1 ∨ y2) ∧ (x1 ∨ y1 ∨ y2) ∧ (x1 ∨ y1 ∨ y2) ∧ (x1 ∨ y1 ∨ y2),

k = 2, C2 = x1 ∨ x2,
C ′

2 = (x1 ∨ x2 ∨ y1) ∧ (x1 ∨ x2 ∨ y1),

k = 3, C3 = x1 ∨ x2 ∨ x3,
C ′

3 = x1 ∨ x2 ∨ x3,
k > 3, Ck = x1 ∨ x2 ∨ · · · ∨ xk,

C ′
k = (x1 ∨ x2 ∨ y1) ∧ (y1 ∨ x3 ∨ y2) ∧ · · · ∧ (yk−3 ∨ xk−1 ∨ xk).

Theorem 9.1.15. 3-SAT
CNF-satisfiability problem ∝ 3-satisfiability problem.

Thus, 3-satisfiability problem is NP-complete.
Algorithms (EE3980) Unit 9. NP-complete Problems May 21, 2018 19 / 41

Finding Other NP-Complete Problems
From the Satisfiability problem, more NP-complete problems were identified.

SAT

3-CNF-SAT

Clique

Node Cover

HAM-CYCLE

TSP

Subset-Sum

Algorithms (EE3980) Unit 9. NP-complete Problems May 21, 2018 20 / 41

Clique Decision Problem (CDP)

A graph clique decision problem (CDP) is given a graph G(V,E) to decide if
there are cliques of size k in G.
CDP is NP-complete.

Theorem 9.1.16. CDF
CNF-satisfiability ∝ clique decision problem.

Let F =
∧k

i=1 Ci be a propositional formula in CNF.
Let xi, 1 ≤ i ≤ n be a variable in F.

Define G = (V,E) as follows:
V = {⟨σ, i⟩|σ is a literal in clause Ci}.
E = {(⟨σ, i⟩, ⟨δ, j⟩)|i ̸= j and σ ̸= δ}.

The F is satisfiable if and only if G has a clique of size k.
If the length of F is m, the sum variables of each clause, then G is obtainable
from F in O(m2) time.

Algorithms (EE3980) Unit 9. NP-complete Problems May 21, 2018 21 / 41

Clique Decision Problem (CDP), II

Q1: 3-Satisfiability.
I = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3).
Q2: Clique Decision problem.
G(VI ,EI) has a clique of size 3?

x11 x21 x31

x12

x22

x32

x13

x23

x33

Algorithms (EE3980) Unit 9. NP-complete Problems May 21, 2018 22 / 41

Node Cover Decision Problem (NCDP)

A set S ⊆ V is a node cover for a graph G(V,E) if and only if all edges in E
are incident to at least one vertex in S. The size |S | of the cover is the
number of vertices in S.
The node cover decision problem is given a graph G(V,E) and an integer k
to determine if there is a node cover of size at most k.
Example: Given a graph shown below.

S1 = {2, 4} is a node cover of size 2.
S2 = {1, 3, 5} is a node cover of size 3.

1 2

3

45

Graph G.

1 2

3

45

Graph G ′.

Algorithms (EE3980) Unit 9. NP-complete Problems May 21, 2018 23 / 41

Node Cover Decision Problem (NCDP), II

Theorem 9.1.17. NCDP
The clique decision problem ∝ the node cover decision problem.

Given a G(V,E) and an integer k, and instance of clique decision problem is
defined. Assume that |V | = n.
Construct a graph G ′(V,E ′), where E ′ = {(u, v)|u ∈ V, v ∈ V and
(u, v) /∈ E}.
This graph G ′ is known as the complement of G.
If K is a clique in G, since there are no edges in E ′ connecting vertices in K,
the remaining n − |K| vertices in G ′ must cover all edges in E ′.
Thus if G has a clique of size at least k if and only if G ′ has a node cover of
size at most n − k.
Note that G ′ can be constructed from G in O(n2) time, thus theorem is
proved.
Note also that since CNF-satisfiability ∝ CDP, and CDP ∝ NCDP, therefore
NCDP is NP-hard.
NCDP is also NP, so NCDP is NP-complete.

Algorithms (EE3980) Unit 9. NP-complete Problems May 21, 2018 24 / 41

Chromatic Number Decision Problem (CNDP)

A coloring of a graph G(V,E) is a function f : V → {1, 2, . . . , k} defined for
all i ∈ V. If (u, v) ∈ E, then f(u) ̸= f(v).
The chromatic number decision problem is to determine whether G has a
coloring for a given k.
Example: a two-coloring graph.

1 2

3

45

Theorem 9.1.18. CNDP
3-satisfiability problem ∝ chromatic number decision problem.

Proof see textbook [Horowitz], pp. 540-541.

Algorithms (EE3980) Unit 9. NP-complete Problems May 21, 2018 25 / 41

Directed Hamiltonian Cycle (DHC) Problem
A directed Hamiltonian cycle in a directed graph G(V,E) is a directed cycle
of length n = |V |.
The directed Hamiltonian cycle goes through every vertex exactly once and
returns to the starting vertex.
The DHC problem is to determine whether G has a directed Hamiltonian
cycle.
Example: (1, 2, 3, 4, 5, 1) is a Hamiltonian cycle.

1 2

3

45

Theorem 9.1.19. DHC
CNF-satisfiability ∝ directed Hamiltonian cycle.

Directed Hamiltonian cycle problem is NP-complete.
Proof please see textbook [Horowitz], pp. 542-545,
or [Cormen], pp. 1091-1096 (for undirected graph).

