EE3980 Algorithms

HW1 Quadratic Sorts

104061212 JEBITEY
201//3/11

Introduction

In this homework, we’re required to perform various quadratic sorting
algorithms (Insertion Sort, Selection Sort and Bubble Sort) on files of different
amount of strings. We’ll then record the CPU time used by each algorithm, and see

how problem size affects program running time for them.

Approach and pre-analysis

We will record the CPU time needed to perform each sorting algorithm for 500

times, then take the average to find out how much time a single algorithm spent.

Insertion Sort

1. void InsertionSort(char ** list, int n) {

2. int i, j; Can use pseudo code.
3. char * temp;

4. for (3 = 1; 3 < n; j++) {

5. temp = list[j];

6. i=3-1;

7. while ((i >= @) && (strcmp(temp, list[i]) < 0)) {
8. list[i + 1] = list[i];

9. i--5

10. }

11. list[i + 1] = temp;

12. }

13. }

In each round, selection sort compare i-th member with the already-sorted

Mi-Chang Chang

Mi-Chang Chang
Can use pseudo code.

members. Then place it in a proper position such that all members ahead are bigger,
and all members behind smaller. After n rounds, every member is bigger than its
successors, and smaller than its predecessors. The algorithm is correct.

In the i-th round of the outer loop, the inner loop has to perform 1 ~ i-1 times of
comparison, depending on how big the i-th element is. Thus in the best case, this

algorithm can achieve 1+1+1+..41=n ie. O(n) complexity. The worst case

n(n-1)

couldbe 1+ 2+ ... +(n-1) = , which has ©(n?) complexity. On the

l
average, we expect the inner loop to do E times, and this would also result in ©(n?)

complexity.

Selection Sort

1. void SelectionSort(char * * list, int n) {

2. int i, j, k;

3. char * temp;

4. for (i = 0; i < n; i++) {

5. j =1,

6. for (k =1+ 1; k < n; k++) {

7. if (strcmp(list[k], list[j]) < @) j = k;
8. }

9. temp = list[i]; //

10. list[i] = list[j]; //

11. list[j] = temp; //swapping the remaining smallest(j) with i
12. }

13. }

In the i-th round, insertion guarantees that i-th smallest element to be placed at
i-th position. After finishing the n-th round, the strings are well sorted.

Assume the outer loop has loop index i, the inner has to perform (n-1)-i times of
‘if’ statement, which has time complexity of O(1).Therefore, as i increase from 0, 1

to n-2, the inner loop will execute (n-1) + (n-2) +...+ 1 times. The algorithm will be

obviously of @(n?) complexity since the sum of the series is —n(z—l)

Mi-Chang Chang

Bubble Sort

1. void BubbleSort(char * * list, int n) {
2. int i, j;

3. char * temp;

N

for (1 =0; i < n - 1; i++) {

5. for (j=n-1; j>1i; j--) {

6. if (strcmp(list[j], list[j - 1]) < @) {
7. temp = list[j]; // swapping

8. list[j] = list[j - 1]; //

9. list[j - 1] = temp; //

10. }

11. }

12. }

13. }

Similar to selection sort, bubble sort places n-th element in i-th round.
Assume the outer loop has loop index i, the inner loop has to perform n-1-1i

times of operation of O(1) time complexity. Thus the overall amount of operation
executed is (n-1) + (n-2) + ...+ 1= % We can then conclude that bubble

sort’s time complexity is ©(n?)

Results and analysis

Though all of the three share the same complexity. Insertion sort performed most
efficiently in most cases. Selection sort is second-best. Bubble sort behaves poorly in

terms of speed. Their actual comparison is shown on the graph below.

Algorithm effieciency

7.00E-02
‘5 6.00E-02
& 5.006-02
GEJ 4.00E-02
= 3.00E-02
D 2.00E-02
O 1.00E-02
0.00E+00
10 20 40 80 160 320 640 1280 2560
sl s2 s3 s4 s5 s6 s7 s8 s9
task size
e NSertion === selection bubble

If we look further into these three algorithms, above results shouldn’t be
surprising. Insertion sort, unlike other two, doesn’t compare or swap current string
with every string in the already-sorted group. On the other hand, Selection sort beats
bubble sort since it only performs one swapping in each round.

However, though having different efficiency, if we view the graph in log-log
scale, we can clearly see that three of the curves are all linear, which indicates

polynomial complexity. 2

Mi-Chang Chang

Mi-Chang Chang
?

x-axis label? y-axis label? unit?

Algorithm effieciency (lg-lg scale)

Are these n"2?

e NSErtion === selection e bubble

In sum, all of the three are valid sorting algorithms of ®(n?) time complexity.
It’s also noteworthy that depending on the efficiency of doing swapping / comparing.
Sometimes selection sort may outperform insertion sort due to its fewer swapping

need.

Mi-Chang Chang
Are these n^2?

Mi-Chang Chang
x-axis label? y-axis label? unit?

