EE3980 Algorithms
HWS Ranking Martial Artists

104061212 JEITHy
2018/4/8

Introduction

In this assignment, we are given 108 martial artist names and 63*5 =315 1 vs. 1
match results. Then, we’re required to rank the martial artists according to the

matches.

Approach

The match result can be represented by a Directed Acyclic Graph(DAG) in
which the edges point from match winner to match losers. Therefore, the graph
consists of 108 vertices and 315 edges, which is too wasteful to construct the graph
using adjacency matrix. As a result, I chose to build the graph using linked lists.

After the graph is constructed, we can sort the vertices using topology sort. It’s

noteworthy that since the graph is sparse, more than one valid sorting results are valid.

Topology Sort

1. Algorithm top_sort(v, slist)

// Topological sort using depth first search algorithm.

2
// v is the vertex being visited; and slist is the ordered linked list.
3. {
4. visited[v]: = 1;
Be for each vertex w adjacent to v do {
6. if (visited[w] = @) then top_sort(w);
7. }
8. add v to the head of slist;
O
10. }

11. Algorithm topsort_Call(v) // Initialization and recursive top_sort function call

12. {
13.

14. for v:

1 to n do visited[v]: = ©;

15. slist:

NULL ;

16.

17. for v: =1 to n do

18. if (visited[v] = @) then top_sort(v, slist);
19.

20. }

In this algorithm, we use Depth First Search(DFS) to traverse the vertices. Since
linked list is adopted, the complexity of traversal is O(n + e), where n and e are the
number of vertices and edges in the graph. If we use adjacency matrix, the complexity
could grow to 0(n?). Also, the space complexity of two data structure are O(n + e)

and 0(n?), respectively.

Results and analysis

Efficiency

We can plot the overall execution time w.r.t. n + e as follows

CPU Time vs. Task Size
0.0014
0.0012 ®
0.001
0.0008

0.0006 ° ®

CPU time(sec)

0.0004

0.0002

0 50 100 150 200 250 300 350 400 450

vertices + edges

The curve is quite linear as e grows linearly. The abnormal behavior of the second

point might be caused by initializing overhead.

Correctness

Since there’s more than one valid output, I didn’t check the output deterministically.

Rather, I picked out some edges, then observed if the output obeys them. So far

they’re valid.

Observations and Conclusion

Though being a linear complexity algorithm, the execution time of linked list

approach seem to be much slower when it’s compared to other sorting algorithms in

the previous assignments. This could result from the implemented data structure.

© 00 N O O W N -

e e e e o e
© 0 N O O W NN = O

20

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

/oK ok ok ok ok ok ok ok ok ok o o kK ok ok ok sk ok ok ok ok ok ok ok ok ok ok o ok ok ok ok ok ok ok ok ok ok ok
EE3980 HWO5 Ranking Martial Artists
104061212 Li-Yu Feng
Date:2018/4/8
sk ok ok ok ok ok ok ok ok ok o o ok ok ok sk ok ok ok ok sk sk ok ok ok ok ok ok ok ok sk ok ok ok sk sk ok ok ok ok ok ok ok /
#include<stdio.h>
#include<stdlib.h>
#include<stdbool.h>
#include<string.h>
typedef struct node{ //graph node
char *name;
int index;
bool visited;
struct node *next, *end;
}Node;
int insertNode(Node **list, int N, char *winner, char *loser); //record match
void top_sort(int index, Node **1list, char **rank); //topology sort
void rankit(char *name, char **rank); //store result
double GetTime(void);
int insertNode(Node **1list, int N, char *winner, char *loser){
Node *temp, *temp2;
int i; //looping index
int j, k; //to find winner,loser
int m, n; //record winnner/loser location
i=20;
i=1
k=1;
m= -1;
n=-1;

for(i =0, j=1; 1 <N && j != 0; i++){ //find winner location
j = strcmp(list[i]->name, winner);

}

m= i-1;

for(i =0, k =1; i < N && k!=0; i++){ //find loser
k = strcmp(list[i]->name, loser);

}

n=i1i-1;

temp = list[m]->end;

temp2 = malloc(sizeof (Node));
temp2->name = malloc(strlen(loser) + 1);
temp2->name = loser;

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

temp2->visited = false; //
temp2->index = n; //
temp2->next = NULL; //add node to linked list
temp->next = temp2;
list[m]->end = temp2;
return O;
}
void top_sort(int index, Node **list, char **rank){

Node *temp = list[index];

temp->visited = true;
for(;temp != NULL; temp = temp->next)
if (list[temp->index]->visited == false)
top_sort (temp->index,list,rank);
rankit (list[index]->name,rank) ;

void rankit(char *name, char ** rank){
static int i= 107; //Nplayers = 108

rank[i--] = name;

double GetTime(void)

{

struct timeval tv;

gettimeofday (&tv,NULL) ;

return tv.tv_sec+le-6*xtv.tv_usec;
}
int main(){

int Nplayers,Ntour; //108,63

Node x**NameList, *iter;

int 1i,j,k;

char *templ, *temp2; //input buffer
char *xrank; //final ranking

double time;

templ = malloc(sizeof(char *));

temp2 = malloc(sizeof (char *));
scanf ("%d", &Nplayers);
printf ("%d\n",Nplayers);

NameList = (Node **)malloc(Nplayers * sizeof (Node *));
for (i = 0; i < Nplayers; ++i){
NameList[i] = (Node *)malloc(sizeof (Node *));

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136 }

NameList[i]->name = malloc(sizeof (char *));

time = GetTime();
for (i = 0; i < Nplayers; ++i)

//input players &
//init NameList

{
scanf ("%s", NameList[i]->name); //read martial artists' name
NameList[i]->end = NameList[i];
NameList [i]->next = NULL;
NameList[i]->visited = false;
NameList[i]->index = 1i;
}

rank = (char **)malloc(Nplayers * sizeof(char *));
for (i = 0; i < Nplayers; ++i){

rank[i] = (char *)malloc(sizeof(char *));
}
for(j = 0; j < 5; j++){ //tourl~tour5
scanf ("%d", &Ntour);
for (i = 0; i < Ntour; ++i){
scanf ("%s %s %s",templ, temp2, temp2);
insertNode (NameList, Nplayers, templ, temp2);
}
}
for(i = 0; i < Nplayers; i++){ //call topology
if (NameList[i]->visited ==false)
top_sort(i, NameList, rank);
}
for(i = 0; i < Nplayers; i++){ //print ranking
printf ("%d:%s\n",i+1, rank[i]);
}

printf ("CPU Time = %.3g sec\n",GetTime()-time);

return O;

//
//

//initialize rank

sort

Score: 40
[Late turn in] on 4/9 00:46

[Compiler warnings| line 76.
- All compiler warnings should be resolved before turning in.

[Program output]| is incorrect.