Algorithms (EE3980) Unit 9. NP-complete Problems May 21, 2018 26 / 41

Traveling Salesperson Decision Problem (TSP)
The traveling salesperson decision problem (TSP) is to determine whether a
complete directed graph G(V,E) with edge cost c(u, v), u, v ∈ V, has a tour
of cost at most M.

Theorem 9.1.20. TSP
Directed Hamiltonian cycle (DHC) ∝ the traveling salesperson decision problem
(TSP).

Given a directed graph G(V,E) for the DHC problem, construct a complete
directed graph G ′(V,E ′), E ′ = {⟨i, j ⟩|i ̸= j} and c(i, j) = 1 if ⟨i, j ⟩ ∈ E;
c(i, j) = 2 if i ̸= j and ⟨i, j ⟩ /∈ E. In this case, G ′ has a tour of cost at most
n if and only if G has a directed Hamiltonian cycle.
TSP is an NP-completeproblem.
Both Hamiltonian Cycle and Travelling Salesperson Problem can be defined
for undirected graph as well.
Both undirected Hamiltonian Cycle and Travelling salesperson Problem are
also NP-complete.
Proof please see textbook [Cormen], pp. 1091-1097.

Algorithms (EE3980) Unit 9. NP-complete Problems May 21, 2018 27 / 41

Partition Problem

Given a set A = {a1, a2, · · · , an} of n integers. The partition problem is to
determine whether there is a partition P such that

∑

i∈P
ai =

∑

i/∈P

ai.

Theorem 9.1.21. Partition Problem.
3-satisfiability problem ∝ partition problem.

Proof see Garey and Johnson, Computers and Intractability, Freeman, 1979,
p. 60.
Thus, partition problem is a NP-complete problem.

Algorithms (EE3980) Unit 9. NP-complete Problems May 21, 2018 28 / 41

Sum of Subsets Problem
Given a set A = {a1, a2, · · · , an} of n integers and an integer M. The sum of
subsets problem is to determine whether there is a subset S ⊆ A such that

∑

ai∈S

ai = M.

Given the n-integer set A, an n + 2 set B can be constructed as
bi = ai, 1 ≤ i ≤ n,

bn+1 = M + 1,

bn+2 = (

n∑

i=1

ai)− M + 1,

Then bn+2 +
∑

bi∈S

bi = bn+1 +
∑

bi /∈S

bi.

The partition problem in B is equivalent to the sum of subsets problem in A.

Theorem 9.1.22. Sum of subsets.
Sum of subsets problem ∝ partition problem.

The sum of subsets problem is NP-complete.
Algorithms (EE3980) Unit 9. NP-complete Problems May 21, 2018 29 / 41

Scheduling Identical Processors Problems
Let Pi, 1 ≤ i ≤ m, be m identical processors.
Let Ji, 1 ≤ i ≤ n, be n jobs. Each job Ji requires ti processing time.
A schedule S is an assignment of jobs to processors. For each job Ji, S
specifies the time interval and the processor that processes Ji.

A job cannot be processed by more than one processor at any given time.
Let fi be the time at which job Ji complete processing. The mean finish time
(MFT) of schedule S is

MFT(S) = 1

n

n∑

i=1

fi. (9.1.1)

Let wi be a weight associated with each job Ji. The weighted mean finish
time (WMFT) of schedule S is

WMFT(S) = 1

n

n∑

i=1

wi · fi. (9.1.2)

Let Ti be the time at which Pi finishes processing all jobs assigned to it. The
finish time (FT) of schedule S is

FT(S) = mmax
i=1

Ti. (9.1.3)

Schedule S is a nonpreemptive schedule if and only if each job Ji is processed
continuously from start to finish on the same processor. Otherwise, it is
preemptive.

Algorithms (EE3980) Unit 9. NP-complete Problems May 21, 2018 30 / 41

Scheduling Problems – Complexities

Theorem 9.1.23. MFT
Partition problem ∝ minimum finish time nonpreemptive schedule problem.

For m = 2 case, given the set {a1, a2, · · · , an} as an instance of the partition
problem. Define n jobs with processing time ti = ai, 1 ≤ i ≤ n. There is a
nonpreemptive schedule for this set of jobs on two processors with finish time
at most

∑
ti/2 if and only if there is a partition of the set {ai|1 ≤ i ≤ n}. It

can also be proved for m > 2 cases.

Theorem 9.1.24. WMFT
Partition problem ∝ minimum WMFT nonpreemptive schedule problem.

For m = 2 case, given the set {a1, a2, · · · , an} define a two-processor
scheduling problem with wi = ti = ai. Then there is a nonpreemptive
schedule S with weighted mean finish time at most 1/2

∑
a2

i + 1/4(
∑

ai)
2 if

and only if the set {ai|1 ≤ i ≤ n} has a partition.
The rest of the proof please see textbook [Horowitz], pp. 554-555.

Algorithms (EE3980) Unit 9. NP-complete Problems May 21, 2018 31 / 41

Scheduling Problems – Complexities, II

Theorem 9.1.25. Flow Shop Scheduling
Partition problem ∝ the minimum finish time preemptive flow shop schedule with
m > 2. (m is the number of processors.)

Proof please see textbook [Horowitz], pp. 555-556.

Theorem 9.1.26. 2-processor Flow Shop Scheduling
2-processor flow shop schedule ∈ P.

Dynamic programming approach can solve this problem in polynomial time.
Please see textbook [Horowitz], pp. 321-325.

Theorem 9.1.27. Job Shop Scheduling
Partition problem ∝ the minimum finish time preemptive job shop schedule with
m > 1. (m is the number of processors.)

Proof please see textbook [Horowitz], pp. 557-558.

