
1 
 

EE3980 Algorithms 

HW3 Trading Stock 

104061212 馮立俞 

2017/3/24 

 

Introduction 

 In this assignment, we are asked to read a sequence of dates and the stock prices 

of Google on that day. Then, to find out how to create greatest profit from buying the 

stock, we’ll use both brute-force and divide-and-conquer approach to compute the 

maximum sum. Finally, we’ll show how the two algorithms differ in terms of 

complexity. 

Approach 

 Suppose a sequence of stock prices is known. We can compute how much price 

changes with regards to previous day. Then, Finding the best time to buy or sell stock 

is simply calculating the maximum contiguous sum in the price change sequence. It 

can be done through brute-force or divide-and-conquer approach. 

 

 

 

 



2 
 

Brute-force Approach 

1. Algorithm MaxSubArrayBF(A, n, low, high) // Find low and high to                              

                         maximize ΣA[i ], low≦i ≦high.   

2. {   

3.     max: = 0;low: = 1;high: = n;   

4.     for j: = 1 to n do { // Try all possible ranges: A[j : k ].   

5.         for k: = j to n do {   

6.                 sum: = 0;   

7.                 for i: = j to k do {   

8.                         sum: = sum + A[i];   

9.                 }   

10.                 if (sum > max) then {                                                         

      // Record the maximum value and range.   

11.                     max = sum;   

12.                     low = j;   

13.                     high = k;   

14.                 }   

15.         }   

16.     }   

17. return max;   

} 

  

In brute-force approach, since there’s 
𝑛(𝑛−1)

2
 possibilities for (buy date, sell 

date) pair. We’ll need to try out every pair of them. In the lecture slides, it is said that 

the third loop would cause another Ο(n) time complexity, making the overall 

complexity Ο(𝑛3). However, the third loop can be replaced by subtracting the 

price(high) with price(low) operation, through which an overall Ο(𝑛2) complexity 

can be reached. In this assignment, I chose the Ο(𝑛3) version to stay aligned with the 

slides. 

By the way, the space complexity is  Ο(𝑛) since there’s no other array declared. 



3 
 

1. Algorithm MaxSubArray(A, begin, end, low, high) // Find low and  high to maximize            

                                      ΣA   [i], begin ≦ low ≦ i ≦ high ≦ end.    

2.     {   

3.         if (begin = end) { // termination condition.   

4.             low: = begin;   

5.             high: = end;   

6.             return A[begin];   

7.              

8.         }   

9.        mid: = ⌊ (begin + end) / 2⌋;   

10.        lsum: = MaxSubArray(A, begin, mid, llow, lhigh);             // left region   

11.        rsum: = MaxSubArray(A, mid + 1, end, rlow, rhigh);            // right region

   

12.        xsum: = MaxSubArrayXB(A, begin, mid, end, xlow, xhigh);                         

// cross boundary   

13.          

14.         if (lsum >= rsum and lsum >= xsum) then {                                            

   // lsum is the largest   

15.             low: = llow;   

16.             high: = lhigh;   

17.             return lsum;   

18.         }   

19.            

20.         else if (rsum >= lsum and rsum >= xsum) then {     

 // rsum is the largest   

21.             low: = rlow;   

22.             high: = rhigh;   

23.             return rsum;    

24.         }   

25.         low: = xlow;   

26.         high: = xhigh;   

27.         return xsum; // cross-boundary is the largest   

28.          

29.     }   

 
 

Divide and Conquer Approach 



4 
 

1. Algorithm MaxSubArrayXB(A, begin, mid, end, low, high) 2 // Find low  and high to            

                              maximize ΣA[i], begin ≦ low ≦ mid ≦ high ≦ end.    

2.     {   

3.         lsum: = 0;   

4.         low: = mid;   

5.         sum: = 0;   

6.          