© 00 N O O W N -

O DD D D D DD DD W0WWWWWWWWWNDNNDNDDNDNDDNDNDNDDNREEFE R PR R R e
O O 00 NO U d WNEFE O O O0WWNOOU D WNE O OOWNOO O WNE O OWONO O WwWND - O

/*EE3980 HWO1 Quadratic Sorts
*Li-Yu Feng 104061212

*Date: 2018/3/7

*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/time.h>

void SelectionSort(char **list,int n);
void InsertionSort(char **list,int n);
void BubbleSort(char **list,int n);
double GetTime(void);

void InsertionSort(char **list,int n){
int 1i,j;
char *temp;

for(j = 1; j < n; j+t){
temp = list[j];
i=j-1;

while((i>=0) && (strcmp(temp,list[i]) < 0)){

list[i+1] = 1list[i];
i--;

}

list[i+1] = temp;

void BubbleSort(char **list,int n){
int 1i,j;
char *temp;

for (i = 0; i < n-1; i++){
for(j = n-1; j > i; j—){
if (stremp(list[j],list[j-1]) <
temp = list[j];
list[j] = list[j-11;
list[j-1] = temp;

void SelectionSort(char **list,int n){
int i,j,k;
char *temp;

0){

// swapping
//

//

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100

for(i = 0; i < n; i++){
j= i
for(k = i+1;k < n; k++){
if (stremp(list[k],list[j]) < 0)
j=k
}
temp = list[i]; //
list[i] = list[j]; //
list[j] = temp; //swapping the remaining smallest(j) with i
}
}
double GetTime(void)

{
struct timeval tv;
gettimeofday (&tv,NULL) ;
return tv.tv_sec+le-6*xtv.tv_usec;
}
int main()
{
int 1i,j;
int Nwords;
double t1,t2;
char **words,**A;
scanf ("%d", &Nwords);
words = (charx*)malloc(Nwords * sizeof (charx)); //
for(i = 0; i < Nwords; i++) //
words[i] = (char *)malloc(sizeof (char*)); //" Maybe too small!
A = (char**)malloc(Nwords * sizeof (charx)); //
for(i = 0; i < Nwords; i++) //
A[i] = (char *)malloc(sizeof (charx)); //
for(i = 0; i < Nwords ; i++){ //
scanf ("%s", words[il); //scan words
}
//Perform insertion sort

t1 = GetTime();
for(i = 0; i<500; i++){
memcpy (A,words,Nwords * sizeof (charx*));

InsertionSort (A, Nwords);
if (i==0){
for(j = 0; j < Nwords ; j++)
printf("%d %s\n",j+1,A[51);

No need for this

Mi-Chang Chang

Mi-Chang Chang
Maybe too small!

Mi-Chang Chang

Mi-Chang Chang
No need for this

101
102

103
104
105
106
107
108
109
110
111
112
113
114
115
116
117

118
119
120
121
122
123
124
125
126
127
128
129
130
131

132
133
134
135
136
137
138
139
140
141

t2 = GetTime();

printf ("%s:\nN=%d\nCPU time = %.5g seconds\n", "insertion sort",Nwords, (t2
-t1)/500.0) ;
//Perform selection sort Only one sort evaluation is needed for one run.

tl = GetTime();

for(i = 0; i<500; i++){

}

t2 =

memcpy (A,words,Nwords * sizeof (charx*));

SelectionSort (A, Nwords);
if(i==0 && Nwords <=20){
for(j = 0; j < Nwords ; j++)
printf ("%d %s\n",j+1,A[j]1);

GetTime () ;

printf ("%s:\nN=/,d\nCPU time = %.5g seconds\n", "selection sort",Nwords, (t2-
t1)/500.0);

//Perform bubble sort

t1

= GetTime();

for(i = 0; i<500; i++){

memcpy (A,words,Nwords * sizeof (charx*));

BubbleSort (A, Nwords);
if (i==0 && Nwords <= 20){
for(j = 0; j < Nwords ; j++)
printf ("%d %s\n",j+1,A[j1);

}

+

t2 = GetTime();

printf ("%s:\nN=%d\nCPU time = %.5g seconds\n", "bubble sort",Nwords, (t2-t1
)/500.0) ;

for(j = 0; j < Nwords ; j++)

printf("%d %s\n",j+1,words[j1); What is this for?

free(words) ; //avoid memory leakage

free(A);

return O;

Mi-Chang Chang
Only one sort evaluation is needed for one run.

Mi-Chang Chang

Mi-Chang Chang
What is this for?

Score: 76

o. Can use pseudo to explain you algorithms

o. Can tabulate your CPU times

0. How do you know your CPU times correlate to O(n?)
[Figure 2] should be clearly presented.

o. What are the space complexity?

0. Array A[i] might be too small for long words.

[line 94] memepy is not needed.
- A can be a simple array of charx not A[l : n][8].

o. The assignment requires one algorithm to be executed for each run.