Algorithms (EE3980) Unit 9. NP-complete Problems May 21, 2018 32 / 41

Other NP-complete Problems

Since 1971, many NP-complete problems
have been found.
A good source book is

M.R. Garey and D.S. Johnson,
Computers and Intractability
– A Guide to the Theory of
NP-Completeness,
W.H. Freeman, 1979.

More than 320 NP-complete problems
listed in its reference, pp. 190-288.

Algorithms (EE3980) Unit 9. NP-complete Problems May 21, 2018 33 / 41

2-SAT Problem

It has been shown that Satisfiability (SAT) and 3-SAT problems are
NP-complete.
In the following we study 2-SAT problem.
2-SAT problem is also a special case of SAT problem. In this problem, each
clause has exactly two literals.
Example

F(x1, x2, x3, x4) = (x1 ∨ x2) ∧ (x2 ∨ x3) ∧ (x2 ∨ x4) ∧ (x2 ∨ x4) ∧ (x4 ∨ x1).

Given formula shown above, is it satisfiable? That is, can one set xi = true or
xi = false for each xi such that the formula is evaluated to be true.

Algorithms (EE3980) Unit 9. NP-complete Problems May 21, 2018 34 / 41

2-SAT Problem, II

Example

F(x1, x2, x3, x4) = (x1 ∨ x2) ∧ (x2 ∨ x3) ∧ (x2 ∨ x4) ∧ (x2 ∨ x4) ∧ (x4 ∨ x1).

In evaluating F(x1, x2, x3, x4), one can set x2 = 1 (true), then x2 = 0 (false)
and the formula becomes

F(x1, x2 = 1, x3, x4) = (x4) ∧ (x4 ∨ x1).

Three clauses, (x1 ∨ x2), (x2 ∨ x3), and (x2 ∨ x4), become true, and thus can
be eliminated from the formula.
The clause (x2 ∨ x4) reduces to (x4) since x2 = 0.
In order F(x1, x2, x3, x4) = 1, one must have x4 = 0 and x1 = 1.
The value of x3 does not impact F and can be either 0 or 1 (don’t care).
This shows that F(x1, x2, x3, x4) is satisfiable with
(x1, x2, x3, x4) = (1, 1,×, 0).

Algorithms (EE3980) Unit 9. NP-complete Problems May 21, 2018 35 / 41

2-SAT Problem, III

F(x1, x2, x3, x4) = (x1 ∨ x2) ∧ (x2 ∨ x3) ∧ (x2 ∨ x4) ∧ (x2 ∨ x4) ∧ (x4 ∨ x1).

The complete state space for the formula
Backtracking or branch-and-bound can be used to find the answer.
O(2n), n is the number of boolean variables.

E =0 E =1 E =0 E =1 E =0 E =0 E =1 E =0 E =0 E =0 E =0 E =0 E =0 E =0 E =0 E =0

E =X E =X E =0 E =X E =X E =X E =0 E =0

E =X E =X E =X E =0

E =X E =X

E =X
x1 = 1 x1 = 0

x2 = 1 x2 = 0 x2 = 1 x2 = 0

x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0 x3 = 1 x3 = 0

x4 = 1x4 = 0
x4 = 1x4 = 0

x4 = 1x4 = 0
x4 = 1x4 = 0

x4 = 1x4 = 0
x4 = 1x4 = 0

x4 = 1x4 = 0
x4 = 1x4 = 0

Algorithms (EE3980) Unit 9. NP-complete Problems May 21, 2018 36 / 41

2-SAT Problem – Implicative Form
In propositional calculus, the following two simple formulas are equivalent.

F1 = x1 ∨ x2
F2 = x1 → x2 (9.1.4)

Since x1 ∨ x2 = x2 ∨ x1, the following three are equivalent
F1 = x1 ∨ x2
F2 = x1 → x2 (9.1.5)
F3 = x2 → x1

It is easy to see the followings.
F4 = x1 → x1 ≡ x1 ∨ x1 = true, (9.1.6)
F5 = x1 → x1 ≡ x1 ∨ x1 = true. (9.1.7)

Yet,
F6 = x1 → x1 ≡ x1 ∨ x1 (9.1.8)
F7 = x1 → x1 ≡ x1 ∨ x1 (9.1.9)

F6 can be true if x1 = false, and F7 can be true if x1 = true.
Algorithms (EE3980) Unit 9. NP-complete Problems May 21, 2018 37 / 41

2-SAT Problem – Implicative Form, II
But,

F8 = (x1 → x1) ∧ (x1 → x1)
≡ (x1 ∨ x1) ∧ (x1 ∨ x1)
= x1 ∧ x1 = false. (9.1.10)

Using this equivalent relationship, the formulas in conjunctive normal form
can be easily translated to the implicative form.
F(x1, x2, x3, x4) =(x1 ∨ x2) ∧ (x2 ∨ x3) ∧ (x2 ∨ x4) ∧ (x2 ∨ x4) ∧ (x4 ∨ x1)

≡(x1 → x2) ∧ (x2 → x3) ∧ (x2 → x4) ∧ (x2 → x4) ∧ (x4 → x1)∧
(x2 → x1) ∧ (x3 → x2) ∧ (x4 → x2) ∧ (x4 → x2) ∧ (x1 → x4).

And, a directed graph G(V,E) can be constructed from the conjunctive
normal form (F(x1, x2, . . . , xn) =

∧m
j=1(xi ∨ xj)).

V = {yi | yi = xi or yi = xi, i = 1, . . . ,n},
E = {(yi, yj)(yj, yi) | (yi ∨ yj) is one clause in F}.

Note that |V | = 2n and |E | = 2m, where n is the number of variables and m
is the number of clauses in F.

Algorithms (EE3980) Unit 9. NP-complete Problems May 21, 2018 38 / 41

Implicative Graph
Given the formula, the following graph is constructed.

