
1

EE3980 Algorithms

HW6 Linear Sort

104061212 馮立俞

2018/4/15

Introduction

 In this assignment, we’re asked to sort a list of words using algorithm of linear

time complexity. However, compared with previous sorting assignments. The words

to be sorted share two properties, i.e.

1. All words consist of lower-case letters only.

2. The maximum number of letters of the words is 14.

Approach

Since the characters are all lower-case, which means there’s only 27(a ~z and

‘\0’) possible value for each letter in a word string. Plus, the words are no longer than

14 characters (limited length). In such case, a linear-complexity algorithm, radix sort,

can be applied.

Radix Sort

1. Algorithm RadixSort(list, N) {

2. For i = LSB to MSB do CountingSort(list, N, I);

3. }

RadixSort is simply calling CountingSort from Least Significant Bit (letter) to Most

Significant Bit (letter).

2

It’s noteworthy that as we use scanf to import data, the characters fill from index 0

(MSB). Then, if the word is shorter than the length of given array, remaining elements

in array would be filled with ‘\0’.

Counting Sort

1. Algorithm CountingSort(list, N) {

2. Init count = { 0, 0, …0 };

3. //count has k members, k is all

possible value in list

4. for i = list[1] to list[N] do count[i]++;

5. for i = 2 to k do count[i] += count[i - 1];

6. for i = N to 1 do A[--count[list[i]]] = list[i];

7. return A;

8. }

 In the above algorithm, first we use count array to calculate how many

members are less than or equal to the i-th possible value. Then, from back to top we

place the elements in list to A according to the position indicated by count array.

As we can observe from the looping bounds, the time complexity is

 𝑂(𝑛 + 𝑘). Where n is the task size and k is the number of possible value in list.

Additionally, we used another A and count array, so the space complexity is also

𝑂(𝑛 + 𝑘). Therefore the complexity of RadixSort is 𝑂(𝑟(𝑛 + 𝑘)). r is the

maximum length of word in wordlist to be sorted.

3

Results and analysis

Table. CPU Time (in sec) w.r.t. task size

It’s obvious in above chart that when r, k << n, RadixSort has linear time complexity.

However, we can take HeapSort from HW2 to compare together.

y = 4E-07x - 3E-05

-5.00E-04

0.00E+00

5.00E-04

1.00E-03

1.50E-03

2.00E-03

2.50E-03

3.00E-03

3.50E-03

4.00E-03

4.50E-03

0 2000 4000 6000 8000 10000 12000

C
P

U
 T

ti
m

e
(s

ec
)

Task size

CPU Time vs. Task Size

0.00E+00

2.00E-04

4.00E-04

6.00E-04

8.00E-04

1.00E-03

0 500 1000 1500 2000 2500 3000

C
P

U
 T

ti
m

e
(s

ec
)

Task size

CPU Time vs. Task Size

Radix Heap

Task Size 40 80 160 320 640 1280 2560 5120 10240

CPU

Time

2.43E-

05

3.03E-

05

5.75E-

05

1.10E-

04

2.25E-

04

4.30E-

04

8.71E-

04

1.76E-

03

3.90E-

03

4

Though the theoretical time complexity is different, their actual execution time didn’t

differ a lot when sorting the test cases of this assignment.

Observations and Conclusion

1. RadixSort / CountingSort are of great use when the data to be sorted have limited

possible value. (r, k << n)

2. Lower time complexity does not always guarantee shorter execution time.

