
1

EE3980 Algorithms

HW8 Printing Paragraphs

104061212 馮立俞

2018/5/6

Introduction

 Given a text file with each paragraph separated by line break(‘\n’) character,

print the file left aligned, and the length of printed lines should not surpass a constant

N. However, while moving on to the next printing line, sometimes we’ll leave some

blank spaces. Except for the last line of a paragraph, where we use a line break

character to terminate the paragraph. Therefore, no blank spaces are needed for the

last line of a it. The goal of this assignment is to print the file using minimum spaces

for each paragraph, and with greedy method and dynamic programming.

Approach

 Suppose there’s n words in the paragraph. For a line that prints from i-th to j-th

word in the paragraph. The extra space needed for such line is N minus total word

length from i to j, and minus the spaces between words. i.e.

Extra Spaces of line = N – ∑ 𝑤𝑜𝑟𝑑𝑙𝑒𝑛𝑔𝑡ℎ𝑘 − (𝑗 − 𝑖)
𝑘=𝑗

𝑘=𝑖

And the total spaces used for a paragraph is just adding the result of each line in the

paragraph.

2

Greedy Method

A greedy method approach needs a benchmark for all legal moves in current

step. Then, to optimize the overall result, a greedy method takes the step with highest

benchmark result. The taken step should reduce the problem. After several steps the

problem is solved, the output is the combination of steps taken.

 In this problem, the benchmark of printing a line is the number of spaces

required the at the end of line. To optimize we’ll print as much as we can in a line,

leaving minimum spaces each line. The time complexity is O(n) since we only need

to evaluate each word one time.

1. Algorithm greedy(paragraph) {

2. while (not finished printing paragraph)

3. while (the next word can fit in current line) print_word;

4. print("\n")

5. }

Dynamic Programming

Another way of viewing this problem is to see it as recursion of printing.

𝑆𝑝𝑎𝑐𝑒0~𝑛 = min (𝑆𝑝𝑎𝑐𝑒𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑙𝑖𝑛𝑒 + 𝑆𝑝𝑎𝑐𝑒𝑟𝑒𝑠𝑡 𝑜𝑓 𝑝𝑎𝑟𝑎𝑔𝑟𝑎𝑝ℎ)

For printing a paragraph, the result is equivalent to the combination of current

line result and the rest of the paragraph result. We can then treat the rest of the

paragraph as a new paragraph. Such recursion ends as the residue can be printed in a

single line. This is somewhat like the rod cutting problem in textbook. And we’ve

3

known from rod cutting problem that we could record computation result in arrays to

avoid repetitive operations. In this problem we minimize the cost rather than

maximize the profit. So an array recording the minimum amount of total spaces

required if the paragraph starts from word[i], Space[], is needed. As for the solution,

instead of indicating the length to cut, we need information about to which word

should we stop printing if the line starts with word[i]; therefore another matrix which

records Solution, Sol[], is used.

1. Algorithm DP(paragraph, Sol[], Spaces[], i) {

2. if (Spaces[i] != 0) return Space[i]; //have calculated result before

3. for (k = i; line can fit from word i to word k; k++)

4. temp = (space left when print from word i to word k)

5. + DP(paragraph, Sol[], Spaces[], k);

6. if (temp < Spaces[i]) {

7. Sol[i] = k;

8. Spaces[i] = temp;

9. }

10. return Spaces[i];

11. }

4

We can then print the paragraph using constructed Sol[]

1. Algorithm DPPrint(paragraph, Nwords, Sol[]) {

2. for (i = 0, j = Sol[0]; i < Nwords;){

print from word i to word j

i = j + 1;

3. j = Sol[i];

4. }

5. }

The time complexity is not clear due to recursion call. Yet it’s obvious that it’s

under-bounded by O(n) for filling Space[], Sol[], and printing result, because

they’re all of size n. So dynamic programming would theoretically take more time

due to larger coefficient in time complexity.

The space complexity for both method are O(n). Though coefficient of dynamic

Programming is greater.

5

Results and analysis

Below is a snippet of the output of greedy method with N being 50, the numbers on

the right are the additional spaces added in that line.

And Below is the output from DP function.

6

 We can see that though some difference exists, the overall spaces used per

paragraph are the same for two approaches. The output of dynamic programming

approach is leaves weird long blank (as indicated above with red line).

Observations and Conclusion

From the given test case, greedy method seems to give the optimal solution as

dynamic programming can do. Yet result from greedy method looks more uniform

between lines. Plus, greedy method has less time complexity and requires easier

coding effort by nature. It seems greedy method should be favored over dynamic

programming when we encounter this problem.