Two strongly connected components, {x2, x4} and {x2, x4} can be observed.
F(x1, x2, x3, x4) = (x1 ∨ x2) ∧ (x2 ∨ x3) ∧ (x2 ∨ x4) ∧ (x2 ∨ x4) ∧ (x4 ∨ x1)

x1x2x3 x4

x1 x2 x3x4

Lemma 9.1.28. 2SAT
Given a formula F(x1, x2, . . . , xn) and its implicative graph G(V,E) then F is
NOT satisfiable if and only if there is a strongly connected component in G that
contains a boolean variable xi and its complement xi.

By the preceding lemma, the formula given above is satisfiable since those
two strongly connected components contain no boolean variable together
with its complement.

Algorithms (EE3980) Unit 9. NP-complete Problems May 21, 2018 39 / 41

Solving 2-SAT Problems

From the lemma, one can solve the 2-SAT problem by
1. Construct the implicative graph, G(V,E), of the formula F(x1, x2, . . . , xn).
2. Find all the strongly connected components, Si, of G(V,E).
3. Check all the strongly connected components to see if any Si contains both xj

and xj.
4. If no such Si and xj exist, then F(x1, x2, . . . , xn) is satisfiable; Otherwise,

F(x1, x2, . . . , xn) is not satisfiable.
Note that

1. G(V,E) can be constructed in O(n + m) time, since |V| = 2n and |E| = 2m.
(n is the number of boolean variables and m is the number of clauses in F).

2. The strongly connected graph can be find in O(|V|+ |E|) time.
3. Check for if both xj and xj are in Si can be done in O(|Si|) time.
4. Thus, determine if F(x1, x2, . . . , xn) is satisfiable can be done in O(n + m)

time.

Lemma 9.1.29.
2-SAT ∈ P.

Algorithms (EE3980) Unit 9. NP-complete Problems May 21, 2018 40 / 41

Summary
Nondeterministic algorithms

Examples
Complexity

Decision and optimization problems
Polynomial time transformation
P, NP and NP-complete
Satisfiability problem
NP-complete problems

3-SAT
Graph clique problem
Node cover problem
Chromatic number problem
Hamiltonian cycle problem
Traveling salesperson problem
Partition problem
Sum of subsets problem
Scheduling identical processors problem

2-SAT problem
Algorithms (EE3980) Unit 9. NP-complete Problems May 21, 2018 41 / 41

Unit 10. Approximation Algorithms

Algorithms

EE3980

May 30, 2018

Algorithms (EE3980) Unit 10. Approximation Algorithms May 30, 2018 1 / 31

0/1 Knapsack Problem

Given n objects, each with profit pi and weight wi, 1 ≤ i ≤ n, to be placed
into a sack that can hold maximum of m weight. However, there is an
additional constraint that each object must be placed as a whole into the
sack, or not at all. That is, find xi, 1 ≤ i ≤ n, such that

maximize
n∑

i=1

pixi,

subject to
n∑

i=1

wixi ≤ m,

and xi = 0 or 1, 1 ≤ i ≤ n.

(10.1.1)

We need
n∑

i=1

wi > m for nontrivial solutions.

It is assumed that the n objects are ordered by pi/wi in a nonincreasing order.
It is also assumed that the optimal profit is p∗.
The following greedy algorithm can find a feasible but not necessarily the
optimal solution.

Algorithms (EE3980) Unit 10. Approximation Algorithms May 30, 2018 2 / 31

0/1 Knapsack Problem – Greedy Algorithm

Algorithm 10.1.1. Greedy Knapsack
1 Algorithm GKnap0(n, p,w, x,m)
2 // Find solution x[1 : n] given n objects with profits p[1 : n], weights w[1 : n]
3 // and capacity m.
4 // The objects are assumed to be sorted by p[i]/w[i] in nonincreasing order.
5 {
6 for i := 1 to n do x[i] := 0 ;
7 i := 1 ; fp1 := 0 ;
8 while (m ≥ w[i]) do {
9 x[i] := 1 ; fp1 := fp1 + p[i] ; m := m − w[i] ; i := i + 1 ;

10 }
11 }

At the end of the algorithm GKnap0 object i is placed into the sack if
x[i] = 1, and fp1 is the final profit.
It is easy to see that fp1 ≤ p∗, and fp1 < p∗ most of the time.

Algorithms (EE3980) Unit 10. Approximation Algorithms May 30, 2018 3 / 31

0/1 Knapsack Problem – An example

An example of the knapsack problem:
Given n objects, pi = 1 and wi = 1 for i = 1, . . . ,n − 1, and pn = k · n − 1,
wn = m = k · n, k ≫ 1.
The optimal profit for this problem is p∗ = k · n − 1 with xn = 1 and xi = 0,
i = 1, . . . ,n − 1.
Note that pi/wi = 1 for i = 1, . . . ,n − 1 and
pn/wn = (k · n − 1)/(k · n) = 1− 1/(k · n) < 1. Thus, the objects are already
in a nonincreasing order.
The Greedy Knapsack algorithm finds a solution xi = 1, i = 1, . . . ,n − 1, and
xn = 0 with a profit fp1 = n − 1.
The ratio p∗/fp1 = (k · n − 1)/(n − 1) ≫ 1.
The greedy Knapsack algorithm can be modified as the following to fix this
problem.

