
1

EE3980 Algorithms

HW4 Trading Stock, II

104061212 馮立俞

2018/4/1

Introduction

In this assignment, we’re required to improve the brute-force approach for

maximum sum array problem in HW03 to reach 𝑂(𝑛2) time complexity. Then, we’ll

discuss whether it’s possible to device an algorithm having lower complexity than

𝑂(𝑛 log 𝑛).

2

Approach

Recap: Brute-force Approach

1. Algorithm MaxSubArrayBF(A, n, low, high) // Find low and high to

 maximize ΣA[i], low≦i ≦high.

2. {

3. max: = 0;low: = 1;high: = n;

4. for j: = 1 to n do { // Try all possible ranges: A[j : k].

5. for k: = j to n do {

 sum = price[high] – price[low]; // n^2 complexity version

6. sum: = 0; //

7. for i: = j to k do { //

8. sum: = sum + A[i]; // n^3 complexity version,

 } // could choose either one

9. if (sum > max) then {

 // Record the maximum value and range.

10. max = sum;

11. low = j;

12. high = k;

13. }

14. }

15. }

return max;

}

Since we’ve known the prices of stock in the given time, the price change over a

certain period can be obtained by subtracting the high price with low one. Doing so

would save us a loop; thus improve the overall complexity from 𝑂(𝑛3) to 𝑂(𝑛2).

Space complexity would remain the same nonetheless, i.e. 𝑂(𝑛).

3

Linear-Complexity Approach

1. Algorithm LinearApproach(Prices[], N) {

2. max_sum: = 0,

3. sum: = 0;start: = 0,

4. end: = 0,

5. temp_start: = 0;

6. for i from 0 to N - 1: {

7. sum += a[i];

8. if (sum < 0) {

9. sum: = 0;temp_start: = i + 1;

10. } //restart record

11. if (sum > max_sum) {

12. max_sum = sum;

13. start = temp_start;

14. end = i;

15. } //update record

16. }

17. if (start >= end)

18. do something // array all negative, error handling

19. return max_sum, start, end;

20. }

In this implementation, only one single loop is used. Obviously the time

complexity is 𝑂(𝑛). Plus, no other large memory space is required, so the space

complexity is 𝑂(𝑛).

In the algorithm, we keep adding new term to current sum, restart our record if

current sum is less than zero, and update max_sum and start & end if current sum is

greater than max_sum. Simple as that, yet it works (at least intuitively and empirically

for this homework)!

4

Results and analysis

We can plot above table as follows

Well, the complexity of the four algorithms are basically not on the same league.

It’s pretty hard to plot them on linear scale without some curves being suppressed.

0

5

10

15

20

25

30

0 500 1000 1500 2000 2500 3000 3500 4000

C
P

U
 t

im
e

(s
ec

)

task size

CPU time v.s. task size

Brute-force BF-Fast D & C Linear

task size 9 30 72 155 325 658 1331 2672 3414

Brute-

force

2.86E-06 3.81E-05 0.000509 0.0049 0.0336 0.23 1.82 12.9 27.1378

BF-Fast 9.54E-07 5.96E-06 2.48E-05 1.14E-04 4.73E-04 1.93E-03 7.84E-03 2.83E-02 4.27E-02

D & C 7.72E-07 3.48E-06 1.25E-05 2.76E-05 5.33E-05 1.10E-04 2.19E-04 4.41E-04 5.79E-04

Linear 9.61E-08 3.78E-07 1.02E-06 1.42E-06 3.26E-06 5.46E-06 9.93E-06 1.88E-05 2.35E-05

Table 1. Algorithm CPU time (in seconds) vs. task size

5

 We expect their complexity to be 𝑂(𝑛3), 𝑂(𝑛2), 𝑂(𝑛 log 𝑛), 𝑂(𝑛)

respectively. And the curves above are quite fit.

 We can further examine the complexity by plotting 𝑂(𝑛2) and 𝑂(𝑛) curves

with them, and they fit well too.

1.00E-08

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

1.00E+01

1.00E+02

1.00E+00 1.00E+01 1.00E+02 1.00E+03 1.00E+04

C
P

U
 t

im
e

(s
ec

)

task size

CPU time v.s. task size(lg-lg scale)

Brute-force

BF-Fast

D & C

Linear

1.00E-08

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

1.00E+00 1.00E+01 1.00E+02 1.00E+03 1.00E+04

C
P

U
 t

im
e

(s
ec

)

task size

CPU time v.s. task size(lg-lg scale)

BF-Fast Linear n n^2

6

Observations and Conclusion

 “Brevity is the soul of wit”, and the same philosophy applies for algorithms too.

With some ingenuity, a great amount of time could be saved.

