
1

EE3980 Algorithms

HW5 Ranking Martial Artists

104061212 馮立俞

2018/4/8

Introduction

 In this assignment, we are given 108 martial artist names and 63*5 = 315 1 vs. 1

match results. Then, we’re required to rank the martial artists according to the

matches.

TL;DR : See updates at the bottom of report.

Approach

The match result can be represented by a Directed Acyclic Graph(DAG) in

which the edges point from match winner to match losers. Therefore, the graph

consists of 108 vertices and 315 edges, which is too wasteful to construct the graph

using adjacency matrix. As a result, I chose to build the graph using linked lists.

After the graph is constructed, we can sort the vertices using topology sort. It’s

noteworthy that since the graph is sparse, more than one valid sorting results are valid.

2

Topology Sort

1. Algorithm top_sort(v, slist)

 // Topological sort using depth first search algorithm.

2.

// v is the vertex being visited; and slist is the ordered linked list.

3. {

4. visited[v]: = 1;

5. for each vertex w adjacent to v do {

6. if (visited[w] = 0) then top_sort(w);

7. }

8. add v to the head of slist;

9.

10. }

11. Algorithm topsort_Call(v) // Initialization and recursive top_sort function call

.

12. {

13.

14. for v: = 1 to n do visited[v]: = 0;

15. slist: = NULL;

16.

17. for v: = 1 to n do

18. if (visited[v] = 0) then top_sort(v, slist);

19.

20. }

In this algorithm, we use Depth First Search(DFS) to traverse the vertices. Since

linked list is adopted, the complexity of traversal is 𝑂(𝑛 + 𝑒), where n and e are the

number of vertices and edges in the graph. If we use adjacency matrix, the complexity

could grow to 𝑂(𝑛2). Also, the space complexity of two data structure are 𝑂(𝑛 + 𝑒)

and 𝑂(𝑛2), respectively.

3

Results and analysis

Efficiency

We can plot the overall execution time w.r.t. 𝑛 + 𝑒 as follows

The curve is quite linear as 𝑒 grows linearly. The abnormal behavior of the second

point might be caused by initializing overhead.

Correctness

Since there’s more than one valid output, I didn’t check the output deterministically.

Rather, I picked out some edges, then observed if the output obeys them. So far

they’re valid.

Observations and Conclusion

Though being a linear complexity algorithm, the execution time of linked list

approach seem to be much slower when it’s compared to other sorting algorithms in

the previous assignments. This could result from the implemented data structure.

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

0 50 100 150 200 250 300 350 400 450

C
P

U
 t

im
e(

se
c)

vertices + edges

CPU Time vs. Task Size

4

Update on 6/8:

File hw05.c was designed to handle all 5 given tournaments and be executed using

below command.

cat player.txt tour1.txt tour2.txt tour3.txt tour4.txt tour5.txt | ./a.out

which I mentioned in submitted usage.txt file. Yet later I realized submitting more

than 2 files is violation to the requirement mentioned in hw05.pdf. I’ll attach the

usage at the end of my report then.

Since I get the following comment for my last submission is,

[Program output] is incorrect.

And the correctness was verified by picking out a few martial artists to check their

rankings. I wonder if the program is still waiting for 4 more input files to start sorting,

thus showing nothing and was recognized as error.

To read in different number of files, one could edit the 117 line in hw05.c

117 for(j = 0; j < 5; j++){ //tour1~tour5