Algorithms (EE3980) Unit 10. Approximation Algorithms May 30, 2018 4 / 31

0/1 Knapsack Problem – Revised Greedy Algorithm
Algorithm 10.1.2. Revised Greedy Knapsack

1 Algorithm GKnap(n, p,w, x,m)
2 // Find solution x[1 : n] given n objects with profits p[1 : n], weights w[1 : n]
3 // and capacity m.
4 // The objects are assumed to be sorted by p[i]/w[i] in nonincreasing order.
5 {
6 for i := 1 to n do x[i] := 0 ;
7 i := 1 ; fp2 := 0 ; m′ := m ;
8 while (m′ ≥ w[i]) do { // Greedy method.
9 x[i] := 1 ; fp2 := fp2 + p[i] ; m′ := m′ − w[i] ; i := i + 1 ;

10 }
11 Find j such that p[j] = max(p[1 : n]) ; // Object j has the max profit.
12 if (p[j] > fp2 and w[j] ≤ m) then { // Choose the object j.
13 for i := 1 to n do x[i] := 0 ;
14 x[j] := 1 ; fp2 := p[j] ;
15 }
16 }

This revised algorithm adds lines 11-15 for the possibility of choosing the
object with the largest profit.

Algorithms (EE3980) Unit 10. Approximation Algorithms May 30, 2018 5 / 31

0/1 Knapsack Problem – The Profit

In the preceding algorithm, let i = h when the while loop on line 8
terminates.
At this time, we have

fp1 =

h−1∑

i=1

pi < p∗ < fp1 + ph · m′

wh
< fp1 + ph.

Consider two cases
Case 1: ph < fp1 then

p∗ < fp1 + ph < 2 · fp1 ≤ 2 · fp2.

Case 2: ph > fp1, then

p∗ < fp1 + ph < 2 · ph ≤ 2 · max{pi} ≤ 2 · fp2.

Thus, we have the following lemma.

Algorithms (EE3980) Unit 10. Approximation Algorithms May 30, 2018 6 / 31

0/1 Knapsack Problem – Bound of The Profit

Lemma 10.1.3.
Given a 0/1 knapsack problem, let the optimal profit be p∗ and the profit found
by Algorithm (10.1.2) be fp2, then

p∗

fp2
≤ 2. (10.1.2)

The greedy algorithm to solve the knapsack problem always finds a profit fp2

such that p∗

2
< fp2 < p∗.

This algorithm finds an approximate solution given the bound above. Though
it is not an optimal solution, it has very low time complexity.

Algorithms (EE3980) Unit 10. Approximation Algorithms May 30, 2018 7 / 31

Approximation Algorithms

There are no known polynomial time algorithms to solve NP-complete
problems.
Solving these problems can take a long time if the problem size is not small.
But, there are many practical problems that are NP-complete.
Heuristics might be used with existing algorithms to reduce solution time.

Backtracking and branch and bound algorithms.
The solution quality can vary significantly from instance to instance.
Exponential time complexity can still take formidable time.

Instead of finding the optimal solution, a different approach is to find an
approximate solution, which is a feasible solution with value close the optimal
solution.
An approximation algorithm for a problem Q is an algorithm that generates
approximate solutions for Q.

Algorithms (EE3980) Unit 10. Approximation Algorithms May 30, 2018 8 / 31

Approximation Algorithms — Definitions

Let Q be a problem such as the knapsack (or the traveling salesperson)
problem.
Let I is an instance of problem Q and F ∗(I) be the value of an optimal
solution to I.
An approximation algorithm generally produces a feasible solution to I whose
value F̂ (I) is less than (greater than) F ∗(I) if Q is a maximization
(minimization) problem.

Definition. 10.1.4. Absolute approximation.
A is an absolute approximation algorithm for problem Q if and only if for every
instance I of Q, |F ∗(I)− F̂ (I)| ≤ k for some constant k.

Definition. 10.1.5.
A is an f(n)-approximate algorithm for problem Q if and only if for every instance
I of size n, |F ∗(I)− F̂ (I)|/F ∗(I) ≤ f(n) for F ∗(I) > 0.

Algorithms (EE3980) Unit 10. Approximation Algorithms May 30, 2018 9 / 31

Approximation Algorithms — Definitions, II

Definition. 10.1.6.
An ϵ-approximate algorithm is an f(n)-approximate algorithm for which f(n) ≤ ϵ
for some constant ϵ.

Note that for maximization problems, |F ∗ − F̂ (I)|/F ∗ ≤ 1 for every feasible
solution to I.

Thus, ϵ < 1 is usually required for ϵ-approximate algorithms.

In the following, we assume ϵ is an input to algorithm A.

Definition. 10.1.7.
A(ϵ) is an approximation scheme if and only if for every given ϵ > 0 and problem
instance I, A(ϵ) generates a feasible solution such that |F ∗(I)− F̂ (I)|/F ∗ ≤ ϵ.
(F ∗ > 0 is assumed.)

Algorithms (EE3980) Unit 10. Approximation Algorithms May 30, 2018 10 / 31

Approximation Algorithms — Definitions, III

Definition. 10.1.8.
An approximation scheme is a polynomial time approximation scheme if and only
of for every fixed ϵ > 0, it has computing time that is polynomial in the problem
size.

Definition. 10.1.9.
An approximation scheme whose computing time is a polynomial both in problem
size and in 1/ϵ is a fully polynomial time approximation scheme.

For most NP-complete problems, it can be shown the absolute
approximation algorithms exist only if P=NP-complete.

For certain NP-complete problems, the existence of f(n)-approximate
algorithm is also shown only when P=NP-complete.

Algorithms (EE3980) Unit 10. Approximation Algorithms May 30, 2018 11 / 31

Absolute Approximations

There are very few NP-hard optimization problems for which polynomial
time absolute approximation algorithms are known.
The problem of determining the minimum number of colors to color a planar
graph is an exception.

It has been proven that every planar graph is four colorable.
One can also determine a planar graph is zero, one or two colorable.