7.         for i: = mid to begin step− 1 do { // find low to maximize  

//ΣA[low : mid ]   

8.                 sum: = sum + A[i];   

9.                   

10.                 if (sum > lsum) then {   

11.                    lsum = sum;   

12.                     low: = i;   

13.                       

14.                 }   

15.                   

16.             }   

17.         rsum: = 0;   

18.         high: = mid + 1;   

19.         sum: = 0;   

20.          

21.         for i: = mid + 1 to end do { // find end to maximize                                 

                        ΣA[mid + 1 : high ]   

22.                 sum: = sum + A[i];   

23.                    

24.                 if (sum > rsum) then {   

25.                     rsum = sum;   

26.                     high: = i;   

27.                       

28.                 }   

29.                   

30.             }   

31.           

32.         return lsum + rsum;   

33.          

34.     }   
 

In the above MaxSubArray function we can see ordinary divide and conquer 



5 
 

i.e. termination condition → split → merge structure.  

When dealing with the cross boundary situation, it is kept in mind that if a 

maximum contiguous sum contains mid, then the sequence before and after mid are 

also maximum contiguous sums. 

Since we divide the task into two parts ( Ο( log(n) ) ), dealing with cross 

boundary situation for each part( Ο( 𝑛 ) ). It can be estimated that the time 

complexity is Ο( n ∗ log(n) ), more robust proof is already shown in course slides. 

Because recursion is used, and we need to at least store begin, mid, end 

variables for each part we split. There would be about 2n − 1 parts, so the space 

complexity is Ο(𝑛). 

Results and analysis 

Let’s first tabulate the CPU time w.r.t. the algorithms. 

 

We can obviously see divide and conquer approach outperform brute-force 

approach by great margin, especially as we encounter large task size. The difference is 

more evident if we plot above table, as Figure 1. 

task 

size 

9 30 72 155 325 658 1331 2672 3414 

Brute-

force 

2.86E-06 3.81E-05 0.000509 0.0049 0.0336 0.23 1.82 12.9 27.1378 

D & C 1.03E-06 4.07E-06 1.06E-05 2.29E-05 3.51E-05 9.08E-05 1.81E-04 3.85E-04 5.11E-04 

Table 1. task size v.s CPU time (in seconds) 



6 
 

 

 

Then, to prove that the above time complexity analysis correct, we can plot 

Figure 1. in log-log scale, as Figure 2. 

 

 

 

 

 

 

 

 

The two curves are quite similar to our expectations. 

0.00E+00

5.00E+00

1.00E+01

1.50E+01

2.00E+01

2.50E+01

3.00E+01

0 500 1000 1500 2000 2500 3000 3500 4000

C
P

U
 t

im
e 

(s
ec

)

task size

CPU time v.s. task size

Brute-force

D & C

1.E-08

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E+00 1.E+01 1.E+02 1.E+03 1.E+04

C
P

U
 t

im
e 

task size

CPU time v.s. task size(lg-lg scale)

Brute-force

n^3

D & C

nlogn

n3 

𝑛 log 𝑛 

Figure 1. D & C v.s. BF CPU time 

Figure 2. D & C v.s. BF CPU time (log-log scale) 



7 
 

Observations and Conclusion 

 We’ve seen huge performance difference above. However, even if we adopt the 

Ο(𝑛2) version of BF approach, it’s still no match with D & C. For example, below is 

the execution result of largest task in this assignment, with improved BF version 

 

 

 

 

 

 

 

 

 

 

 It’s still a great improvement for BF approach compared with initial execution 

time (27.1378 sec) nonetheless. 

 

 In conclusion, we’ve known that how algorithm complexity can largely 

determine execution time when faced with large-scale tasks. And to reduce 

complexity, divide and conquer is one good way to go. 

./a.out < s9.dat 

N = 3414 

Brute-force approach: 

  CPU time 0.036952 s 

… 

Divide and Conquer approach: 

  CPU time 0.000557042 s 

… 


