
HW 10. Finding Equal Partitions
EE3980 Algorithms

104061212 馮立俞

May 20, 2018

Introduction

In this assignment, we are given a list of integers, A. The Object is to split A into to

groups, S0 and S1, such that

S0 ∩ S1 = ∅

S0 ∪ S1 = A∑
ai∈S0

ai =
∑

aj∈S1

aj.

We’ll show result if such solution exists. And of course, better efficiency is desired.

Approach

Since S0 and S1 are two disjoint subsets of A, and their union is equal to A, the members

in A can be either in S0 or S1. Thus,there are 2N possible pairs of {S0, S1}, where N is

the size of A. We’ll have to try out all possible pairs to find out all possible answers if we

have no other idea except brute force approach.

1

However, we can use backtracking method to reduce unnecessary trials to speed up

the process.

Backtracking

Below is a big picture of a recursion program.

1 Algorithm Resursion(){

2 if (reach termination condition)

3 show result

4 else{

5 do something to reduce the problem

6 Recursion();

7 }

8 }

We can, however, sometimes know whether a solution is legal way before it reaches

the termination condition. Differently put, we can set stricter termination condition to

avoid further unnecessary function calls. Here in this task, either the current Sum is

larger than the target sum or completing the rest of recursion gives less sum than target

sum can tell us to terminate the recursion before it has traverse all the numbers in A.

2

In this homework, we can apply the backtracking SumOfSubsets Algorithm (7.1.3)

in class, with the target sum equaling half of the sum of A.

1 Algorithm SumOfSub(s, k, r)

2 {

3 x[k] := 1 ; // try to include w[i]

4 if (s + w[k] = m) then write (x[1 : k]) ; // one solution found

5 else if (s + w[k] + w[k + 1] <= m) then

6 SumOfSub(s + w[k], k + 1, r - w[k]) ;

7 if ((s + r - w[k] >= m)) then { // x[il] = 0 case

8 x[k] := 0 ;

9 SumOfSub(s, k + 1, r - w[k]) ;

10 }

11 }

The algorithm traverse a binary tree whose branches at level i are decisions on whether

to include ith in A element into S0. Backtracking is applied.

More tricks

Half the task

However, if we use the algorithm, and a solution S0 is found. Then S1 = A \ S0 is simul-

taneously found.

Because the solutions always appear in pairs, we can reduce the problem to "Finding

S0 containing a0 with sum equaling 1
2

∑
ai∈A −a0". Because if we can find a set containing

a0, then the set without a0 would appear simultaneously. This could save us half of the

effort on the answers which are just swapping the elements in S0 and S1.

3

Perform sort ahead

Another trick is to sort the elements in A in decreasing order. Doing so could help us

terminate unwanted solutions earlier. Take the example from lecture notes.

Figure 1: Execution of SumOfSub, A = { 4,11,15,24 } , target = 15

In the above figure, the elements in A are not sorted. The blue circles denote early

termination. If blue circles appear on higher level, more computation can be saved.

4

If we sort A to {24, 15, 11, 4}. The execution could look like the following figure

Figure 2: Execution of SumOfSub with prior sort , A = { 24,15,11,4 } , target = 15

We can see termination occur at higher level, when we have accumulated 24 or 15.

Plus, sorting has nlog(n) complexity, so the sorting operation wouldn’t be a great over-

head compared to 2N trials.

Using Iteration

Theoretically, all recursive programs can be realized using iteration. This would require

more programming effort, yet the overhead of function calling can be drastically allevi-

ated.

5

Results and Analysis

Figure 3: CPU 　 Time needed to find all solutions v.s task size, lg − lg scale

The execution time complexity is comparable to 2N , yet backtracking has saved us

some time.

During execution on work station, the actual CPU time deviates quite a lot. Thus

it’s hard to verify if sorting could really help boost efficiency.

Observations and Conclusion

1 Actually, we may not be able to print all answers correctly for input over 32 integers.

Overflow could occur when we use 32 bit integer to record solution number.

2 The change in efficiency due to sorting is not effective as expected.

3 From the tree diagram, we can see that the branches are independently separated. It

may be possible to assign each task to individual processors to utilize the power of

6

parallel computing.

7