Algorithm. 10.1.10. Planar Graph Coloring.
1 Algorithm AColor(G)
2 // Approximate algorithm to determine minimum color for planar graph G(V,E).
3 {
4 if (V = ∅) then return 0 ;
5 else if (E = ∅) then return 1 ;
6 else if (G is bipartite) then return 2 ;
7 else return 4 ;
8 }

Algorithms (EE3980) Unit 10. Approximation Algorithms May 30, 2018 12 / 31

Planar Graph Coloring

The time complexity of Algorithm (10.1.10) is dominated by line 6 which
checks if the graph is bipartite.
Checking the bipartite property of a graph can be done in O(|V |+ |E |) time.
Thus, Algorithm (10.1.10) is a polynomial time algorithm.
Note that the planar graph coloring problem is NP-hard since three color
decision problem is NP-complete.
Algorithm (10.1.10) does not check for three color solution, thus avoiding the
long execution time by returning an approximate solution.
Algorithm (10.1.10) is an absolute approximation algorithm because
|F ∗(I)− F̂ (I)| ≤ 1.

Algorithms (EE3980) Unit 10. Approximation Algorithms May 30, 2018 13 / 31

Bipartite Graph

Definition. 10.1.11. Bipartite Graph.
An undirected graph G(V,E) is bipartite if V can be partitioned into two disjoint
sets V1 and V2 = V − V1 such that no two vertices in V1 are adjacent, and no
two vertices in V2 are adjacent.

Example: The graph below is bipartite with V1 = {1, 4, 5, 6, 7} and
V2 = {2, 3, 8}.

1

2 3

4 5 6 7

8

Determine if a graph is bipartite can be done in O(|V |+ |E |) time.
Algorithms (EE3980) Unit 10. Approximation Algorithms May 30, 2018 14 / 31

Maximum Programs Stored Problem

Given n programs and two storage devices. The ith program is of length li
and each storage device has capacity of L. The maximum programs stored
problem is to determine the maximum number of programs that can be
stored on these two storage devices without splitting any program.
This maximum programs stored problem is NP-hard because of the following.
Example: Four programs with the lengths as (l1, l2, l3, l4) = (2, 4, 5, 6) and
storage device capacity L = 10.

The optimal solution is 4, which can be achieved by storing programs 1 and 4
on one device, and programs 2 and 3 on the other device.

Theorem. 10.1.12.
Partition problem ∝ maximum programs stored problem.

Proof please see textbook [Horowitz] p. 581.

Algorithms (EE3980) Unit 10. Approximation Algorithms May 30, 2018 15 / 31

Maximum Programs Stored Problem, II

Assume the lengths of the n program is stored in array l[1 : n].
Sort array l[1 : n] in nondecreasing order, l[i] ≤ l[i + 1], 1 ≤ i ≤ n.

Algorithm. 10.1.13. Approximate algorithm to store programs.
1 Algorithm PStore(l,n,L)
2 // Store n program with l[1 : n] lengths to 2 devices.
3 {
4 i := 1 ;
5 for j := 1 to 2 do { // store to device 1 then 2
6 sum := 0 ; // Amount of device used.
7 while (sum + l[i] ≤ L) do {
8 write (” store program ”, i, ” on device ”, j) ;
9 sum := sum + l[i] ; i := i + 1 ;

10 if i > n then return ;
11 }
12 }
13 }

Algorithms (EE3980) Unit 10. Approximation Algorithms May 30, 2018 16 / 31

Maximum Programs Stored Problem, III

Theorem 10.1.14.
Let I be any instance of the maximum programs stored problem. Let F ∗(I) be
the maximum number of programs that can be stored on two devices each with
length L. Let F̂ (I) be the number of programs stored using the function PStore.
Then |F ∗(I)− F̂ (I)| ≤ 1.

Proof. Consider the case that only one device with length 2L is used to store
the programs, and p programs are stored. Then p > F ∗(I) and

∑p
i=1 li ≤ 2L. Let

j be the largest index such that
∑j

i=1 li ≤ L. We must have j ≤ p and that
PStore assign the first j programs to device 1. Also,

p−1∑

i=j+1

li ≤
p∑

i=j+2

li ≤ L.

Hence, PStore assigns at least j + 1, j + 2, · · · , p − 1 to device 2. So,
F̂ (I) ≥ p − 1 and |F ∗(I)− F̂ (I)| ≤ 1. □

Algorithm PStore can be extended to be a k − 1 absolute approximation
algorithm for the case of k devices.

Algorithms (EE3980) Unit 10. Approximation Algorithms May 30, 2018 17 / 31

NP-hard Absolute Approximations
For a majority of the NP-hard problems, however, the polynomial absolute
approximation algorithm exists if and only if the original program has a
polynomial time algorithm.
For example, we have the following theorem.

Theorem. 10.1.15.
The absolute knapsack problem is NP-hard.

Proof. Suppose that we have a polynomial time algorithm to find
|F ∗(I)− F̂ (I)| ≤ k for every instance I and a fixed k. Let (pi,wi), 1 ≤ i ≤ n and
m be the instance. Furthermore, we assume pi are integers. Form a new instance
I ′ by ((k + 1)pi,wi), 1 ≤ i ≤ n, and m. Note that any feasible solution for I is
also a feasible solution for I ′, and F ∗(I ′) = (k + 1)F ∗(I) and I and I ′ have the
same optimal solutions. Since pi are integers, the feasible solutions of I ′ must
have difference ≥ (k + 1) due to the way I ′ is constructed. Now, suppose the
absolute algorithm A finds the optimal solution such that |F ∗(I ′)− F̂ (I ′)| ≤ k,
then F̂ (I ′) must be F ∗(I ′). Thus, the polynomial algorithm can be used to find
the optimal solution, which is not possible. □

Algorithms (EE3980) Unit 10. Approximation Algorithms May 30, 2018 18 / 31

NP-hard Absolute Approximations, II
Another example of absolute approximation algorithm is NP-hard.

