
EE3980 Algorithms

HW1 Quadratic Sorts

104061212 馮立俞

201//3/11

Introduction

In this homework, we’re required to perform various quadratic sorting

algorithms (Insertion Sort, Selection Sort and Bubble Sort) on files of different

amount of strings. We’ll then record the CPU time used by each algorithm, and see

how problem size affects program running time for them.

Approach and pre-analysis

 We will record the CPU time needed to perform each sorting algorithm for 500

times, then take the average to find out how much time a single algorithm spent.

Insertion Sort

1. void InsertionSort(char ** list, int n) {

2. int i, j;

3. char * temp;

4. for (j = 1; j < n; j++) {

5. temp = list[j];

6. i = j - 1;

7. while ((i >= 0) && (strcmp(temp, list[i]) < 0)) {

8. list[i + 1] = list[i];

9. i--;

10. }

11. list[i + 1] = temp;

12. }

13. }

 In each round, selection sort compare i-th member with the already-sorted

members. Then place it in a proper position such that all members ahead are bigger,

and all members behind smaller. After n rounds, every member is bigger than its

successors, and smaller than its predecessors. The algorithm is correct.

In the i-th round of the outer loop, the inner loop has to perform 1 ~ i-1 times of

comparison, depending on how big the i-th element is. Thus in the best case, this

algorithm can achieve 1+1+1+…+1 = n i.e. Θ(n) complexity. The worst case

could be 1 + 2 + …. +(n-1) =
 n(n−1)

2
 , which has Θ(𝑛2) complexity. On the

average, we expect the inner loop to do
𝑖

2
 times, and this would also result in Θ(𝑛2)

complexity.

Selection Sort

1. void SelectionSort(char * * list, int n) {

2. int i, j, k;

3. char * temp;

4. for (i = 0; i < n; i++) {

5. j = i;

6. for (k = i + 1; k < n; k++) {

7. if (strcmp(list[k], list[j]) < 0) j = k;

8. }

9. temp = list[i]; //

10. list[i] = list[j]; //

11. list[j] = temp; //swapping the remaining smallest(j) with i

12. }

13. }

In the i-th round, insertion guarantees that i-th smallest element to be placed at

i-th position. After finishing the n-th round, the strings are well sorted.

Assume the outer loop has loop index i, the inner has to perform (n-1)–i times of

‘if’ statement, which has time complexity of O(1).Therefore, as i increase from 0, 1

to n-2, the inner loop will execute (n-1) + (n-2) +…+ 1 times. The algorithm will be

obviously of Θ(𝑛2) complexity since the sum of the series is
 n(n−1)

2

Bubble Sort

1. void BubbleSort(char * * list, int n) {

2. int i, j;

3. char * temp;

4. for (i = 0; i < n - 1; i++) {

5. for (j = n - 1; j > i; j--) {

6. if (strcmp(list[j], list[j - 1]) < 0) {

7. temp = list[j]; // swapping

8. list[j] = list[j - 1]; //

9. list[j - 1] = temp; //

10. }

11. }

12. }

13. }

Similar to selection sort, bubble sort places n-th element in i-th round.

Assume the outer loop has loop index i, the inner loop has to perform n – 1 – i

times of operation of O(1) time complexity. Thus the overall amount of operation

executed is (n-1) + (n-2) + … + 1 =
 n(n−1)

2
. We can then conclude that bubble

sort’s time complexity is Θ(𝑛2)

Results and analysis

Though all of the three share the same complexity. Insertion sort performed most

efficiently in most cases. Selection sort is second-best. Bubble sort behaves poorly in

terms of speed. Their actual comparison is shown on the graph below.

If we look further into these three algorithms, above results shouldn’t be

surprising. Insertion sort, unlike other two, doesn’t compare or swap current string

with every string in the already-sorted group. On the other hand, Selection sort beats

bubble sort since it only performs one swapping in each round.

However, though having different efficiency, if we view the graph in log-log

scale, we can clearly see that three of the curves are all linear, which indicates

polynomial complexity.

0.00E+00

1.00E-02

2.00E-02

3.00E-02

4.00E-02

5.00E-02

6.00E-02

7.00E-02

10 20 40 80 160 320 640 1280 2560

s1 s2 s3 s4 s5 s6 s7 s8 s9

C
P

U
 t

im
e

(s
ec

)

task size

Algorithm effieciency

insertion selection bubble

 In sum, all of the three are valid sorting algorithms of Θ(𝑛2) time complexity.

It’s also noteworthy that depending on the efficiency of doing swapping / comparing.

Sometimes selection sort may outperform insertion sort due to its fewer swapping

need.

Algorithm effieciency (lg-lg scale)

insertion selection bubble