Theorem. 10.1.16.
Max clique ∝ absolute approximation max clique.

Proof. Suppose there is an absolute approximation algorithm that finds a
solution such that |F ∗(I)− F̂ (I)| ≤ k. For a given graph G(V,E) construct a
new graph G ′

(V ′
,E ′

) so that G ′ consists of (k + 1) copies of G connected
together such that there is an edge between every two vertices in distinct copies of
G. That is, if V = {v1, v2, · · · , n}, then

V
′
=

k+1∪

i=1

{vi
1, vi

2, · · · , vi
n},

and E
′
=

(k+1∪

i=1

{(vi
p, vi

r)|(vp, vr) ∈ E}
)∪

{(vi
p, vj

r)|i ≠ j}

Then the maximum clique size is q if and only if the maximum clique size if G ′ is
(k + 1)q. Furthermore, any clique in G ′ that is within k of the maximum clique in
G ′ must contain a subclique of size q in G. Thus, we can use this absolute
approximation algorithm to find the maximum clique of the original problem in
polynomial time since constructing G ′ is of polynomial time. □

Algorithms (EE3980) Unit 10. Approximation Algorithms May 30, 2018 19 / 31

ϵ-Approximations
Given a set of n tasks with processing time ti each and m identical
processors, the minimum finish time schedule assign the tasks to the
processors to achieve the minimum finish time.
This minimum finish time scheduling problem has been shown to be
NP-hard.
In this section we study a polynomial time scheduling algorithm.

Definition. 10.1.17. LPT Schedule.
An LPT schedule is one that is the result of an algorithm that, whenever a
processor becomes free, assigns to that processor a task whose processing time is
the longest of those tasks not yet assigned. Ties are broken in an arbitrary manner.

Example: m = 3, n = 6 and (t1, t2, t3, t4, t5, t6) = (8, 7, 6, 5, 4, 3). The
following is the result of a LPT schedule, which is also an optimal solution.

t1
t2

t3 t4
t5

t6P1

P2

P3

Algorithms (EE3980) Unit 10. Approximation Algorithms May 30, 2018 20 / 31

LPT Scheduling

Example 2: m = 3, n = 7 and (t1, t2, t3, t4, t5, t6, t7) = (5, 5, 4, 4, 3, 3, 3). The
LPT schedule and the optimal schedule are shown below.

t1
t2

t3 t4

t5
t6

t7P1

P2

P3

LPT schedule.

t1
t2

t3
t4

t5 t6 t7

P1

P2

P3

Optimal schedule.

Theorem. 10.1.18.
Let F ∗(I) be the finish time of an optimal m-processor schedule for instance I of
the task scheduling problem. Let F̂ (I) be the finish time of an LPT schedule for
the same instance. Then

|F ∗(I)− F̂ (I)|
|F ∗(I)| ≤ 1

3
− 1

3m . (10.1.3)

Proof. See textbook [Horowitz] pp. 586-587. □

Algorithms (EE3980) Unit 10. Approximation Algorithms May 30, 2018 21 / 31

Bin Packing Problem

Given n objects of li units each to be placed in bins with equal capacity L.
The bin packing problem is to determine the minimum number of bins to
accommodate all objects.
Example: n = 6, (l1, l2, l3, l4, l5, l6) = (4, 5, 1, 6, 3, 2) and L = 7. An optimal
solution is:

l1
l2

l3 l4

l5
l6

Bin1

Bin2

Bin3

This bin packing problem has many applications. The followings are
examples.

n tasks with ti processing time and all tasks must be completed before
deadline L. Find the minimum number of processors, m.
n programs with li lengths each to be stored on devices with capacity L. Find
the minimum number of storage devices, m.

Algorithms (EE3980) Unit 10. Approximation Algorithms May 30, 2018 22 / 31

Bin Packing Problem, II

Theorem 10.1.19.
The bin packing problem is NP-hard.

Proof. Let {a1, a2, · · · , a3} be an instance of partition problem. A bin packing

problem can be constructed by assigning li = ai, 1 ≤ i ≤ n, and L =

n∑

i=1

ai. The

minimum number of bins is 2 and the solution can be found if there is a partition
for {a1, a2 · · · , an}. Since the partition problem is NP-hard, the bin packing
problem is also NP-hard. □

Thus, finding the optimal solution for the bin packing problem can take long
time if the number of input, n, is large.
Heuristics can be used to find good feasible solutions.

These solutions are usually not optimal.

Algorithms (EE3980) Unit 10. Approximation Algorithms May 30, 2018 23 / 31

Bin Packing Problem, III
Four heuristics are possible:

1. First Fit (FF): Pack objects sequentially from 1 to n. All bins are initially filled
to level zero. To pack object i, find the least index j such that bin j is filled to
a level r, r ≤ L − li. Pack object i into bin j. Bin j is now filled to the level
r + li.

2. Best Fit (BF): The initial conditions on the bins and objects are the same as
above. To pack object i, find the least j such that bin j is filled to a level r,
r ≤ L − li and is as large as possible. Pack object i into bin j. Bin j is now
filled to the level r + li.

3. First Fit Decreasing (FFD): Reorder the objects is a nonincreasing order, then
use First Fit to pack the objects.

4. Best Fit Decreasing (BFD): Reorder the objects is a nonincreasing order, then
use Best Fit to pack the objects.

Example: n = 6, (l1, l2, l3, l4, l5, l6) = (4, 5, 1, 6, 3, 2), and L = 7.

l1
l2

l3

l4
l5

l6Bin1

Bin2

Bin3

Bin4

FF.

l1
l2 l3

l4

l5

l6

Bin1

Bin2

Bin3

Bin4

BF.

l1
l2

l3l4

l5
l6

Bin1

Bin2

Bin3

FFD and BFD.

Algorithms (EE3980) Unit 10. Approximation Algorithms May 30, 2018 24 / 31

Bin Packing Problem, IV
Theorem. 10.1.20.
Let I be an instance of the bin packing problem and F ∗(I) be the minimum
number of bins needed for this instance. The packing generated by either FF or
BF uses no more than

17

10
F ∗(I) + 2 (10.1.4)

bins. The packing generated by either FFD or BFD used no more than
11

9
F ∗(I) + 4 (10.1.5)

bins. These bounds are the best possible for the respective algorithms.

Proof. See the paper: D. Johnson, A. Demers, J. Ullman, M. Garey, and R.
Graham, ”Worst-case Performance Bounds for Simple One-Dimensional Packing
Algorithms,” SIAM Journal on Computing 3, No. 4, 1974, pp. 299-325. □

Note these are worst-case bounds.
For some instances, these heuristics are capable of generating the optimal
solutions.

For large n, the FFD and BFD heuristics have the smaller bounds.
Algorithms (EE3980) Unit 10. Approximation Algorithms May 30, 2018 25 / 31

NP-hard ϵ-approximation Problems

Many NP-hard optimization problems their corresponding ϵ-approximation
problems are also NP-hard.
Few examples are given here.

Theorem. 10.1.21.
Hamiltonian cycle problem ∝ ϵ-approximation traveling problem.

Proof please see textbook [Horowitz] p. 591.

Theorem. 10.1.22.
Partition problem ∝ ϵ-approximation integer programming problem.

Proof please see textbook [Horowitz] p. 592.

Theorem. 10.1.23.
Hamiltonian cycle problem ∝ ϵ-approximation quadratic assignment problem.

Proof please see textbook [Horowitz] p. 593.

Algorithms (EE3980) Unit 10. Approximation Algorithms May 30, 2018 26 / 31

Polynomial Time Approximation Schemes

A different approximation scheme of the independent task scheduling
problem.

Algorithm 10.1.24. Scheduling by Graham
1 Algorithm Graham(n,m, k, t)
2 // Schedule n tasks with processing time t[1 : n] on m processors.
3 {
4 Find the optimal schedule for the k longest tasks ;
5 Perform LPT scheduling for the rest of the tasks ;
6 }

Example: n = 6, m = 2, (t1, t2, t3, t4, t5, t6) = (8, 6, 5, 4, 4, 1).
t1

t2 t3
t4P1

P2
Optimal for 4 tasks.

t1
t2 t3

t4
t5

t6P1

P2
Complete schedule.

t1 t2
t3 t4 t5 t6

P1

P2
Optimal schedule.

Algorithms (EE3980) Unit 10. Approximation Algorithms May 30, 2018 27 / 31

Polynomial Time Approximation Schemes, II

Theorem. 10.1.25. Graham Scheduling.
Let I be an m-processor instance of the scheduling problem. Let F ∗(I) be the
finish time of an optimal schedule for I and let F̂ (I) be the finish time of the
schedule generated by the algorithm Graham. Then,

|F ∗(I)− F̂ (I)|
F ∗(I) ≤ 1− 1/m

1 + ⌊k/m⌋ . (10.1.6)

Proof please see textbook [Horowitz] pp. 598-599.
Given any ϵ, one can find

k ≥ m − 1

ϵ
− m (10.1.7)

then the schedule generated is ϵ · F ∗(I).

Algorithms (EE3980) Unit 10. Approximation Algorithms May 30, 2018 28 / 31

Polynomial Time Approximation Schemes, III

2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

k

ϵ

Graham’s Schedule

m = 2
m = 3
m = 4
m = 5

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

0

20

40

60

80

ϵ

k

Graham’s Schedule

m = 2
m = 3
m = 4
m = 5

In the Graham’s algorithm ϵ can be made small, but then k can be large.
The first part of the Graham’s algorithm, line 4, can take O(mk) time.
Before applying Graham’s algorithm, the input needs to be sorted, time
complexity O(n lg n).
Thus, the total time complexity is O(n lg n + mk).

This is not exactly a polynomial time algorithm for large k.

Algorithms (EE3980) Unit 10. Approximation Algorithms May 30, 2018 29 / 31

Solving NP-complete Problems

Finding solutions for NP-complete or NP-hard problems can take
formidable amount of time.
Approximation algorithms do not attempt to find the optimal solution but to
find a feasible solution close to the optimal one.

The bound, if can be derived, is of great value.
Basic methods for approximate algorithms are the ones we have studied

Divide-and-conquer
Greedy method
Dynamic programming
Local search instead of all space search
The key is the bounding function.

Other heuristic approaches have been developed
Construction heuristics
Local search heuristics
Simulated annealing
Genetic algorithms
Tabu search

Algorithms (EE3980) Unit 10. Approximation Algorithms May 30, 2018 30 / 31

Summary

Approximation algorithms.
Absolution approximations.

Planar graph coloring problem.
Maximum programs stored problem.
NP-hardness.

ϵ-approximations.
Scheduling problem.
Bin packing problem.
NP-hardness.

Polynomial time approximation scheme.
Graham’s algorithm.

Algorithms (EE3980) Unit 10. Approximation Algorithms May 30, 2018 31 / 31

	lec72
	lec81
	lec91
	lecA1

